1/* 2 * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved. 3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34#include <linux/delay.h> 35#include <linux/pci.h> 36#include <linux/vmalloc.h> 37 38#include "ipath_kernel.h" 39 40/* 41 * InfiniPath I2C driver for a serial eeprom. This is not a generic 42 * I2C interface. For a start, the device we're using (Atmel AT24C11) 43 * doesn't work like a regular I2C device. It looks like one 44 * electrically, but not logically. Normal I2C devices have a single 45 * 7-bit or 10-bit I2C address that they respond to. Valid 7-bit 46 * addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78 47 * to 0x7F are special reserved addresses (e.g. 0x00 is the "general 48 * call" address.) The Atmel device, on the other hand, responds to ALL 49 * 7-bit addresses. It's designed to be the only device on a given I2C 50 * bus. A 7-bit address corresponds to the memory address within the 51 * Atmel device itself. 52 * 53 * Also, the timing requirements mean more than simple software 54 * bitbanging, with readbacks from chip to ensure timing (simple udelay 55 * is not enough). 56 * 57 * This all means that accessing the device is specialized enough 58 * that using the standard kernel I2C bitbanging interface would be 59 * impossible. For example, the core I2C eeprom driver expects to find 60 * a device at one or more of a limited set of addresses only. It doesn't 61 * allow writing to an eeprom. It also doesn't provide any means of 62 * accessing eeprom contents from within the kernel, only via sysfs. 63 */ 64 65/* Added functionality for IBA7220-based cards */ 66#define IPATH_EEPROM_DEV_V1 0xA0 67#define IPATH_EEPROM_DEV_V2 0xA2 68#define IPATH_TEMP_DEV 0x98 69#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2) 70#define IPATH_NO_DEV (0xFF) 71 72/* 73 * The number of I2C chains is proliferating. Table below brings 74 * some order to the madness. The basic principle is that the 75 * table is scanned from the top, and a "probe" is made to the 76 * device probe_dev. If that succeeds, the chain is considered 77 * to be of that type, and dd->i2c_chain_type is set to the index+1 78 * of the entry. 79 * The +1 is so static initialization can mean "unknown, do probe." 80 */ 81static struct i2c_chain_desc { 82 u8 probe_dev; /* If seen at probe, chain is this type */ 83 u8 eeprom_dev; /* Dev addr (if any) for EEPROM */ 84 u8 temp_dev; /* Dev Addr (if any) for Temp-sense */ 85} i2c_chains[] = { 86 { IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */ 87 { IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */ 88 { IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */ 89 { IPATH_NO_DEV } 90}; 91 92enum i2c_type { 93 i2c_line_scl = 0, 94 i2c_line_sda 95}; 96 97enum i2c_state { 98 i2c_line_low = 0, 99 i2c_line_high 100}; 101 102#define READ_CMD 1 103#define WRITE_CMD 0 104 105/** 106 * i2c_gpio_set - set a GPIO line 107 * @dd: the infinipath device 108 * @line: the line to set 109 * @new_line_state: the state to set 110 * 111 * Returns 0 if the line was set to the new state successfully, non-zero 112 * on error. 113 */ 114static int i2c_gpio_set(struct ipath_devdata *dd, 115 enum i2c_type line, 116 enum i2c_state new_line_state) 117{ 118 u64 out_mask, dir_mask, *gpioval; 119 unsigned long flags = 0; 120 121 gpioval = &dd->ipath_gpio_out; 122 123 if (line == i2c_line_scl) { 124 dir_mask = dd->ipath_gpio_scl; 125 out_mask = (1UL << dd->ipath_gpio_scl_num); 126 } else { 127 dir_mask = dd->ipath_gpio_sda; 128 out_mask = (1UL << dd->ipath_gpio_sda_num); 129 } 130 131 spin_lock_irqsave(&dd->ipath_gpio_lock, flags); 132 if (new_line_state == i2c_line_high) { 133 /* tri-state the output rather than force high */ 134 dd->ipath_extctrl &= ~dir_mask; 135 } else { 136 /* config line to be an output */ 137 dd->ipath_extctrl |= dir_mask; 138 } 139 ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl); 140 141 /* set output as well (no real verify) */ 142 if (new_line_state == i2c_line_high) 143 *gpioval |= out_mask; 144 else 145 *gpioval &= ~out_mask; 146 147 ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval); 148 spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags); 149 150 return 0; 151} 152 153/** 154 * i2c_gpio_get - get a GPIO line state 155 * @dd: the infinipath device 156 * @line: the line to get 157 * @curr_statep: where to put the line state 158 * 159 * Returns 0 if the line was set to the new state successfully, non-zero 160 * on error. curr_state is not set on error. 