1/*
2 * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/delay.h>
35#include <linux/pci.h>
36#include <linux/vmalloc.h>
37
38#include "ipath_kernel.h"
39
40/*
41 * InfiniPath I2C driver for a serial eeprom.  This is not a generic
42 * I2C interface.  For a start, the device we're using (Atmel AT24C11)
43 * doesn't work like a regular I2C device.  It looks like one
44 * electrically, but not logically.  Normal I2C devices have a single
45 * 7-bit or 10-bit I2C address that they respond to.  Valid 7-bit
46 * addresses range from 0x03 to 0x77.  Addresses 0x00 to 0x02 and 0x78
47 * to 0x7F are special reserved addresses (e.g. 0x00 is the "general
48 * call" address.)  The Atmel device, on the other hand, responds to ALL
49 * 7-bit addresses.  It's designed to be the only device on a given I2C
50 * bus.  A 7-bit address corresponds to the memory address within the
51 * Atmel device itself.
52 *
53 * Also, the timing requirements mean more than simple software
54 * bitbanging, with readbacks from chip to ensure timing (simple udelay
55 * is not enough).
56 *
57 * This all means that accessing the device is specialized enough
58 * that using the standard kernel I2C bitbanging interface would be
59 * impossible.  For example, the core I2C eeprom driver expects to find
60 * a device at one or more of a limited set of addresses only.  It doesn't
61 * allow writing to an eeprom.  It also doesn't provide any means of
62 * accessing eeprom contents from within the kernel, only via sysfs.
63 */
64
65/* Added functionality for IBA7220-based cards */
66#define IPATH_EEPROM_DEV_V1 0xA0
67#define IPATH_EEPROM_DEV_V2 0xA2
68#define IPATH_TEMP_DEV 0x98
69#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2)
70#define IPATH_NO_DEV (0xFF)
71
72/*
73 * The number of I2C chains is proliferating. Table below brings
74 * some order to the madness. The basic principle is that the
75 * table is scanned from the top, and a "probe" is made to the
76 * device probe_dev. If that succeeds, the chain is considered
77 * to be of that type, and dd->i2c_chain_type is set to the index+1
78 * of the entry.
79 * The +1 is so static initialization can mean "unknown, do probe."
80 */
81static struct i2c_chain_desc {
82	u8 probe_dev;	/* If seen at probe, chain is this type */
83	u8 eeprom_dev;	/* Dev addr (if any) for EEPROM */
84	u8 temp_dev;	/* Dev Addr (if any) for Temp-sense */
85} i2c_chains[] = {
86	{ IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */
87	{ IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */
88	{ IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */
89	{ IPATH_NO_DEV }
90};
91
92enum i2c_type {
93	i2c_line_scl = 0,
94	i2c_line_sda
95};
96
97enum i2c_state {
98	i2c_line_low = 0,
99	i2c_line_high
100};
101
102#define READ_CMD 1
103#define WRITE_CMD 0
104
105/**
106 * i2c_gpio_set - set a GPIO line
107 * @dd: the infinipath device
108 * @line: the line to set
109 * @new_line_state: the state to set
110 *
111 * Returns 0 if the line was set to the new state successfully, non-zero
112 * on error.
113 */
114static int i2c_gpio_set(struct ipath_devdata *dd,
115			enum i2c_type line,
116			enum i2c_state new_line_state)
117{
118	u64 out_mask, dir_mask, *gpioval;
119	unsigned long flags = 0;
120
121	gpioval = &dd->ipath_gpio_out;
122
123	if (line == i2c_line_scl) {
124		dir_mask = dd->ipath_gpio_scl;
125		out_mask = (1UL << dd->ipath_gpio_scl_num);
126	} else {
127		dir_mask = dd->ipath_gpio_sda;
128		out_mask = (1UL << dd->ipath_gpio_sda_num);
129	}
130
131	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
132	if (new_line_state == i2c_line_high) {
133		/* tri-state the output rather than force high */
134		dd->ipath_extctrl &= ~dir_mask;
135	} else {
136		/* config line to be an output */
137		dd->ipath_extctrl |= dir_mask;
138	}
139	ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
140
141	/* set output as well (no real verify) */
142	if (new_line_state == i2c_line_high)
143		*gpioval |= out_mask;
144	else
145		*gpioval &= ~out_mask;
146
147	ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
148	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
149
150	return 0;
151}
152
153/**
154 * i2c_gpio_get - get a GPIO line state
155 * @dd: the infinipath device
156 * @line: the line to get
157 * @curr_statep: where to put the line state
158 *
159 * Returns 0 if the line was set to the new state successfully, non-zero
160 * on error.  curr_state is not set on error.
