1/* 2 * ADXL345/346 Three-Axis Digital Accelerometers 3 * 4 * Enter bugs at http://blackfin.uclinux.org/ 5 * 6 * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc. 7 * Licensed under the GPL-2 or later. 8 */ 9 10#include <linux/device.h> 11#include <linux/delay.h> 12#include <linux/input.h> 13#include <linux/interrupt.h> 14#include <linux/irq.h> 15#include <linux/slab.h> 16#include <linux/workqueue.h> 17#include <linux/input/adxl34x.h> 18#include <linux/module.h> 19 20#include "adxl34x.h" 21 22/* ADXL345/6 Register Map */ 23#define DEVID 0x00 /* R Device ID */ 24#define THRESH_TAP 0x1D /* R/W Tap threshold */ 25#define OFSX 0x1E /* R/W X-axis offset */ 26#define OFSY 0x1F /* R/W Y-axis offset */ 27#define OFSZ 0x20 /* R/W Z-axis offset */ 28#define DUR 0x21 /* R/W Tap duration */ 29#define LATENT 0x22 /* R/W Tap latency */ 30#define WINDOW 0x23 /* R/W Tap window */ 31#define THRESH_ACT 0x24 /* R/W Activity threshold */ 32#define THRESH_INACT 0x25 /* R/W Inactivity threshold */ 33#define TIME_INACT 0x26 /* R/W Inactivity time */ 34#define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */ 35 /* inactivity detection */ 36#define THRESH_FF 0x28 /* R/W Free-fall threshold */ 37#define TIME_FF 0x29 /* R/W Free-fall time */ 38#define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */ 39#define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */ 40#define BW_RATE 0x2C /* R/W Data rate and power mode control */ 41#define POWER_CTL 0x2D /* R/W Power saving features control */ 42#define INT_ENABLE 0x2E /* R/W Interrupt enable control */ 43#define INT_MAP 0x2F /* R/W Interrupt mapping control */ 44#define INT_SOURCE 0x30 /* R Source of interrupts */ 45#define DATA_FORMAT 0x31 /* R/W Data format control */ 46#define DATAX0 0x32 /* R X-Axis Data 0 */ 47#define DATAX1 0x33 /* R X-Axis Data 1 */ 48#define DATAY0 0x34 /* R Y-Axis Data 0 */ 49#define DATAY1 0x35 /* R Y-Axis Data 1 */ 50#define DATAZ0 0x36 /* R Z-Axis Data 0 */ 51#define DATAZ1 0x37 /* R Z-Axis Data 1 */ 52#define FIFO_CTL 0x38 /* R/W FIFO control */ 53#define FIFO_STATUS 0x39 /* R FIFO status */ 54#define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */ 55/* Orientation ADXL346 only */ 56#define ORIENT_CONF 0x3B /* R/W Orientation configuration */ 57#define ORIENT 0x3C /* R Orientation status */ 58 59/* DEVIDs */ 60#define ID_ADXL345 0xE5 61#define ID_ADXL346 0xE6 62 63/* INT_ENABLE/INT_MAP/INT_SOURCE Bits */ 64#define DATA_READY (1 << 7) 65#define SINGLE_TAP (1 << 6) 66#define DOUBLE_TAP (1 << 5) 67#define ACTIVITY (1 << 4) 68#define INACTIVITY (1 << 3) 69#define FREE_FALL (1 << 2) 70#define WATERMARK (1 << 1) 71#define OVERRUN (1 << 0) 72 73/* ACT_INACT_CONTROL Bits */ 74#define ACT_ACDC (1 << 7) 75#define ACT_X_EN (1 << 6) 76#define ACT_Y_EN (1 << 5) 77#define ACT_Z_EN (1 << 4) 78#define INACT_ACDC (1 << 3) 79#define INACT_X_EN (1 << 2) 80#define INACT_Y_EN (1 << 1) 81#define INACT_Z_EN (1 << 0) 82 83/* TAP_AXES Bits */ 84#define SUPPRESS (1 << 3) 85#define TAP_X_EN (1 << 2) 86#define TAP_Y_EN (1 << 1) 87#define TAP_Z_EN (1 << 0) 88 89/* ACT_TAP_STATUS Bits */ 90#define ACT_X_SRC (1 << 6) 91#define ACT_Y_SRC (1 << 5) 92#define ACT_Z_SRC (1 << 4) 93#define ASLEEP (1 << 3) 94#define TAP_X_SRC (1 << 2) 95#define TAP_Y_SRC (1 << 1) 96#define TAP_Z_SRC (1 << 0) 97 98/* BW_RATE Bits */ 99#define LOW_POWER (1 << 4) 100#define RATE(x) ((x) & 0xF) 101 102/* POWER_CTL Bits */ 103#define PCTL_LINK (1 << 5) 104#define PCTL_AUTO_SLEEP (1 << 4) 105#define PCTL_MEASURE (1 << 3) 106#define PCTL_SLEEP (1 << 2) 107#define PCTL_WAKEUP(x) ((x) & 0x3) 108 109/* DATA_FORMAT Bits */ 110#define SELF_TEST (1 << 7) 111#define SPI (1 << 6) 112#define INT_INVERT (1 << 5) 113#define FULL_RES (1 << 3) 114#define JUSTIFY (1 << 2) 115#define RANGE(x) ((x) & 0x3) 116#define RANGE_PM_2g 0 117#define RANGE_PM_4g 1 118#define RANGE_PM_8g 2 119#define RANGE_PM_16g 3 120 121/* 122 * Maximum value our axis may get in full res mode for the input device 123 * (signed 13 bits) 124 */ 125#define ADXL_FULLRES_MAX_VAL 4096 126 127/* 128 * Maximum value our axis may get in fixed res mode for the input device 129 * (signed 10 bits) 130 */ 131#define ADXL_FIXEDRES_MAX_VAL 512 132 133/* FIFO_CTL Bits */ 134#define FIFO_MODE(x) (((x) & 0x3) << 6) 135#define FIFO_BYPASS 0 136#define FIFO_FIFO 1 137#define FIFO_STREAM 2 138#define FIFO_TRIGGER 3 139#define TRIGGER (1 << 5) 140#define SAMPLES(x) ((x) & 0x1F) 141 142/* FIFO_STATUS Bits */ 143#define FIFO_TRIG (1 << 7) 144#define ENTRIES(x) ((x) & 0x3F) 145 146/* TAP_SIGN Bits ADXL346 only */ 147#define XSIGN (1 << 6) 148#define YSIGN (1 << 5) 149#define ZSIGN (1 << 4) 150#define XTAP (1 << 3) 151#define YTAP (1 << 2) 152#define ZTAP (1 << 1) 153 154/* ORIENT_CONF ADXL346 only */ 155#define ORIENT_DEADZONE(x) (((x) & 0x7) << 4) 156#define ORIENT_DIVISOR(x) ((x) & 0x7) 157 158/* ORIENT ADXL346 only */ 159#define ADXL346_2D_VALID (1 << 6) 160#define ADXL346_2D_ORIENT(x) (((x) & 0x30) >> 4) 161#define ADXL346_3D_VALID (1 << 3) 162#define ADXL346_3D_ORIENT(x) ((x) & 0x7) 163#define ADXL346_2D_PORTRAIT_POS 0 /* +X */ 164#define ADXL346_2D_PORTRAIT_NEG 1 /* -X */ 165#define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */ 166#define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */ 167 168#define ADXL346_3D_FRONT 3 /* +X */ 169#define ADXL346_3D_BACK 4 /* -X */ 170#define ADXL346_3D_RIGHT 2 /* +Y */ 171#define ADXL346_3D_LEFT 5 /* -Y */ 172#define ADXL346_3D_TOP 1 /* +Z */ 173#define ADXL346_3D_BOTTOM 6 /* -Z */ 174 175#undef ADXL_DEBUG 176 177#define ADXL_X_AXIS 0 178#define ADXL_Y_AXIS 1 179#define ADXL_Z_AXIS 2 180 181#define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg)) 182#define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val)) 183 184struct axis_triple { 185 int x; 186 int y; 187 int z; 188}; 189 190struct adxl34x { 191 struct device *dev; 192 struct input_dev *input; 193 struct mutex mutex; /* reentrant protection for struct */ 194 struct adxl34x_platform_data pdata; 195 struct axis_triple swcal; 196 struct axis_triple hwcal; 197 struct axis_triple saved; 198 char phys[32]; 199 unsigned orient2d_saved; 200 unsigned orient3d_saved; 201 bool disabled; /* P: mutex */ 202 bool opened; /* P: mutex */ 203 bool suspended; /* P: mutex */ 204 bool fifo_delay; 205 int irq; 206 unsigned model; 207 unsigned int_mask; 208 209 const struct adxl34x_bus_ops *bops; 210}; 211 212static const