161 */ 162static int i2c_gpio_get(struct ipath_devdata *dd, 163 enum i2c_type line, 164 enum i2c_state *curr_statep) 165{ 166 u64 read_val, mask; 167 int ret; 168 unsigned long flags = 0; 169 170 /* check args */ 171 if (curr_statep == NULL) { 172 ret = 1; 173 goto bail; 174 } 175 176 /* config line to be an input */ 177 if (line == i2c_line_scl) 178 mask = dd->ipath_gpio_scl; 179 else 180 mask = dd->ipath_gpio_sda; 181 182 spin_lock_irqsave(&dd->ipath_gpio_lock, flags); 183 dd->ipath_extctrl &= ~mask; 184 ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl); 185 /* 186 * Below is very unlikely to reflect true input state if Output 187 * Enable actually changed. 188 */ 189 read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus); 190 spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags); 191 192 if (read_val & mask) 193 *curr_statep = i2c_line_high; 194 else 195 *curr_statep = i2c_line_low; 196 197 ret = 0; 198 199bail: 200 return ret; 201} 202 203/** 204 * i2c_wait_for_writes - wait for a write 205 * @dd: the infinipath device 206 * 207 * We use this instead of udelay directly, so we can make sure 208 * that previous register writes have been flushed all the way 209 * to the chip. Since we are delaying anyway, the cost doesn't 210 * hurt, and makes the bit twiddling more regular 211 */ 212static void i2c_wait_for_writes(struct ipath_devdata *dd) 213{ 214 (void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); 215 rmb(); 216} 217 218static void scl_out(struct ipath_devdata *dd, u8 bit) 219{ 220 udelay(1); 221 i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low); 222 223 i2c_wait_for_writes(dd); 224} 225 226static void sda_out(struct ipath_devdata *dd, u8 bit) 227{ 228 i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low); 229 230 i2c_wait_for_writes(dd); 231} 232 233static u8 sda_in(struct ipath_devdata *dd, int wait) 234{ 235 enum i2c_state bit; 236 237 if (i2c_gpio_get(dd, i2c_line_sda, &bit)) 238 ipath_dbg("get bit failed!\n"); 239 240 if (wait) 241 i2c_wait_for_writes(dd); 242 243 return bit == i2c_line_high ? 1U : 0; 244} 245 246/** 247 * i2c_ackrcv - see if ack following write is true 248 * @dd: the infinipath device 249 */ 250static int i2c_ackrcv(struct ipath_devdata *dd) 251{ 252 u8 ack_received; 253 254 /* AT ENTRY SCL = LOW */ 255 /* change direction, ignore data */ 256 ack_received = sda_in(dd, 1); 257 scl_out(dd, i2c_line_high); 258 ack_received = sda_in(dd, 1) == 0; 259 scl_out(dd, i2c_line_low); 260 return ack_received; 261} 262 263/** 264 * rd_byte - read a byte, leaving ACK, STOP, etc up to caller 265 * @dd: the infinipath device 266 * 267 * Returns byte shifted out of device 268 */ 269static int rd_byte(struct ipath_devdata *dd) 270{ 271 int bit_cntr, data; 272 273 data = 0; 274 275 for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) { 276 data <<= 1; 277 scl_out(dd, i2c_line_high); 278 data |= sda_in(dd, 0); 279 scl_out(dd, i2c_line_low); 280 } 281 return data; 282} 283 284/** 285 * wr_byte - write a byte, one bit at a time 286 * @dd: the infinipath device 287 * @data: the byte to write 288 * 289 * Returns 0 if we got the following ack, otherwise 1 290 */ 291static int wr_byte(struct ipath_devdata *dd, u8 data) 292{ 293 int bit_cntr; 294 u8 bit; 295 296 for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) { 297 bit = (data >> bit_cntr) & 1; 298 sda_out(dd, bit); 299 scl_out(dd, i2c_line_high); 300 scl_out(dd, i2c_line_low); 301 } 302 return (!i2c_ackrcv(dd)) ? 