161 */
162static int i2c_gpio_get(struct ipath_devdata *dd,
163			enum i2c_type line,
164			enum i2c_state *curr_statep)
165{
166	u64 read_val, mask;
167	int ret;
168	unsigned long flags = 0;
169
170	/* check args */
171	if (curr_statep == NULL) {
172		ret = 1;
173		goto bail;
174	}
175
176	/* config line to be an input */
177	if (line == i2c_line_scl)
178		mask = dd->ipath_gpio_scl;
179	else
180		mask = dd->ipath_gpio_sda;
181
182	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
183	dd->ipath_extctrl &= ~mask;
184	ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
185	/*
186	 * Below is very unlikely to reflect true input state if Output
187	 * Enable actually changed.
188	 */
189	read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
190	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
191
192	if (read_val & mask)
193		*curr_statep = i2c_line_high;
194	else
195		*curr_statep = i2c_line_low;
196
197	ret = 0;
198
199bail:
200	return ret;
201}
202
203/**
204 * i2c_wait_for_writes - wait for a write
205 * @dd: the infinipath device
206 *
207 * We use this instead of udelay directly, so we can make sure
208 * that previous register writes have been flushed all the way
209 * to the chip.  Since we are delaying anyway, the cost doesn't
210 * hurt, and makes the bit twiddling more regular
211 */
212static void i2c_wait_for_writes(struct ipath_devdata *dd)
213{
214	(void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
215	rmb();
216}
217
218static void scl_out(struct ipath_devdata *dd, u8 bit)
219{
220	udelay(1);
221	i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);
222
223	i2c_wait_for_writes(dd);
224}
225
226static void sda_out(struct ipath_devdata *dd, u8 bit)
227{
228	i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);
229
230	i2c_wait_for_writes(dd);
231}
232
233static u8 sda_in(struct ipath_devdata *dd, int wait)
234{
235	enum i2c_state bit;
236
237	if (i2c_gpio_get(dd, i2c_line_sda, &bit))
238		ipath_dbg("get bit failed!\n");
239
240	if (wait)
241		i2c_wait_for_writes(dd);
242
243	return bit == i2c_line_high ? 1U : 0;
244}
245
246/**
247 * i2c_ackrcv - see if ack following write is true
248 * @dd: the infinipath device
249 */
250static int i2c_ackrcv(struct ipath_devdata *dd)
251{
252	u8 ack_received;
253
254	/* AT ENTRY SCL = LOW */
255	/* change direction, ignore data */
256	ack_received = sda_in(dd, 1);
257	scl_out(dd, i2c_line_high);
258	ack_received = sda_in(dd, 1) == 0;
259	scl_out(dd, i2c_line_low);
260	return ack_received;
261}
262
263/**
264 * rd_byte - read a byte, leaving ACK, STOP, etc up to caller
265 * @dd: the infinipath device
266 *
267 * Returns byte shifted out of device
268 */
269static int rd_byte(struct ipath_devdata *dd)
270{
271	int bit_cntr, data;
272
273	data = 0;
274
275	for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
276		data <<= 1;
277		scl_out(dd, i2c_line_high);
278		data |= sda_in(dd, 0);
279		scl_out(dd, i2c_line_low);
280	}
281	return data;
282}
283
284/**
285 * wr_byte - write a byte, one bit at a time
286 * @dd: the infinipath device
287 * @data: the byte to write
288 *
289 * Returns 0 if we got the following ack, otherwise 1
290 */
291static int wr_byte(struct ipath_devdata *dd, u8 data)
292{
293	int bit_cntr;
294	u8 bit;
295
296	for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
297		bit = (data >> bit_cntr) & 1;
298		sda_out(dd, bit);
299		scl_out(dd, i2c_line_high);
300		scl_out(dd, i2c_line_low);
301	}
302	return (!i2c_ackrcv(dd)) ? 1 : 0;
303}
304
305static void send_ack(struct ipath_devdata *dd)
306{
307	sda_out(dd, i2c_line_low);
308	scl_out(dd, i2c_line_high);
309	scl_out(dd, i2c_line_low);
310	sda_out(dd, i2c_line_high);
311}
312
313/**
314 * i2c_startcmd - transmit the start condition, followed by address/cmd
315 * @dd: the infinipath device