struct adxl34x_platform_data adxl34x_default_init = { 213 .tap_threshold = 35, 214 .tap_duration = 3, 215 .tap_latency = 20, 216 .tap_window = 20, 217 .tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN, 218 .act_axis_control = 0xFF, 219 .activity_threshold = 6, 220 .inactivity_threshold = 4, 221 .inactivity_time = 3, 222 .free_fall_threshold = 8, 223 .free_fall_time = 0x20, 224 .data_rate = 8, 225 .data_range = ADXL_FULL_RES, 226 227 .ev_type = EV_ABS, 228 .ev_code_x = ABS_X, /* EV_REL */ 229 .ev_code_y = ABS_Y, /* EV_REL */ 230 .ev_code_z = ABS_Z, /* EV_REL */ 231 232 .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */ 233 .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK, 234 .fifo_mode = ADXL_FIFO_STREAM, 235 .watermark = 0, 236}; 237 238static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis) 239{ 240 short buf[3]; 241 242 ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf); 243 244 mutex_lock(&ac->mutex); 245 ac->saved.x = (s16) le16_to_cpu(buf[0]); 246 axis->x = ac->saved.x; 247 248 ac->saved.y = (s16) le16_to_cpu(buf[1]); 249 axis->y = ac->saved.y; 250 251 ac->saved.z = (s16) le16_to_cpu(buf[2]); 252 axis->z = ac->saved.z; 253 mutex_unlock(&ac->mutex); 254} 255 256static void adxl34x_service_ev_fifo(struct adxl34x *ac) 257{ 258 struct adxl34x_platform_data *pdata = &ac->pdata; 259 struct axis_triple axis; 260 261 adxl34x_get_triple(ac, &axis); 262 263 input_event(ac->input, pdata->ev_type, pdata->ev_code_x, 264 axis.x - ac->swcal.x); 265 input_event(ac->input, pdata->ev_type, pdata->ev_code_y, 266 axis.y - ac->swcal.y); 267 input_event(ac->input, pdata->ev_type, pdata->ev_code_z, 268 axis.z - ac->swcal.z); 269} 270 271static void adxl34x_report_key_single(struct input_dev *input, int key) 272{ 273 input_report_key(input, key, true); 274 input_sync(input); 275 input_report_key(input, key, false); 276} 277 278static void adxl34x_send_key_events(struct adxl34x *ac, 279 struct adxl34x_platform_data *pdata, int status, int press) 280{ 281 int i; 282 283 for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) { 284 if (status & (1 << (ADXL_Z_AXIS - i))) 285 input_report_key(ac->input, 286 pdata->ev_code_tap[i], press); 287 } 288} 289 290static void adxl34x_do_tap(struct adxl34x *ac, 291 struct adxl34x_platform_data *pdata, int status) 292{ 293 adxl34x_send_key_events(ac, pdata, status, true); 294 input_sync(ac->input); 295 adxl34x_send_key_events(ac, pdata, status, false); 296} 297 298static irqreturn_t adxl34x_irq(int irq, void *handle) 299{ 300 struct adxl34x *ac = handle; 301 struct adxl34x_platform_data *pdata = &ac->pdata; 302 int int_stat, tap_stat, samples, orient, orient_code; 303 304 /* 305 * ACT_TAP_STATUS should be read before clearing the interrupt 306 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled 307 */ 308 309 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) 310 tap_stat = AC_READ(ac, ACT_TAP_STATUS); 311 else 312 tap_stat = 0; 313 314 int_stat = AC_READ(ac, INT_SOURCE); 315 316 if (int_stat & FREE_FALL) 317 adxl34x_report_key_single(ac->input, pdata->ev_code_ff); 318 319 if (int_stat & OVERRUN) 320 dev_dbg(ac->dev, "OVERRUN\n"); 321 322 if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) { 