1 : 0; 303} 304 305static void send_ack(struct ipath_devdata *dd) 306{ 307 sda_out(dd, i2c_line_low); 308 scl_out(dd, i2c_line_high); 309 scl_out(dd, i2c_line_low); 310 sda_out(dd, i2c_line_high); 311} 312 313/** 314 * i2c_startcmd - transmit the start condition, followed by address/cmd 315 * @dd: the infinipath device 316 * @offset_dir: direction byte 317 * 318 * (both clock/data high, clock high, data low while clock is high) 319 */ 320static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir) 321{ 322 int res; 323 324 /* issue start sequence */ 325 sda_out(dd, i2c_line_high); 326 scl_out(dd, i2c_line_high); 327 sda_out(dd, i2c_line_low); 328 scl_out(dd, i2c_line_low); 329 330 /* issue length and direction byte */ 331 res = wr_byte(dd, offset_dir); 332 333 if (res) 334 ipath_cdbg(VERBOSE, "No ack to complete start\n"); 335 336 return res; 337} 338 339/** 340 * stop_cmd - transmit the stop condition 341 * @dd: the infinipath device 342 * 343 * (both clock/data low, clock high, data high while clock is high) 344 */ 345static void stop_cmd(struct ipath_devdata *dd) 346{ 347 scl_out(dd, i2c_line_low); 348 sda_out(dd, i2c_line_low); 349 scl_out(dd, i2c_line_high); 350 sda_out(dd, i2c_line_high); 351 udelay(2); 352} 353 354/** 355 * eeprom_reset - reset I2C communication 356 * @dd: the infinipath device 357 */ 358 359static int eeprom_reset(struct ipath_devdata *dd) 360{ 361 int clock_cycles_left = 9; 362 u64 *gpioval = &dd->ipath_gpio_out; 363 int ret; 364 unsigned long flags; 365 366 spin_lock_irqsave(&dd->ipath_gpio_lock, flags); 367 /* Make sure shadows are consistent */ 368 dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl); 369 *gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out); 370 spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags); 371 372 ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg " 373 "is %llx\n", (unsigned long long) *gpioval); 374 375 /* 376 * This is to get the i2c into a known state, by first going low, 377 * then tristate sda (and then tristate scl as first thing 378 * in loop) 379 */ 380 scl_out(dd, i2c_line_low); 381 sda_out(dd, i2c_line_high); 382 383 /* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */ 384 while (clock_cycles_left--) { 385 scl_out(dd, i2c_line_high); 386 387 /* SDA seen high, issue START by dropping it while SCL high */ 388 if (sda_in(dd, 0)) { 389 sda_out(dd, i2c_line_low); 390 scl_out(dd, i2c_line_low); 391 /* ATMEL spec says must be followed by STOP. */ 392 scl_out(dd, i2c_line_high); 393 sda_out(dd, i2c_line_high); 394 ret = 0; 395 goto bail; 396 } 397 398 scl_out(dd, i2c_line_low); 399 } 400 401 ret = 1; 402 403bail: 404 return ret; 405} 406 407/* 408 * Probe for I2C device at specified address. Returns 0 for "success" 409 * to match rest of this file. 410 * Leave bus in "reasonable" state for further commands. 411 */ 412static int i2c_probe(struct ipath_devdata *dd, int devaddr) 413{ 414 int ret = 0; 415 416 ret = eeprom_reset(dd); 417 if (ret) { 418 ipath_dev_err(dd, "Failed reset probing device 0x%02X\n", 419 devaddr); 420 return ret; 421 } 422 /* 423 * Reset no longer leaves bus in start condition, so normal 424 * i2c_startcmd() will do. 425 */ 426 ret = i2c_startcmd(dd, devaddr | READ_CMD); 427 if (ret) 428 ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n", 429 devaddr); 430 else { 431 /* 432 * Device did respond. Complete a single-byte read, because some 433 * devices apparently cannot handle STOP immediately after they 434 * ACK the start-cmd. 435 */ 436 int data; 437 data = rd_byte(dd); 438 stop_cmd(dd); 439 ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr); 440 } 441 return ret; 442} 443 444/* 445 * Returns the "i2c type". This is a pointer to a struct that describes 446 * the I2C chain on this board. To minimize impact on struct ipath_devdata, 447 * the (small integer) index into the table is actually memoized, rather 448 * then the pointer. 