316 * @offset_dir: direction byte
317 *
318 *      (both clock/data high, clock high, data low while clock is high)
319 */
320static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
321{
322	int res;
323
324	/* issue start sequence */
325	sda_out(dd, i2c_line_high);
326	scl_out(dd, i2c_line_high);
327	sda_out(dd, i2c_line_low);
328	scl_out(dd, i2c_line_low);
329
330	/* issue length and direction byte */
331	res = wr_byte(dd, offset_dir);
332
333	if (res)
334		ipath_cdbg(VERBOSE, "No ack to complete start\n");
335
336	return res;
337}
338
339/**
340 * stop_cmd - transmit the stop condition
341 * @dd: the infinipath device
342 *
343 * (both clock/data low, clock high, data high while clock is high)
344 */
345static void stop_cmd(struct ipath_devdata *dd)
346{
347	scl_out(dd, i2c_line_low);
348	sda_out(dd, i2c_line_low);
349	scl_out(dd, i2c_line_high);
350	sda_out(dd, i2c_line_high);
351	udelay(2);
352}
353
354/**
355 * eeprom_reset - reset I2C communication
356 * @dd: the infinipath device
357 */
358
359static int eeprom_reset(struct ipath_devdata *dd)
360{
361	int clock_cycles_left = 9;
362	u64 *gpioval = &dd->ipath_gpio_out;
363	int ret;
364	unsigned long flags;
365
366	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
367	/* Make sure shadows are consistent */
368	dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
369	*gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
370	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
371
372	ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
373		   "is %llx\n", (unsigned long long) *gpioval);
374
375	/*
376	 * This is to get the i2c into a known state, by first going low,
377	 * then tristate sda (and then tristate scl as first thing
378	 * in loop)
379	 */
380	scl_out(dd, i2c_line_low);
381	sda_out(dd, i2c_line_high);
382
383	/* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */
384	while (clock_cycles_left--) {
385		scl_out(dd, i2c_line_high);
386
387		/* SDA seen high, issue START by dropping it while SCL high */
388		if (sda_in(dd, 0)) {
389			sda_out(dd, i2c_line_low);
390			scl_out(dd, i2c_line_low);
391			/* ATMEL spec says must be followed by STOP. */
392			scl_out(dd, i2c_line_high);
393			sda_out(dd, i2c_line_high);
394			ret = 0;
395			goto bail;
396		}
397
398		scl_out(dd, i2c_line_low);
399	}
400
401	ret = 1;
402
403bail:
404	return ret;
405}
406
407/*
408 * Probe for I2C device at specified address. Returns 0 for "success"
409 * to match rest of this file.
410 * Leave bus in "reasonable" state for further commands.
411 */
412static int i2c_probe(struct ipath_devdata *dd, int devaddr)
413{
414	int ret = 0;
415
416	ret = eeprom_reset(dd);
417	if (ret) {
418		ipath_dev_err(dd, "Failed reset probing device 0x%02X\n",
419			      devaddr);
420		return ret;
421	}
422	/*
423	 * Reset no longer leaves bus in start condition, so normal
424	 * i2c_startcmd() will do.
425	 */
426	ret = i2c_startcmd(dd, devaddr | READ_CMD);
427	if (ret)
428		ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n",
429			   devaddr);
430	else {
431		/*
432		 * Device did respond. Complete a single-byte read, because some
433		 * devices apparently cannot handle STOP immediately after they
434		 * ACK the start-cmd.
435		 */
436		int data;
437		data = rd_byte(dd);
438		stop_cmd(dd);
439		ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr);
440	}
441	return ret;
442}
443
444/*
445 * Returns the "i2c type". This is a pointer to a struct that describes
446 * the I2C chain on this board. To minimize impact on struct ipath_devdata,
447 * the (small integer) index into the table is actually memoized, rather
448 * then the pointer.
449 * Memoization is because the type is determined on the first call per chip.
450 * An alternative would be to move type determination to early
451 * init code.