323 adxl34x_do_tap(ac, pdata, tap_stat); 324 325 if (int_stat & DOUBLE_TAP) 326 adxl34x_do_tap(ac, pdata, tap_stat); 327 } 328 329 if (pdata->ev_code_act_inactivity) { 330 if (int_stat & ACTIVITY) 331 input_report_key(ac->input, 332 pdata->ev_code_act_inactivity, 1); 333 if (int_stat & INACTIVITY) 334 input_report_key(ac->input, 335 pdata->ev_code_act_inactivity, 0); 336 } 337 338 /* 339 * ORIENTATION SENSING ADXL346 only 340 */ 341 if (pdata->orientation_enable) { 342 orient = AC_READ(ac, ORIENT); 343 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) && 344 (orient & ADXL346_2D_VALID)) { 345 346 orient_code = ADXL346_2D_ORIENT(orient); 347 /* Report orientation only when it changes */ 348 if (ac->orient2d_saved != orient_code) { 349 ac->orient2d_saved = orient_code; 350 adxl34x_report_key_single(ac->input, 351 pdata->ev_codes_orient_2d[orient_code]); 352 } 353 } 354 355 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) && 356 (orient & ADXL346_3D_VALID)) { 357 358 orient_code = ADXL346_3D_ORIENT(orient) - 1; 359 /* Report orientation only when it changes */ 360 if (ac->orient3d_saved != orient_code) { 361 ac->orient3d_saved = orient_code; 362 adxl34x_report_key_single(ac->input, 363 pdata->ev_codes_orient_3d[orient_code]); 364 } 365 } 366 } 367 368 if (int_stat & (DATA_READY | WATERMARK)) { 369 370 if (pdata->fifo_mode) 371 samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1; 372 else 373 samples = 1; 374 375 for (; samples > 0; samples--) { 376 adxl34x_service_ev_fifo(ac); 377 /* 378 * To ensure that the FIFO has 379 * completely popped, there must be at least 5 us between 380 * the end of reading the data registers, signified by the 381 * transition to register 0x38 from 0x37 or the CS pin 382 * going high, and the start of new reads of the FIFO or 383 * reading the FIFO_STATUS register. For SPI operation at 384 * 1.5 MHz or lower, the register addressing portion of the 385 * transmission is sufficient delay to ensure the FIFO has 386 * completely popped. It is necessary for SPI operation 387 * greater than 1.5 MHz to de-assert the CS pin to ensure a 388 * total of 5 us, which is at most 3.4 us at 5 MHz 389 * operation. 390 */ 391 if (ac->fifo_delay && (samples > 1)) 392 udelay(3); 393 } 394 } 395 396 input_sync(ac->input); 397 398 return IRQ_HANDLED; 399} 400 401static void __adxl34x_disable(struct adxl34x *ac) 402{ 403 /* 404 * A '0' places the ADXL34x into standby mode 405 * with minimum power consumption. 406 */ 407 AC_WRITE(ac, POWER_CTL, 0); 408} 409 410static void __adxl34x_enable(struct adxl34x *ac) 411{ 412 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); 413} 414 415void adxl34x_suspend(struct adxl34x *ac) 416{ 417 mutex_lock(&ac->mutex); 418 419 if (!ac->suspended && !ac->disabled && ac->opened) 420 __adxl34x_disable(ac); 421 422 ac->suspended = true; 423 424 mutex_unlock(&ac->mutex); 425} 426EXPORT_SYMBOL_GPL(adxl34x_suspend); 427 428void adxl34x_resume(struct adxl34x *ac) 429{ 430 mutex_lock(&ac->mutex); 431 432 if (ac->suspended && !ac->disabled && ac->opened) 433 __adxl34x_enable(ac); 434 435 ac->suspended = false; 436 437 mutex_unlock(&ac->mutex); 438} 439EXPORT_SYMBOL_GPL(adxl34x_resume); 