449 * Memoization is because the type is determined on the first call per chip. 450 * An alternative would be to move type determination to early 451 * init code. 452 */ 453static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd) 454{ 455 int idx; 456 457 /* Get memoized index, from previous successful probes */ 458 idx = dd->ipath_i2c_chain_type - 1; 459 if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1)) 460 goto done; 461 462 idx = 0; 463 while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) { 464 /* if probe succeeds, this is type */ 465 if (!i2c_probe(dd, i2c_chains[idx].probe_dev)) 466 break; 467 ++idx; 468 } 469 470 /* 471 * Old EEPROM (first entry) may require a reset after probe, 472 * rather than being able to "start" after "stop" 473 */ 474 if (idx == 0) 475 eeprom_reset(dd); 476 477 if (i2c_chains[idx].probe_dev == IPATH_NO_DEV) 478 idx = -1; 479 else 480 dd->ipath_i2c_chain_type = idx + 1; 481done: 482 return (idx >= 0) ? i2c_chains + idx : NULL; 483} 484 485static int ipath_eeprom_internal_read(struct ipath_devdata *dd, 486 u8 eeprom_offset, void *buffer, int len) 487{ 488 int ret; 489 struct i2c_chain_desc *icd; 490 u8 *bp = buffer; 491 492 ret = 1; 493 icd = ipath_i2c_type(dd); 494 if (!icd) 495 goto bail; 496 497 if (icd->eeprom_dev == IPATH_NO_DEV) { 498 /* legacy not-really-I2C */ 499 ipath_cdbg(VERBOSE, "Start command only address\n"); 500 eeprom_offset = (eeprom_offset << 1) | READ_CMD; 501 ret = i2c_startcmd(dd, eeprom_offset); 502 } else { 503 /* Actual I2C */ 504 ipath_cdbg(VERBOSE, "Start command uses devaddr\n"); 505 if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) { 506 ipath_dbg("Failed EEPROM startcmd\n"); 507 stop_cmd(dd); 508 ret = 1; 509 goto bail; 510 } 511 ret = wr_byte(dd, eeprom_offset); 512 stop_cmd(dd); 513 if (ret) { 514 ipath_dev_err(dd, "Failed to write EEPROM address\n"); 515 ret = 1; 516 goto bail; 517 } 518 ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD); 519 } 520 if (ret) { 521 ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev); 522 stop_cmd(dd); 523 ret = 1; 524 goto bail; 525 } 526 527 /* 528 * eeprom keeps clocking data out as long as we ack, automatically 529 * incrementing the address. 530 */ 531 while (len-- > 0) { 532 /* get and store data */ 533 *bp++ = rd_byte(dd); 534 /* send ack if not the last byte */ 535 if (len) 536 send_ack(dd); 537 } 538 539 stop_cmd(dd); 540 541 ret = 0; 542 543bail: 544 return ret; 545} 546 547static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset, 548 const void *buffer, int len) 549{ 550 int sub_len; 551 const u8 *bp = buffer; 552 int max_wait_time, i; 553 int ret; 554 struct i2c_chain_desc *icd; 555 556 ret = 1; 557 icd = ipath_i2c_type(dd); 558 if (!icd) 559 goto bail; 560 561 while (len > 0) { 562 if (icd->eeprom_dev == IPATH_NO_DEV) { 563 if (i2c_startcmd(dd, 564 (eeprom_offset << 1) | WRITE_CMD)) { 565 ipath_dbg("Failed to start cmd offset %u\n", 566 eeprom_offset); 567 goto failed_write; 568 } 569 } else { 570 /* Real I2C */ 571 if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) { 572 ipath_dbg("Failed EEPROM startcmd\n"); 573 goto failed_write; 574 } 575 ret = wr_byte(dd, eeprom_offset); 576 if (ret) { 577 ipath_dev_err(dd, "Failed to write EEPROM " 578 "address\n"); 579 goto failed_write; 580 } 581 } 582 583 sub_len = min(len, 4); 584 eeprom_offset += sub_len; 585 len -= sub_len; 586 587 for (i = 0; i < sub_len; i++) { 588 if (wr_byte(dd, *bp++)) { 589 ipath_dbg("no ack after byte %u/%u (%u " 590 "total remain)\n", i, sub_len, 591 len + sub_len - i); 592 goto failed_write; 593 } 594 } 595 596 stop_cmd(dd); 597 598 /* 599 * wait for write complete by waiting for a successful 600 * read (the chip replies with a zero after the write 601 * cmd completes, and before it writes to the eeprom. 602 * The startcmd for the read will fail the ack until 603 * the writes have completed. We do this inline to avoid 604 * the debug prints that are in the real read routine 605 * if the startcmd fails. 606 * We also use the proper device address, so it doesn't matter 607 * whether we have real eeprom_dev. legacy likes any address. 608 */ 609 max_wait_time = 100; 610 while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) { 611 stop_cmd(dd); 612 if (!