452 */
453static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd)
454{
455	int idx;
456
457	/* Get memoized index, from previous successful probes */
458	idx = dd->ipath_i2c_chain_type - 1;
459	if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1))
460		goto done;
461
462	idx = 0;
463	while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) {
464		/* if probe succeeds, this is type */
465		if (!i2c_probe(dd, i2c_chains[idx].probe_dev))
466			break;
467		++idx;
468	}
469
470	/*
471	 * Old EEPROM (first entry) may require a reset after probe,
472	 * rather than being able to "start" after "stop"
473	 */
474	if (idx == 0)
475		eeprom_reset(dd);
476
477	if (i2c_chains[idx].probe_dev == IPATH_NO_DEV)
478		idx = -1;
479	else
480		dd->ipath_i2c_chain_type = idx + 1;
481done:
482	return (idx >= 0) ? i2c_chains + idx : NULL;
483}
484
485static int ipath_eeprom_internal_read(struct ipath_devdata *dd,
486					u8 eeprom_offset, void *buffer, int len)
487{
488	int ret;
489	struct i2c_chain_desc *icd;
490	u8 *bp = buffer;
491
492	ret = 1;
493	icd = ipath_i2c_type(dd);
494	if (!icd)
495		goto bail;
496
497	if (icd->eeprom_dev == IPATH_NO_DEV) {
498		/* legacy not-really-I2C */
499		ipath_cdbg(VERBOSE, "Start command only address\n");
500		eeprom_offset = (eeprom_offset << 1) | READ_CMD;
501		ret = i2c_startcmd(dd, eeprom_offset);
502	} else {
503		/* Actual I2C */
504		ipath_cdbg(VERBOSE, "Start command uses devaddr\n");
505		if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
506			ipath_dbg("Failed EEPROM startcmd\n");
507			stop_cmd(dd);
508			ret = 1;
509			goto bail;
510		}
511		ret = wr_byte(dd, eeprom_offset);
512		stop_cmd(dd);
513		if (ret) {
514			ipath_dev_err(dd, "Failed to write EEPROM address\n");
515			ret = 1;
516			goto bail;
517		}
518		ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD);
519	}
520	if (ret) {
521		ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev);
522		stop_cmd(dd);
523		ret = 1;
524		goto bail;
525	}
526
527	/*
528	 * eeprom keeps clocking data out as long as we ack, automatically
529	 * incrementing the address.
530	 */
531	while (len-- > 0) {
532		/* get and store data */
533		*bp++ = rd_byte(dd);
534		/* send ack if not the last byte */
535		if (len)
536			send_ack(dd);
537	}
538
539	stop_cmd(dd);
540
541	ret = 0;
542
543bail:
544	return ret;
545}
546
547static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset,
548				       const void *buffer, int len)
549{
550	int sub_len;
551	const u8 *bp = buffer;
552	int max_wait_time, i;
553	int ret;
554	struct i2c_chain_desc *icd;
555
556	ret = 1;
557	icd = ipath_i2c_type(dd);
558	if (!icd)
559		goto bail;
560
561	while (len > 0) {
562		if (icd->eeprom_dev == IPATH_NO_DEV) {
563			if (i2c_startcmd(dd,
564					 (eeprom_offset << 1) | WRITE_CMD)) {
565				ipath_dbg("Failed to start cmd offset %u\n",
566					eeprom_offset);
567				goto failed_write;
568			}
569		} else {
570			/* Real I2C */
571			if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
572				ipath_dbg("Failed EEPROM startcmd\n");
573				goto failed_write;
574			}
575			ret = wr_byte(dd, eeprom_offset);
576			if (ret) {
577				ipath_dev_err(dd, "Failed to write EEPROM "
578					      "address\n");
579				goto failed_write;
580			}
581		}
582
583		sub_len = min(len, 4);
584		eeprom_offset += sub_len;
585		len -= sub_len;
586
587		for (i = 0; i < sub_len; i++) {
588			if (wr_byte(dd, *bp++)) {
589				ipath_dbg("no ack after byte %u/%u (%u "
590					  "total remain)\n", i, sub_len,
591					  len + sub_len - i);
592				goto failed_write;
593			}
594		}
595
596		stop_cmd(dd);
597
598		/*
599		 * wait for write complete by waiting for a successful
600		 * read (the chip replies with a zero after the write
601		 * cmd completes, and before it writes to the eeprom.
602		 * The startcmd for the read will fail the ack until
603		 * the writes have completed.   We do this inline to avoid
604		 * the debug prints that are in the real read routine
605		 * if the startcmd fails.
606		 * We also use the proper device address, so it doesn't matter
607		 * whether we have real eeprom_dev. legacy likes any address.
