1/* 2 * Support for IDE interfaces on PowerMacs. 3 * 4 * These IDE interfaces are memory-mapped and have a DBDMA channel 5 * for doing DMA. 6 * 7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt 8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 * 15 * Some code taken from drivers/ide/ide-dma.c: 16 * 17 * Copyright (c) 1995-1998 Mark Lord 18 * 19 * TODO: - Use pre-calculated (kauai) timing tables all the time and 20 * get rid of the "rounded" tables used previously, so we have the 21 * same table format for all controllers and can then just have one 22 * big table 23 * 24 */ 25#include <linux/types.h> 26#include <linux/kernel.h> 27#include <linux/init.h> 28#include <linux/delay.h> 29#include <linux/ide.h> 30#include <linux/notifier.h> 31#include <linux/module.h> 32#include <linux/reboot.h> 33#include <linux/pci.h> 34#include <linux/adb.h> 35#include <linux/pmu.h> 36#include <linux/scatterlist.h> 37#include <linux/slab.h> 38 39#include <asm/prom.h> 40#include <asm/io.h> 41#include <asm/dbdma.h> 42#include <asm/ide.h> 43#include <asm/pci-bridge.h> 44#include <asm/machdep.h> 45#include <asm/pmac_feature.h> 46#include <asm/sections.h> 47#include <asm/irq.h> 48#include <asm/mediabay.h> 49 50#define DRV_NAME "ide-pmac" 51 52#undef IDE_PMAC_DEBUG 53 54#define DMA_WAIT_TIMEOUT 50 55 56typedef struct pmac_ide_hwif { 57 unsigned long regbase; 58 int irq; 59 int kind; 60 int aapl_bus_id; 61 unsigned broken_dma : 1; 62 unsigned broken_dma_warn : 1; 63 struct device_node* node; 64 struct macio_dev *mdev; 65 u32 timings[4]; 66 volatile u32 __iomem * *kauai_fcr; 67 ide_hwif_t *hwif; 68 69 /* Those fields are duplicating what is in hwif. We currently 70 * can't use the hwif ones because of some assumptions that are 71 * beeing done by the generic code about the kind of dma controller 72 * and format of the dma table. This will have to be fixed though. 73 */ 74 volatile struct dbdma_regs __iomem * dma_regs; 75 struct dbdma_cmd* dma_table_cpu; 76} pmac_ide_hwif_t; 77 78enum { 79 controller_ohare, /* OHare based */ 80 controller_heathrow, /* Heathrow/Paddington */ 81 controller_kl_ata3, /* KeyLargo ATA-3 */ 82 controller_kl_ata4, /* KeyLargo ATA-4 */ 83 controller_un_ata6, /* UniNorth2 ATA-6 */ 84 controller_k2_ata6, /* K2 ATA-6 */ 85 controller_sh_ata6, /* Shasta ATA-6 */ 86}; 87 88static const char* model_name[] = { 89 "OHare ATA", /* OHare based */ 90 "Heathrow ATA", /* Heathrow/Paddington */ 91 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */ 92 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */ 93 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */ 94 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */ 95 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */ 96}; 97 98/* 99 * Extra registers, both 32-bit little-endian 100 */ 101#define IDE_TIMING_CONFIG 0x200 102#define IDE_INTERRUPT 0x300 103 104/* Kauai (U2) ATA has different register setup */ 105#define IDE_KAUAI_PIO_CONFIG 0x200 106#define IDE_KAUAI_ULTRA_CONFIG 0x210 107#define IDE_KAUAI_POLL_CONFIG 0x220 108 109/* 110 * Timing configuration register definitions 111 */ 112 113/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */ 114#define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS) 115#define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS) 116#define IDE_SYSCLK_NS 30 /* 33Mhz cell */ 117#define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */ 118 119/* 133Mhz cell, found in shasta. 120 * See comments about 100 Mhz Uninorth 2... 121 * Note that PIO_MASK and MDMA_MASK seem to overlap 122 */ 123#define TR_133_PIOREG_PIO_MASK 0xff000fff 124#define TR_133_PIOREG_MDMA_MASK 0x00fff800 125#define TR_133_UDMAREG_UDMA_MASK 0x0003ffff 126#define TR_133_UDMAREG_UDMA_EN 0x00000001 127 128/* 100Mhz cell, found in Uninorth 2. I don't have much infos about 129 * this one yet, it appears as a pci device (106b/0033) on uninorth 130 * internal PCI bus and it's clock is controlled like gem or fw. It 131 * appears to be an evolution of keylargo ATA4 with a timing register 132 * extended to 2 32bits registers and a similar DBDMA channel. Other 133 * registers seem to exist but I can't tell much about them. 134 * 135 * So far, I'm using pre-calculated tables for this extracted from 136 * the values used by the MacOS X driver. 