--max_wait_time) { 613 ipath_dbg("Did not get successful read to " 614 "complete write\n"); 615 goto failed_write; 616 } 617 } 618 /* now read (and ignore) the resulting byte */ 619 rd_byte(dd); 620 stop_cmd(dd); 621 } 622 623 ret = 0; 624 goto bail; 625 626failed_write: 627 stop_cmd(dd); 628 ret = 1; 629 630bail: 631 return ret; 632} 633 634/** 635 * ipath_eeprom_read - receives bytes from the eeprom via I2C 636 * @dd: the infinipath device 637 * @eeprom_offset: address to read from 638 * @buffer: where to store result 639 * @len: number of bytes to receive 640 */ 641int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset, 642 void *buff, int len) 643{ 644 int ret; 645 646 ret = mutex_lock_interruptible(&dd->ipath_eep_lock); 647 if (!ret) { 648 ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len); 649 mutex_unlock(&dd->ipath_eep_lock); 650 } 651 652 return ret; 653} 654 655/** 656 * ipath_eeprom_write - writes data to the eeprom via I2C 657 * @dd: the infinipath device 658 * @eeprom_offset: where to place data 659 * @buffer: data to write 660 * @len: number of bytes to write 661 */ 662int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset, 663 const void *buff, int len) 664{ 665 int ret; 666 667 ret = mutex_lock_interruptible(&dd->ipath_eep_lock); 668 if (!ret) { 669 ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len); 670 mutex_unlock(&dd->ipath_eep_lock); 671 } 672 673 return ret; 674} 675 676static u8 flash_csum(struct ipath_flash *ifp, int adjust) 677{ 678 u8 *ip = (u8 *) ifp; 679 u8 csum = 0, len; 680 681 /* 682 * Limit length checksummed to max length of actual data. 683 * Checksum of erased eeprom will still be bad, but we avoid 684 * reading past the end of the buffer we were passed. 685 */ 686 len = ifp->if_length; 687 if (len > sizeof(struct ipath_flash)) 688 len = sizeof(struct ipath_flash); 689 while (len--) 690 csum += *ip++; 691 csum -= ifp->if_csum; 692 csum = ~csum; 693 if (adjust) 694 ifp->if_csum = csum; 695 696 return csum; 697} 698 699/** 700 * ipath_get_guid - get the GUID from the i2c device 701 * @dd: the infinipath device 702 * 703 * We have the capability to use the ipath_nguid field, and get 704 * the guid from the first chip's flash, to use for all of them. 705 */ 706void ipath_get_eeprom_info(struct ipath_devdata *dd) 707{ 708 void *buf; 709 struct ipath_flash *ifp; 710 __be64 guid; 711 int len, eep_stat; 712 u8 csum, *bguid; 713 int t = dd->ipath_unit; 714 struct ipath_devdata *dd0 = ipath_lookup(0); 715 716 if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) { 717 u8 oguid; 718 dd->ipath_guid = dd0->ipath_guid; 719 bguid = (u8 *) & dd->ipath_guid; 720 721 oguid = bguid[7]; 722 bguid[7] += t; 723 if (oguid > bguid[7]) { 724 if (bguid[6] == 0xff) { 725 if (bguid[5] == 0xff) { 726 ipath_dev_err( 727 dd, 728 "Can't set %s GUID from " 729 "base, wraps to OUI!\n", 730 ipath_get_unit_name(t)); 731 dd->ipath_guid = 0; 732 goto bail; 733 } 734 bguid[5]++; 735 } 736 bguid[6]++; 737 } 738 dd->ipath_nguid = 1; 739 740 ipath_dbg("nguid %u, so adding %u to device 0 guid, " 741 "for %llx\n", 742 dd0->ipath_nguid, t, 743 (unsigned long long) be64_to_cpu(dd->ipath_guid)); 744 goto bail; 745 } 746 747 /* 748 * read full flash, not just currently used part, since it may have 749 * been written with a newer definition 750 * */ 751 len = sizeof(struct ipath_flash); 752 buf = vmalloc(len); 753 if (!buf) { 754 ipath_dev_err(dd, "Couldn't allocate memory to read %u " 755 "bytes from eeprom for GUID\n", len); 756 goto bail; 757 } 758 759 mutex_lock(&dd->ipath_eep_lock); 760 eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len); 761 mutex_unlock(&dd->ipath_eep_lock); 762 763 if (eep_stat) { 764 ipath_dev_err(dd, "Failed reading GUID from eeprom\n"); 765 goto done; 766 } 767 ifp = (struct ipath_flash *)buf; 768 769 csum = flash_csum(ifp, 0); 770 if (csum != ifp->if_csum) { 771 dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: " 772 "0x%x, not 0x%x\n", csum, ifp->if_csum); 773 goto done; 774 } 775 if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) || 776 *(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) { 777 ipath_dev_err(dd, "Invalid GUID %llx from flash; " 778 "ignoring\n", 779 *(unsigned long long *) ifp->if_guid); 780 /* don't allow GUID if all 0 or all 1's */ 781 goto done; 782 } 783 784 /* complain, but allow it */ 785 if (*(u64 *) ifp->if_guid == 0x100007511000000ULL) 786 dev_info(&dd->pcidev->dev, "Warning, GUID %llx is " 787 "default, probably not correct!