608		 */
609		max_wait_time = 100;
610		while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) {
611			stop_cmd(dd);
612			if (!--max_wait_time) {
613				ipath_dbg("Did not get successful read to "
614					  "complete write\n");
615				goto failed_write;
616			}
617		}
618		/* now read (and ignore) the resulting byte */
619		rd_byte(dd);
620		stop_cmd(dd);
621	}
622
623	ret = 0;
624	goto bail;
625
626failed_write:
627	stop_cmd(dd);
628	ret = 1;
629
630bail:
631	return ret;
632}
633
634/**
635 * ipath_eeprom_read - receives bytes from the eeprom via I2C
636 * @dd: the infinipath device
637 * @eeprom_offset: address to read from
638 * @buffer: where to store result
639 * @len: number of bytes to receive
640 */
641int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
642			void *buff, int len)
643{
644	int ret;
645
646	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
647	if (!ret) {
648		ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len);
649		mutex_unlock(&dd->ipath_eep_lock);
650	}
651
652	return ret;
653}
654
655/**
656 * ipath_eeprom_write - writes data to the eeprom via I2C
657 * @dd: the infinipath device
658 * @eeprom_offset: where to place data
659 * @buffer: data to write
660 * @len: number of bytes to write
661 */
662int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
663			const void *buff, int len)
664{
665	int ret;
666
667	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
668	if (!ret) {
669		ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len);
670		mutex_unlock(&dd->ipath_eep_lock);
671	}
672
673	return ret;
674}
675
676static u8 flash_csum(struct ipath_flash *ifp, int adjust)
677{
678	u8 *ip = (u8 *) ifp;
679	u8 csum = 0, len;
680
681	/*
682	 * Limit length checksummed to max length of actual data.
683	 * Checksum of erased eeprom will still be bad, but we avoid
684	 * reading past the end of the buffer we were passed.
685	 */
686	len = ifp->if_length;
687	if (len > sizeof(struct ipath_flash))
688		len = sizeof(struct ipath_flash);
689	while (len--)
690		csum += *ip++;
691	csum -= ifp->if_csum;
692	csum = ~csum;
693	if (adjust)
694		ifp->if_csum = csum;
695
696	return csum;
697}
698
699/**
700 * ipath_get_guid - get the GUID from the i2c device
701 * @dd: the infinipath device
702 *
703 * We have the capability to use the ipath_nguid field, and get
704 * the guid from the first chip's flash, to use for all of them.
705 */
706void ipath_get_eeprom_info(struct ipath_devdata *dd)
707{
708	void *buf;
709	struct ipath_flash *ifp;
710	__be64 guid;
711	int len, eep_stat;
712	u8 csum, *bguid;
713	int t = dd->ipath_unit;
714	struct ipath_devdata *dd0 = ipath_lookup(0);
715
716	if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
717		u8 oguid;
718		dd->ipath_guid = dd0->ipath_guid;
719		bguid = (u8 *) & dd->ipath_guid;
720
721		oguid = bguid[7];
722		bguid[7] += t;
723		if (oguid > bguid[7]) {
724			if (bguid[6] == 0xff) {
725				if (bguid[5] == 0xff) {
726					ipath_dev_err(
727						dd,
728						"Can't set %s GUID from "
729						"base, wraps to OUI!\n",
730						ipath_get_unit_name(t));
731					dd->ipath_guid = 0;
732					goto bail;
733				}
734				bguid[5]++;
735			}
736			bguid[6]++;
737		}
738		dd->ipath_nguid = 1;
739
740		ipath_dbg("nguid %u, so adding %u to device 0 guid, "
741			  "for %llx\n",
742			  dd0->ipath_nguid, t,
743			  (unsigned long long) be64_to_cpu(dd->ipath_guid));
744		goto bail;
745	}
746
747	/*
748	 * read full flash, not just currently used part, since it may have
749	 * been written with a newer definition
750	 * */
751	len = sizeof(struct ipath_flash);
752	buf = vmalloc(len);
753	if (!buf) {
754		ipath_dev_err(dd, "Couldn't allocate memory to read %u "
755			      "bytes from eeprom for GUID\n", len);
756		goto bail;
757	}
758
759	mutex_lock(&dd->ipath_eep_lock);
760	eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len);
761	mutex_unlock(&dd->ipath_eep_lock);
762
763	if (eep_stat) {
764		ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
765		goto done;
766	}
767	ifp = (struct ipath_flash *)buf;
768
769	csum = flash_csum(ifp, 0);
770	if (csum != ifp->if_csum) {
771		dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
772			 "0x%x, not 0x%x\n", csum, ifp->if_csum);
773		goto done;
774	}
775	if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) ||
776	    *(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) {
777		ipath_dev_err(dd, "Invalid GUID %llx from flash; "
778			      "ignoring\n",
779			      *(unsigned long long *) ifp->if_guid);
780		/* don't allow GUID if all 0 or all 1's */
781		goto done;
782	}
783
784	/* complain, but allow it */
785	if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
786		dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
787			 "default, probably not correct!\n",
788			 *(unsigned long long *) ifp->if_guid);
789
790	bguid = ifp->if_guid;
791	if (!bguid[0] && !bguid[1] && !bguid[2]) {
792		/* original incorrect GUID format in flash; fix in
793		 * core copy, by shifting up 2 octets; don't need to
794		 * change top octet, since both it and shifted are
795		 * 0.. */
796		bguid[1] = bguid[3];
797		bguid[2] = bguid[4];
798		bguid[3] = bguid[4] = 0;
799		guid = *(__be64 *) ifp->if_guid;
800		ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
801			   "shifting 2 octets\n");
802	} else
803		guid = *(__be64 *) ifp->if_guid;
804	dd->ipath_guid = guid;
805	dd->ipath_nguid = ifp->if_numguid;
806	/*
807	 * Things are slightly complicated by the desire to transparently
808	 * support both the Pathscale 10-digit serial number and the QLogic
809	 * 13-character version.