440 441static ssize_t adxl34x_disable_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443{ 444 struct adxl34x *ac = dev_get_drvdata(dev); 445 446 return sprintf(buf, "%u\n", ac->disabled); 447} 448 449static ssize_t adxl34x_disable_store(struct device *dev, 450 struct device_attribute *attr, 451 const char *buf, size_t count) 452{ 453 struct adxl34x *ac = dev_get_drvdata(dev); 454 unsigned int val; 455 int error; 456 457 error = kstrtouint(buf, 10, &val); 458 if (error) 459 return error; 460 461 mutex_lock(&ac->mutex); 462 463 if (!ac->suspended && ac->opened) { 464 if (val) { 465 if (!ac->disabled) 466 __adxl34x_disable(ac); 467 } else { 468 if (ac->disabled) 469 __adxl34x_enable(ac); 470 } 471 } 472 473 ac->disabled = !!val; 474 475 mutex_unlock(&ac->mutex); 476 477 return count; 478} 479 480static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store); 481 482static ssize_t adxl34x_calibrate_show(struct device *dev, 483 struct device_attribute *attr, char *buf) 484{ 485 struct adxl34x *ac = dev_get_drvdata(dev); 486 ssize_t count; 487 488 mutex_lock(&ac->mutex); 489 count = sprintf(buf, "%d,%d,%d\n", 490 ac->hwcal.x * 4 + ac->swcal.x, 491 ac->hwcal.y * 4 + ac->swcal.y, 492 ac->hwcal.z * 4 + ac->swcal.z); 493 mutex_unlock(&ac->mutex); 494 495 return count; 496} 497 498static ssize_t adxl34x_calibrate_store(struct device *dev, 499 struct device_attribute *attr, 500 const char *buf, size_t count) 501{ 502 struct adxl34x *ac = dev_get_drvdata(dev); 503 504 /* 505 * Hardware offset calibration has a resolution of 15.6 mg/LSB. 506 * We use HW calibration and handle the remaining bits in SW. (4mg/LSB) 507 */ 508 509 mutex_lock(&ac->mutex); 510 ac->hwcal.x -= (ac->saved.x / 4); 511 ac->swcal.x = ac->saved.x % 4; 512 513 ac->hwcal.y -= (ac->saved.y / 4); 514 ac->swcal.y = ac->saved.y % 4; 515 516 ac->hwcal.z -= (ac->saved.z / 4); 517 ac->swcal.z = ac->saved.z % 4; 518 519 AC_WRITE(ac, OFSX, (s8) ac->hwcal.x); 520 AC_WRITE(ac, OFSY, (s8) ac->hwcal.y); 521 AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z); 522 mutex_unlock(&ac->mutex); 523 524 return count; 525} 526 527static DEVICE_ATTR(calibrate, 0664, 528 adxl34x_calibrate_show, adxl34x_calibrate_store); 529 530static ssize_t adxl34x_rate_show(struct device *dev, 531 struct device_attribute *attr, char *buf) 532{ 533 struct adxl34x *ac = dev_get_drvdata(dev); 534 535 return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate)); 536} 537 538static ssize_t adxl34x_rate_store(struct device *dev, 539 struct device_attribute *attr, 540 const char *buf, size_t count) 541{ 542 struct adxl34x *ac = dev_get_drvdata(dev); 543 unsigned char val; 544 int error; 545 546 error = kstrtou8(buf, 10, &val); 547 if (error) 548 return error; 549 550 mutex_lock(&ac->mutex); 551 552 ac->pdata.data_rate = RATE(val); 553 AC_WRITE(ac, BW_RATE, 554 ac->pdata.data_rate | 555 (ac->pdata.low_power_mode ? LOW_POWER : 0)); 556 557 mutex_unlock(&ac->mutex); 558 559 return count; 560} 561 562static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store); 563 564static ssize_t adxl34x_autosleep_show(struct device *dev, 565 struct device_attribute *attr, char *buf) 566{ 567 struct adxl34x *ac = dev_get_drvdata(dev); 568 569 return sprintf(buf, "%u\n", 570 ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0); 571} 572 573static ssize_t adxl34x_autosleep_store(struct device *dev, 574 struct device_attribute *attr, 575 const char *buf, size_t count) 576{ 577 struct adxl34x *ac = dev_get_drvdata(dev); 578 unsigned int val; 579 int error; 580 581 error = kstrtouint(buf, 10, &val); 582 if (error) 583 return error; 584 585 mutex_lock(&ac->mutex); 586 587 if (val) 588 ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK); 589 else 590 ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK); 591 592 if (!ac->disabled && !ac->suspended && ac->opened) 593 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); 594 595 mutex_unlock(&ac->mutex); 596 597 return count; 598} 599 600static DEVICE_ATTR(autosleep, 0664, 601 adxl34x_autosleep_show, adxl34x_autosleep_store); 602 603static ssize_t adxl34x_position_show(struct device *dev, 604 struct device_attribute *attr, char *buf) 605{ 606 struct adxl34x *ac = dev_get_drvdata(dev); 607 ssize_t count; 608 609 mutex_lock(&ac->mutex); 610 count = sprintf(buf, "(%d, %d, %d)\n", 611 ac->saved.x, ac->saved.y, ac->saved.z); 612 mutex_unlock(&ac->mutex); 613 614 return count; 615} 616 617static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL); 618 619#ifdef ADXL_DEBUG 620static ssize_t adxl34x_write_store(struct device *dev, 621 struct device_attribute *attr, 622 const char *buf, size_t count) 623{ 624 struct adxl34x *ac = dev_get_drvdata(dev); 625 unsigned int val; 626 int error; 627 628 /* 629 * This allows basic ADXL register write access for debug purposes. 630 */ 631 error = kstrtouint(buf, 16, &val); 632 if (error) 633 return error; 634 635 mutex_lock(&ac->mutex); 636 AC_WRITE(ac, val >> 8, val & 0xFF); 637 mutex_unlock(&ac->mutex); 638 639 return count; 640} 641 642static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store); 643#endif 644 645static struct attribute *adxl34x_attributes[] = { 646 &dev_attr_disable.attr, 647 &dev_attr_calibrate.attr, 648 &dev_attr_rate.attr, 649 &dev_attr_autosleep.attr, 650 &dev_attr_position.attr, 651#ifdef ADXL_DEBUG 652 &dev_attr_write.attr, 653#endif 654 NULL 655}; 656 657static const struct attribute_group adxl34x_attr_group = { 658 .attrs = adxl34x_attributes, 659}; 660 661static int adxl34x_input_open(struct input_dev *input) 662{ 663 struct adxl34x *ac = input_get_drvdata(input); 664 665 mutex_lock(&ac->mutex); 666 667 if (!ac->suspended && !ac->disabled) 668 __adxl34x_enable(ac); 669 670 ac->opened = true; 671 672 mutex_unlock(&ac->mutex); 673 674 return 0; 675} 676 677static void adxl34x_input_close(struct input_dev *input) 678{ 679 struct adxl34x *ac = input_get_drvdata(input); 680 681 mutex_lock(&ac->mutex); 682 683 if (!ac->suspended && !ac->disabled) 684 __adxl34x_disable(ac); 685 686 ac->opened = false; 687 688 mutex_unlock(&ac->mutex); 689} 690 691struct adxl34x *adxl34x_probe(struct device *dev, int irq, 692 bool fifo_delay_default, 693 const struct adxl34x_bus_ops *bops) 694{ 695 struct adxl34x *ac; 696 struct input_dev *input_dev; 697 const struct adxl34x_platform_data *pdata; 698 int err, range, i; 699 unsigned char revid; 700 701 if (!irq) { 702 dev_err(dev, "no IRQ?