\n", 788 *(unsigned long long *) ifp->if_guid); 789 790 bguid = ifp->if_guid; 791 if (!bguid[0] && !bguid[1] && !bguid[2]) { 792 /* original incorrect GUID format in flash; fix in 793 * core copy, by shifting up 2 octets; don't need to 794 * change top octet, since both it and shifted are 795 * 0.. */ 796 bguid[1] = bguid[3]; 797 bguid[2] = bguid[4]; 798 bguid[3] = bguid[4] = 0; 799 guid = *(__be64 *) ifp->if_guid; 800 ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, " 801 "shifting 2 octets\n"); 802 } else 803 guid = *(__be64 *) ifp->if_guid; 804 dd->ipath_guid = guid; 805 dd->ipath_nguid = ifp->if_numguid; 806 /* 807 * Things are slightly complicated by the desire to transparently 808 * support both the Pathscale 10-digit serial number and the QLogic 809 * 13-character version. 810 */ 811 if ((ifp->if_fversion > 1) && ifp->if_sprefix[0] 812 && ((u8 *)ifp->if_sprefix)[0] != 0xFF) { 813 /* This board has a Serial-prefix, which is stored 814 * elsewhere for backward-compatibility. 815 */ 816 char *snp = dd->ipath_serial; 817 memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix); 818 snp[sizeof ifp->if_sprefix] = '\0'; 819 len = strlen(snp); 820 snp += len; 821 len = (sizeof dd->ipath_serial) - len; 822 if (len > sizeof ifp->if_serial) { 823 len = sizeof ifp->if_serial; 824 } 825 memcpy(snp, ifp->if_serial, len); 826 } else 827 memcpy(dd->ipath_serial, ifp->if_serial, 828 sizeof ifp->if_serial); 829 if (!strstr(ifp->if_comment, "Tested successfully")) 830 ipath_dev_err(dd, "Board SN %s did not pass functional " 831 "test: %s\n", dd->ipath_serial, 832 ifp->if_comment); 833 834 ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n", 835 (unsigned long long) be64_to_cpu(dd->ipath_guid)); 836 837 memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT); 838 /* 839 * Power-on (actually "active") hours are kept as little-endian value 840 * in EEPROM, but as seconds in a (possibly as small as 24-bit) 841 * atomic_t while running. 842 */ 843 atomic_set(&dd->ipath_active_time, 0); 844 dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8); 845 846done: 847 vfree(buf); 848 849bail:; 850} 851 852/** 853 * ipath_update_eeprom_log - copy active-time and error counters to eeprom 854 * @dd: the infinipath device 855 * 856 * Although the time is kept as seconds in the ipath_devdata struct, it is 857 * rounded to hours for re-write, as we have only 16 bits in EEPROM. 858 * First-cut code reads whole (expected) struct ipath_flash, modifies, 859 * re-writes. Future direction: read/write only what we need, assuming 860 * that the EEPROM had to have been "good enough" for driver init, and 861 * if not, we aren't making it worse. 862 * 863 */ 864 865int ipath_update_eeprom_log(struct ipath_devdata *dd) 866{ 867 void *buf; 868 struct ipath_flash *ifp; 869 int len, hi_water; 870 uint32_t new_time, new_hrs; 871 u8 csum; 872 int ret, idx; 873 unsigned long flags; 874 875 /* first, check if we actually need to do anything. */ 876 ret = 0; 877 for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) { 878 if (dd->ipath_eep_st_new_errs[idx]) { 879 ret = 1; 880 break; 881 } 882 } 883 new_time = atomic_read(&dd->ipath_active_time); 884 885 if (ret == 0 && new_time < 3600) 886 return 0; 887 888 /* 889 * The quick-check above determined that there is something worthy 890 * of logging, so get current contents and do a more detailed idea. 891 * read full flash, not just currently used part, since it may have 892 * been written with a newer definition 893 */ 894 len = sizeof(struct ipath_flash); 895 buf = vmalloc(len); 896 ret = 1; 897 if (!buf) { 898 ipath_dev_err(dd, "Couldn't allocate memory to read %u " 899 "bytes from eeprom for logging\n", len); 900 goto bail; 901 } 902 903 /* Grab semaphore and read current EEPROM. If we get an 904 * error, let go, but if not, keep it until we finish write. 