810	 */
811	if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
812		&& ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
813		/* This board has a Serial-prefix, which is stored
814		 * elsewhere for backward-compatibility.
815		 */
816		char *snp = dd->ipath_serial;
817		memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
818		snp[sizeof ifp->if_sprefix] = '\0';
819		len = strlen(snp);
820		snp += len;
821		len = (sizeof dd->ipath_serial) - len;
822		if (len > sizeof ifp->if_serial) {
823			len = sizeof ifp->if_serial;
824		}
825		memcpy(snp, ifp->if_serial, len);
826	} else
827		memcpy(dd->ipath_serial, ifp->if_serial,
828		       sizeof ifp->if_serial);
829	if (!strstr(ifp->if_comment, "Tested successfully"))
830		ipath_dev_err(dd, "Board SN %s did not pass functional "
831			"test: %s\n", dd->ipath_serial,
832			ifp->if_comment);
833
834	ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
835		   (unsigned long long) be64_to_cpu(dd->ipath_guid));
836
837	memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT);
838	/*
839	 * Power-on (actually "active") hours are kept as little-endian value
840	 * in EEPROM, but as seconds in a (possibly as small as 24-bit)
841	 * atomic_t while running.
842	 */
843	atomic_set(&dd->ipath_active_time, 0);
844	dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8);
845
846done:
847	vfree(buf);
848
849bail:;
850}
851
852/**
853 * ipath_update_eeprom_log - copy active-time and error counters to eeprom
854 * @dd: the infinipath device
855 *
856 * Although the time is kept as seconds in the ipath_devdata struct, it is
857 * rounded to hours for re-write, as we have only 16 bits in EEPROM.
858 * First-cut code reads whole (expected) struct ipath_flash, modifies,
859 * re-writes. Future direction: read/write only what we need, assuming
860 * that the EEPROM had to have been "good enough" for driver init, and
861 * if not, we aren't making it worse.
862 *
863 */
864
865int ipath_update_eeprom_log(struct ipath_devdata *dd)
866{
867	void *buf;
868	struct ipath_flash *ifp;
869	int len, hi_water;
870	uint32_t new_time, new_hrs;
871	u8 csum;
872	int ret, idx;
873	unsigned long flags;
874
875	/* first, check if we actually need to do anything. */
876	ret = 0;
877	for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
878		if (dd->ipath_eep_st_new_errs[idx]) {
879			ret = 1;
880			break;
881		}
882	}
883	new_time = atomic_read(&dd->ipath_active_time);
884
885	if (ret == 0 && new_time < 3600)
886		return 0;
887
888	/*
889	 * The quick-check above determined that there is something worthy
890	 * of logging, so get current contents and do a more detailed idea.
891	 * read full flash, not just currently used part, since it may have
892	 * been written with a newer definition
893	 */
894	len = sizeof(struct ipath_flash);
895	buf = vmalloc(len);
896	ret = 1;
897	if (!buf) {
898		ipath_dev_err(dd, "Couldn't allocate memory to read %u "
899				"bytes from eeprom for logging\n", len);
900		goto bail;
901	}
902
903	/* Grab semaphore and read current EEPROM. If we get an
904	 * error, let go, but if not, keep it until we finish write.