\n"); 703 err = -ENODEV; 704 goto err_out; 705 } 706 707 ac = kzalloc(sizeof(*ac), GFP_KERNEL); 708 input_dev = input_allocate_device(); 709 if (!ac || !input_dev) { 710 err = -ENOMEM; 711 goto err_free_mem; 712 } 713 714 ac->fifo_delay = fifo_delay_default; 715 716 pdata = dev_get_platdata(dev); 717 if (!pdata) { 718 dev_dbg(dev, 719 "No platform data: Using default initialization\n"); 720 pdata = &adxl34x_default_init; 721 } 722 723 ac->pdata = *pdata; 724 pdata = &ac->pdata; 725 726 ac->input = input_dev; 727 ac->dev = dev; 728 ac->irq = irq; 729 ac->bops = bops; 730 731 mutex_init(&ac->mutex); 732 733 input_dev->name = "ADXL34x accelerometer"; 734 revid = AC_READ(ac, DEVID); 735 736 switch (revid) { 737 case ID_ADXL345: 738 ac->model = 345; 739 break; 740 case ID_ADXL346: 741 ac->model = 346; 742 break; 743 default: 744 dev_err(dev, "Failed to probe %s\n", input_dev->name); 745 err = -ENODEV; 746 goto err_free_mem; 747 } 748 749 snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev)); 750 751 input_dev->phys = ac->phys; 752 input_dev->dev.parent = dev; 753 input_dev->id.product = ac->model; 754 input_dev->id.bustype = bops->bustype; 755 input_dev->open = adxl34x_input_open; 756 input_dev->close = adxl34x_input_close; 757 758 input_set_drvdata(input_dev, ac); 759 760 __set_bit(ac->pdata.ev_type, input_dev->evbit); 761 762 if (ac->pdata.ev_type == EV_REL) { 763 __set_bit(REL_X, input_dev->relbit); 764 __set_bit(REL_Y, input_dev->relbit); 765 __set_bit(REL_Z, input_dev->relbit); 766 } else { 767 /* EV_ABS */ 768 __set_bit(ABS_X, input_dev->absbit); 769 __set_bit(ABS_Y, input_dev->absbit); 770 __set_bit(ABS_Z, input_dev->absbit); 771 772 if (pdata->data_range & FULL_RES) 773 range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */ 774 else 775 range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */ 776 777 input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3); 778 input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3); 779 input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3); 780 } 781 782 __set_bit(EV_KEY, input_dev->evbit); 783 __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit); 784 __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit); 785 __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit); 786 787 if (pdata->ev_code_ff) { 788 ac->int_mask = FREE_FALL; 789 __set_bit(pdata->ev_code_ff, input_dev->keybit); 790 } 791 792 if (pdata->ev_code_act_inactivity) 793 __set_bit(pdata->ev_code_act_inactivity, input_dev->keybit); 794 795 ac->int_mask |= ACTIVITY | INACTIVITY; 796 797 if (pdata->watermark) { 798 ac->int_mask |= WATERMARK; 799 if (!FIFO_MODE(pdata->fifo_mode)) 800 ac->pdata.fifo_mode |= FIFO_STREAM; 801 } else { 802 ac->int_mask |= DATA_READY; 803 } 804 805 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) 806 ac->int_mask |= SINGLE_TAP | DOUBLE_TAP; 807 808 if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS) 809 ac->fifo_delay = false; 810 811 AC_WRITE(ac, POWER_CTL, 0); 812 813 err = request_threaded_irq(ac->irq, NULL, adxl34x_irq, 814 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 815 dev_name(dev), ac); 816 if (err) { 817 dev_err(dev, "irq %d busy?