905 */ 906 ret = mutex_lock_interruptible(&dd->ipath_eep_lock); 907 if (ret) { 908 ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n"); 909 goto free_bail; 910 } 911 ret = ipath_eeprom_internal_read(dd, 0, buf, len); 912 if (ret) { 913 mutex_unlock(&dd->ipath_eep_lock); 914 ipath_dev_err(dd, "Unable read EEPROM for logging\n"); 915 goto free_bail; 916 } 917 ifp = (struct ipath_flash *)buf; 918 919 csum = flash_csum(ifp, 0); 920 if (csum != ifp->if_csum) { 921 mutex_unlock(&dd->ipath_eep_lock); 922 ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n", 923 csum, ifp->if_csum); 924 ret = 1; 925 goto free_bail; 926 } 927 hi_water = 0; 928 spin_lock_irqsave(&dd->ipath_eep_st_lock, flags); 929 for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) { 930 int new_val = dd->ipath_eep_st_new_errs[idx]; 931 if (new_val) { 932 /* 933 * If we have seen any errors, add to EEPROM values 934 * We need to saturate at 0xFF (255) and we also 935 * would need to adjust the checksum if we were 936 * trying to minimize EEPROM traffic 937 * Note that we add to actual current count in EEPROM, 938 * in case it was altered while we were running. 939 */ 940 new_val += ifp->if_errcntp[idx]; 941 if (new_val > 0xFF) 942 new_val = 0xFF; 943 if (ifp->if_errcntp[idx] != new_val) { 944 ifp->if_errcntp[idx] = new_val; 945 hi_water = offsetof(struct ipath_flash, 946 if_errcntp) + idx; 947 } 948 /* 949 * update our shadow (used to minimize EEPROM 950 * traffic), to match what we are about to write. 951 */ 952 dd->ipath_eep_st_errs[idx] = new_val; 953 dd->ipath_eep_st_new_errs[idx] = 0; 954 } 955 } 956 /* 957 * now update active-time. We would like to round to the nearest hour 958 * but unless atomic_t are sure to be proper signed ints we cannot, 959 * because we need to account for what we "transfer" to EEPROM and 960 * if we log an hour at 31 minutes, then we would need to set 961 * active_time to -29 to accurately count the _next_ hour. 962 */ 963 if (new_time >= 3600) { 964 new_hrs = new_time / 3600; 965 atomic_sub((new_hrs * 3600), &dd->ipath_active_time); 966 new_hrs += dd->ipath_eep_hrs; 967 if (new_hrs > 0xFFFF) 968 new_hrs = 0xFFFF; 969 dd->ipath_eep_hrs = new_hrs; 970 if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) { 971 ifp->if_powerhour[0] = new_hrs & 0xFF; 972 hi_water = offsetof(struct ipath_flash, if_powerhour); 973 } 974 if ((new_hrs >> 8) != ifp->if_powerhour[1]) { 975 ifp->if_powerhour[1] = new_hrs >> 8; 976 hi_water = offsetof(struct ipath_flash, if_powerhour) 977 + 1; 978 } 979 } 980 /* 981 * There is a tiny possibility that we could somehow fail to write 982 * the EEPROM after updating our shadows, but problems from holding 983 * the spinlock too long are a much bigger issue. 984 */ 985 spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags); 986 if (hi_water) { 987 /* we made some change to the data, uopdate cksum and write */ 988 csum = flash_csum(ifp, 1); 989 ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1); 990 } 991 mutex_unlock(&dd->ipath_eep_lock); 992 if (ret) 993 ipath_dev_err(dd, "Failed updating EEPROM\n"); 994 995free_bail: 996 vfree(buf); 997bail: 998 return ret; 999 1000} 1001 1002/** 1003 * ipath_inc_eeprom_err - increment one of the four error counters 1004 * that are logged to EEPROM. 1005 * @dd: the infinipath device 1006 * @eidx: 0..3, the counter to increment 1007 * @incr: how much to add 1008 * 1009 * Each counter is 8-bits, and saturates at 255 (0xFF). They 1010 * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log() 1011 * is called, but it can only be called in a context that allows sleep. 1012 * This function can be called even at interrupt level. 