905	 */
906	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
907	if (ret) {
908		ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n");
909		goto free_bail;
910	}
911	ret = ipath_eeprom_internal_read(dd, 0, buf, len);
912	if (ret) {
913		mutex_unlock(&dd->ipath_eep_lock);
914		ipath_dev_err(dd, "Unable read EEPROM for logging\n");
915		goto free_bail;
916	}
917	ifp = (struct ipath_flash *)buf;
918
919	csum = flash_csum(ifp, 0);
920	if (csum != ifp->if_csum) {
921		mutex_unlock(&dd->ipath_eep_lock);
922		ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n",
923				csum, ifp->if_csum);
924		ret = 1;
925		goto free_bail;
926	}
927	hi_water = 0;
928	spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
929	for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
930		int new_val = dd->ipath_eep_st_new_errs[idx];
931		if (new_val) {
932			/*
933			 * If we have seen any errors, add to EEPROM values
934			 * We need to saturate at 0xFF (255) and we also
935			 * would need to adjust the checksum if we were
936			 * trying to minimize EEPROM traffic
937			 * Note that we add to actual current count in EEPROM,
938			 * in case it was altered while we were running.
939			 */
940			new_val += ifp->if_errcntp[idx];
941			if (new_val > 0xFF)
942				new_val = 0xFF;
943			if (ifp->if_errcntp[idx] != new_val) {
944				ifp->if_errcntp[idx] = new_val;
945				hi_water = offsetof(struct ipath_flash,
946						if_errcntp) + idx;
947			}
948			/*
949			 * update our shadow (used to minimize EEPROM
950			 * traffic), to match what we are about to write.
951			 */
952			dd->ipath_eep_st_errs[idx] = new_val;
953			dd->ipath_eep_st_new_errs[idx] = 0;
954		}
955	}
956	/*
957	 * now update active-time. We would like to round to the nearest hour
958	 * but unless atomic_t are sure to be proper signed ints we cannot,
959	 * because we need to account for what we "transfer" to EEPROM and
960	 * if we log an hour at 31 minutes, then we would need to set
961	 * active_time to -29 to accurately count the _next_ hour.
962	 */
963	if (new_time >= 3600) {
964		new_hrs = new_time / 3600;
965		atomic_sub((new_hrs * 3600), &dd->ipath_active_time);
966		new_hrs += dd->ipath_eep_hrs;
967		if (new_hrs > 0xFFFF)
968			new_hrs = 0xFFFF;
969		dd->ipath_eep_hrs = new_hrs;
970		if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) {
971			ifp->if_powerhour[0] = new_hrs & 0xFF;
972			hi_water = offsetof(struct ipath_flash, if_powerhour);
973		}
974		if ((new_hrs >> 8) != ifp->if_powerhour[1]) {
975			ifp->if_powerhour[1] = new_hrs >> 8;
976			hi_water = offsetof(struct ipath_flash, if_powerhour)
977					+ 1;
978		}
979	}
980	/*
981	 * There is a tiny possibility that we could somehow fail to write
982	 * the EEPROM after updating our shadows, but problems from holding
983	 * the spinlock too long are a much bigger issue.
984	 */
985	spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
986	if (hi_water) {
987		/* we made some change to the data, uopdate cksum and write */
988		csum = flash_csum(ifp, 1);
989		ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1);
990	}
991	mutex_unlock(&dd->ipath_eep_lock);
992	if (ret)
993		ipath_dev_err(dd, "Failed updating EEPROM\n");
994
995free_bail:
996	vfree(buf);
997bail:
998	return ret;
999
1000}
1001
1002/**
1003 * ipath_inc_eeprom_err - increment one of the four error counters
1004 * that are logged to EEPROM.
1005 * @dd: the infinipath device
1006 * @eidx: 0..3, the counter to increment
1007 * @incr: how much to add
1008 *
1009 * Each counter is 8-bits, and saturates at 255 (0xFF). They
1010 * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log()
1011 * is called, but it can only be called in a context that allows sleep.
1012 * This function can be called even at interrupt level.