\n", ac->irq); 818 goto err_free_mem; 819 } 820 821 err = sysfs_create_group(&dev->kobj, &adxl34x_attr_group); 822 if (err) 823 goto err_free_irq; 824 825 err = input_register_device(input_dev); 826 if (err) 827 goto err_remove_attr; 828 829 AC_WRITE(ac, OFSX, pdata->x_axis_offset); 830 ac->hwcal.x = pdata->x_axis_offset; 831 AC_WRITE(ac, OFSY, pdata->y_axis_offset); 832 ac->hwcal.y = pdata->y_axis_offset; 833 AC_WRITE(ac, OFSZ, pdata->z_axis_offset); 834 ac->hwcal.z = pdata->z_axis_offset; 835 AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold); 836 AC_WRITE(ac, DUR, pdata->tap_duration); 837 AC_WRITE(ac, LATENT, pdata->tap_latency); 838 AC_WRITE(ac, WINDOW, pdata->tap_window); 839 AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold); 840 AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold); 841 AC_WRITE(ac, TIME_INACT, pdata->inactivity_time); 842 AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold); 843 AC_WRITE(ac, TIME_FF, pdata->free_fall_time); 844 AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control); 845 AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control); 846 AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) | 847 (pdata->low_power_mode ? LOW_POWER : 0)); 848 AC_WRITE(ac, DATA_FORMAT, pdata->data_range); 849 AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) | 850 SAMPLES(pdata->watermark)); 851 852 if (pdata->use_int2) { 853 /* Map all INTs to INT2 */ 854 AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN); 855 } else { 856 /* Map all INTs to INT1 */ 857 AC_WRITE(ac, INT_MAP, 0); 858 } 859 860 if (ac->model == 346 && ac->pdata.orientation_enable) { 861 AC_WRITE(ac, ORIENT_CONF, 862 ORIENT_DEADZONE(ac->pdata.deadzone_angle) | 863 ORIENT_DIVISOR(ac->pdata.divisor_length)); 864 865 ac->orient2d_saved = 1234; 866 ac->orient3d_saved = 1234; 867 868 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) 869 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++) 870 __set_bit(pdata->ev_codes_orient_3d[i], 871 input_dev->keybit); 872 873 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) 874 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++) 875 __set_bit(pdata->ev_codes_orient_2d[i], 876 input_dev->keybit); 877 } else { 878 ac->pdata.orientation_enable = 0; 879 } 880 881 AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN); 882 883 ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK); 884 885 return ac; 886 887 err_remove_attr: 888 sysfs_remove_group(&dev->kobj, &adxl34x_attr_group); 889 err_free_irq: 890 free_irq(ac->irq, ac); 891 err_free_mem: 892 input_free_device(input_dev); 893 kfree(ac); 894 err_out: 895 return ERR_PTR(err); 896} 897EXPORT_SYMBOL_GPL(adxl34x_probe); 898 899int adxl34x_remove(struct adxl34x *ac) 900{ 901 sysfs_remove_group(&ac->dev->kobj, &adxl34x_attr_group); 902 free_irq(ac->irq, ac); 903 input_unregister_device(ac->input); 904 dev_dbg(ac->dev, "unregistered accelerometer\n"); 905 kfree(ac); 906 907 return 0; 908} 909EXPORT_SYMBOL_GPL(adxl34x_remove); 910 911MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>"); 912MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver"); 913MODULE_LICENSE("GPL"); 914