1013 */ 1014 1015void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr) 1016{ 1017 uint new_val; 1018 unsigned long flags; 1019 1020 spin_lock_irqsave(&dd->ipath_eep_st_lock, flags); 1021 new_val = dd->ipath_eep_st_new_errs[eidx] + incr; 1022 if (new_val > 255) 1023 new_val = 255; 1024 dd->ipath_eep_st_new_errs[eidx] = new_val; 1025 spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags); 1026 return; 1027} 1028 1029static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum) 1030{ 1031 int ret; 1032 struct i2c_chain_desc *icd; 1033 1034 ret = -ENOENT; 1035 1036 icd = ipath_i2c_type(dd); 1037 if (!icd) 1038 goto bail; 1039 1040 if (icd->temp_dev == IPATH_NO_DEV) { 1041 /* tempsense only exists on new, real-I2C boards */ 1042 ret = -ENXIO; 1043 goto bail; 1044 } 1045 1046 if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) { 1047 ipath_dbg("Failed tempsense startcmd\n"); 1048 stop_cmd(dd); 1049 ret = -ENXIO; 1050 goto bail; 1051 } 1052 ret = wr_byte(dd, regnum); 1053 stop_cmd(dd); 1054 if (ret) { 1055 ipath_dev_err(dd, "Failed tempsense WR command %02X\n", 1056 regnum); 1057 ret = -ENXIO; 1058 goto bail; 1059 } 1060 if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) { 1061 ipath_dbg("Failed tempsense RD startcmd\n"); 1062 stop_cmd(dd); 1063 ret = -ENXIO; 1064 goto bail; 1065 } 1066 /* 1067 * We can only clock out one byte per command, sensibly 1068 */ 1069 ret = rd_byte(dd); 1070 stop_cmd(dd); 1071 1072bail: 1073 return ret; 1074} 1075 1076#define VALID_TS_RD_REG_MASK 0xBF 1077 1078/** 1079 * ipath_tempsense_read - read register of temp sensor via I2C 1080 * @dd: the infinipath device 1081 * @regnum: register to read from 1082 * 1083 * returns reg contents (0..255) or < 0 for error 1084 */ 1085int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum) 1086{ 1087 int ret; 1088 1089 if (regnum > 7) 1090 return -EINVAL; 1091 1092 /* return a bogus value for (the one) register we do not have */ 1093 if (!((1 << regnum) & VALID_TS_RD_REG_MASK)) 1094 return 0; 1095 1096 ret = mutex_lock_interruptible(&dd->ipath_eep_lock); 1097 if (!ret) { 1098 ret = ipath_tempsense_internal_read(dd, regnum); 1099 mutex_unlock(&dd->ipath_eep_lock); 1100 } 1101 1102 /* 1103 * There are three possibilities here: 1104 * ret is actual value (0..255) 1105 * ret is -ENXIO or -EINVAL from code in this file 1106 * ret is -EINTR from mutex_lock_interruptible. 1107 */ 1108 return ret; 1109} 1110 1111static int ipath_tempsense_internal_write(struct ipath_devdata *dd, 1112 u8 regnum, u8 data) 1113{ 1114 int ret = -ENOENT; 1115 struct i2c_chain_desc *icd; 1116 1117 icd = ipath_i2c_type(dd); 1118 if (!icd) 1119 goto bail; 1120 1121 if (icd->temp_dev == IPATH_NO_DEV) { 1122 /* tempsense only exists on new, real-I2C boards */ 1123 ret = -ENXIO; 1124 goto bail; 1125 } 1126 if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) { 1127 ipath_dbg("Failed tempsense startcmd\n"); 1128 stop_cmd(dd); 1129 ret = -ENXIO; 1130 goto bail; 1131 } 1132 ret = wr_byte(dd, regnum); 1133 if (ret) { 1134 stop_cmd(dd); 1135 ipath_dev_err(dd, "Failed to write tempsense command %02X\n", 1136 regnum); 1137 ret = -ENXIO; 1138 goto bail; 1139 } 1140 ret = wr_byte(dd, data); 1141 stop_cmd(dd); 1142 ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD); 1143 if (ret) { 1144 ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n", 1145 regnum); 1146 ret = -ENXIO; 1147 } 1148 1149bail: 1150 return ret; 1151} 1152 1153#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD)) 1154 1155/** 1156 * ipath_tempsense_write - write register of temp sensor via I2C 1157 * @dd: the infinipath device 1158 * @regnum: register to write 1159 * @data: data to write 1160 * 1161 * returns 0 for success or < 0 for error 1162 */ 1163int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data) 1164{ 1165 int ret; 1166 1167 if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK)) 1168 return -EINVAL; 1169 1170 ret = mutex_lock_interruptible(&dd->ipath_eep_lock); 1171 if (!ret) { 1172 ret = ipath_tempsense_internal_write(dd, regnum, data); 1173 mutex_unlock(&dd->ipath_eep_lock); 1174 } 1175 1176 /* 1177 * There are three possibilities here: 1178 * ret is 0 for success 1179 * ret is -ENXIO or -EINVAL from code in this file 1180 * ret is -EINTR from mutex_lock_interruptible. 1181 */ 1182 return ret; 1183} 1184