1013 */
1014
1015void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr)
1016{
1017	uint new_val;
1018	unsigned long flags;
1019
1020	spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
1021	new_val = dd->ipath_eep_st_new_errs[eidx] + incr;
1022	if (new_val > 255)
1023		new_val = 255;
1024	dd->ipath_eep_st_new_errs[eidx] = new_val;
1025	spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
1026	return;
1027}
1028
1029static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum)
1030{
1031	int ret;
1032	struct i2c_chain_desc *icd;
1033
1034	ret = -ENOENT;
1035
1036	icd = ipath_i2c_type(dd);
1037	if (!icd)
1038		goto bail;
1039
1040	if (icd->temp_dev == IPATH_NO_DEV) {
1041		/* tempsense only exists on new, real-I2C boards */
1042		ret = -ENXIO;
1043		goto bail;
1044	}
1045
1046	if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
1047		ipath_dbg("Failed tempsense startcmd\n");
1048		stop_cmd(dd);
1049		ret = -ENXIO;
1050		goto bail;
1051	}
1052	ret = wr_byte(dd, regnum);
1053	stop_cmd(dd);
1054	if (ret) {
1055		ipath_dev_err(dd, "Failed tempsense WR command %02X\n",
1056			      regnum);
1057		ret = -ENXIO;
1058		goto bail;
1059	}
1060	if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) {
1061		ipath_dbg("Failed tempsense RD startcmd\n");
1062		stop_cmd(dd);
1063		ret = -ENXIO;
1064		goto bail;
1065	}
1066	/*
1067	 * We can only clock out one byte per command, sensibly
1068	 */
1069	ret = rd_byte(dd);
1070	stop_cmd(dd);
1071
1072bail:
1073	return ret;
1074}
1075
1076#define VALID_TS_RD_REG_MASK 0xBF
1077
1078/**
1079 * ipath_tempsense_read - read register of temp sensor via I2C
1080 * @dd: the infinipath device
1081 * @regnum: register to read from
1082 *
1083 * returns reg contents (0..255) or < 0 for error
1084 */
1085int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum)
1086{
1087	int ret;
1088
1089	if (regnum > 7)
1090		return -EINVAL;
1091
1092	/* return a bogus value for (the one) register we do not have */
1093	if (!((1 << regnum) & VALID_TS_RD_REG_MASK))
1094		return 0;
1095
1096	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
1097	if (!ret) {
1098		ret = ipath_tempsense_internal_read(dd, regnum);
1099		mutex_unlock(&dd->ipath_eep_lock);
1100	}
1101
1102	/*
1103	 * There are three possibilities here:
1104	 * ret is actual value (0..255)
1105	 * ret is -ENXIO or -EINVAL from code in this file
1106	 * ret is -EINTR from mutex_lock_interruptible.
1107	 */
1108	return ret;
1109}
1110
1111static int ipath_tempsense_internal_write(struct ipath_devdata *dd,
1112					  u8 regnum, u8 data)
1113{
1114	int ret = -ENOENT;
1115	struct i2c_chain_desc *icd;
1116
1117	icd = ipath_i2c_type(dd);
1118	if (!icd)
1119		goto bail;
1120
1121	if (icd->temp_dev == IPATH_NO_DEV) {
1122		/* tempsense only exists on new, real-I2C boards */
1123		ret = -ENXIO;
1124		goto bail;
1125	}
1126	if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
1127		ipath_dbg("Failed tempsense startcmd\n");
1128		stop_cmd(dd);
1129		ret = -ENXIO;
1130		goto bail;
1131	}
1132	ret = wr_byte(dd, regnum);
1133	if (ret) {
1134		stop_cmd(dd);
1135		ipath_dev_err(dd, "Failed to write tempsense command %02X\n",
1136			      regnum);
1137		ret = -ENXIO;
1138		goto bail;
1139	}
1140	ret = wr_byte(dd, data);
1141	stop_cmd(dd);
1142	ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD);
1143	if (ret) {
1144		ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n",
1145			      regnum);
1146		ret = -ENXIO;
1147	}
1148
1149bail:
1150	return ret;
1151}
1152
1153#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD))
1154
1155/**
1156 * ipath_tempsense_write - write register of temp sensor via I2C
1157 * @dd: the infinipath device
1158 * @regnum: register to write
1159 * @data: data to write
1160 *
1161 * returns 0 for success or < 0 for error
1162 */
1163int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data)
1164{
1165	int ret;
1166
1167	if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK))
1168		return -EINVAL;
1169
1170	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
1171	if (!ret) {
1172		ret = ipath_tempsense_internal_write(dd, regnum, data);
1173		mutex_unlock(&dd->ipath_eep_lock);
1174	}
1175
1176	/*
1177	 * There are three possibilities here:
1178	 * ret is 0 for success
1179	 * ret is -ENXIO or -EINVAL from code in this file
1180	 * ret is -EINTR from mutex_lock_interruptible.
1181	 */
1182	return ret;
1183}
1184