137 * 138 * The "PIO" register controls PIO and MDMA timings, the "ULTRA" 139 * register controls the UDMA timings. At least, it seems bit 0 140 * of this one enables UDMA vs. MDMA, and bits 4..7 are the 141 * cycle time in units of 10ns. Bits 8..15 are used by I don't 142 * know their meaning yet 143 */ 144#define TR_100_PIOREG_PIO_MASK 0xff000fff 145#define TR_100_PIOREG_MDMA_MASK 0x00fff000 146#define TR_100_UDMAREG_UDMA_MASK 0x0000ffff 147#define TR_100_UDMAREG_UDMA_EN 0x00000001 148 149 150/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on 151 * 40 connector cable and to 4 on 80 connector one. 152 * Clock unit is 15ns (66Mhz) 153 * 154 * 3 Values can be programmed: 155 * - Write data setup, which appears to match the cycle time. They 156 * also call it DIOW setup. 157 * - Ready to pause time (from spec) 158 * - Address setup. That one is weird. I don't see where exactly 159 * it fits in UDMA cycles, I got it's name from an obscure piece 160 * of commented out code in Darwin. They leave it to 0, we do as 161 * well, despite a comment that would lead to think it has a 162 * min value of 45ns. 163 * Apple also add 60ns to the write data setup (or cycle time ?) on 164 * reads. 165 */ 166#define TR_66_UDMA_MASK 0xfff00000 167#define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */ 168#define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */ 169#define TR_66_UDMA_ADDRSETUP_SHIFT 29 170#define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */ 171#define TR_66_UDMA_RDY2PAUS_SHIFT 25 172#define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */ 173#define TR_66_UDMA_WRDATASETUP_SHIFT 21 174#define TR_66_MDMA_MASK 0x000ffc00 175#define TR_66_MDMA_RECOVERY_MASK 0x000f8000 176#define TR_66_MDMA_RECOVERY_SHIFT 15 177#define TR_66_MDMA_ACCESS_MASK 0x00007c00 178#define TR_66_MDMA_ACCESS_SHIFT 10 179#define TR_66_PIO_MASK 0x000003ff 180#define TR_66_PIO_RECOVERY_MASK 0x000003e0 181#define TR_66_PIO_RECOVERY_SHIFT 5 182#define TR_66_PIO_ACCESS_MASK 0x0000001f 183#define TR_66_PIO_ACCESS_SHIFT 0 184 185/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo 186 * Can do pio & mdma modes, clock unit is 30ns (33Mhz) 187 * 188 * The access time and recovery time can be programmed. Some older 189 * Darwin code base limit OHare to 150ns cycle time. I decided to do 190 * the same here fore safety against broken old hardware ;) 191 * The HalfTick bit, when set, adds half a clock (15ns) to the access 192 * time and removes one from recovery. It's not supported on KeyLargo 193 * implementation afaik. The E bit appears to be set for PIO mode 0 and 194 * is used to reach long timings used in this mode. 195 */ 196#define TR_33_MDMA_MASK 0x003ff800 197#define TR_33_MDMA_RECOVERY_MASK 0x001f0000 198#define TR_33_MDMA_RECOVERY_SHIFT 16 199#define TR_33_MDMA_ACCESS_MASK 0x0000f800 200#define TR_33_MDMA_ACCESS_SHIFT 11 201#define TR_33_MDMA_HALFTICK 0x00200000 202#define TR_33_PIO_MASK 0x000007ff 203#define TR_33_PIO_E 0x00000400 204#define TR_33_PIO_RECOVERY_MASK 0x000003e0 205#define TR_33_PIO_RECOVERY_SHIFT 5 206#define TR_33_PIO_ACCESS_MASK 0x0000001f 207#define TR_33_PIO_ACCESS_SHIFT 0 208 209/* 210 * Interrupt register definitions 211 */ 212#define IDE_INTR_DMA 0x80000000 213#define IDE_INTR_DEVICE 0x40000000 214 215/* 216 * FCR Register on Kauai. Not sure what bit 0x4 is ... 217 */ 218#define KAUAI_FCR_UATA_MAGIC 0x00000004 219#define KAUAI_FCR_UATA_RESET_N 0x00000002 220#define KAUAI_FCR_UATA_ENABLE 0x00000001 221 222/* Rounded Multiword DMA timings 223 * 224 * I gave up finding a generic formula for all controller 225 * types and instead, built tables based on timing values 226 * used by Apple in Darwin's implementation. 227 */ 228struct mdma_timings_t { 229 int accessTime; 230 int recoveryTime; 231 int cycleTime; 232}; 233 234struct mdma_timings_t mdma_timings_33[] = 235{ 236 { 240, 240, 480 }, 237 { 180, 180, 360 }, 238 { 135, 135, 270 }, 239 { 120, 120, 240 }, 240 { 105, 105, 210 }, 241 { 90, 90, 180 }, 242 { 75, 75, 150 }, 243 { 75, 45, 120 }, 244 { 0, 0, 0 } 245}; 246 247struct mdma_timings_t mdma_timings_33k[] = 248{ 249 { 240, 240, 480 }, 250 { 180, 180, 360 }, 251 { 150, 150, 300 }, 252 { 120, 120, 240 }, 253 { 90, 120, 210 }, 254 { 90, 90, 180 }, 255 { 90, 60, 150 }, 256 { 90, 30, 120 }, 257 { 0, 0, 0 } 258}; 259 260struct mdma_timings_t mdma_timings_66[] = 261{ 262 { 240, 240, 480 }, 263 { 180, 180, 360 }, 264 { 135, 135, 270 }, 265 { 120, 120, 240 }, 266 { 105, 105, 210 }, 267 { 90, 90, 180 }, 268 { 90, 75, 165 }, 269 { 75, 45, 120 }, 270 { 0, 0, 0 } 271}; 272 273/* KeyLargo ATA-4 Ultra DMA timings (rounded) */ 274struct { 275 int addrSetup; /* ??? */ 276 int rdy2pause; 277 int wrDataSetup; 278} kl66_udma_timings[] = 279{ 280 { 0, 180, 120 }, /* Mode 0 */ 281 { 0, 150, 90 }, /* 1 */ 282 { 0, 120, 60 }, /* 2 */ 283 { 0, 90, 45 }, /* 3 */ 284 { 0, 90, 30 } /* 4 */ 285}; 286 287/* UniNorth 2 ATA/100 timings */ 288struct kauai_timing { 289 int cycle_time; 290 u32 timing_reg; 291}; 292 293static struct kauai_timing kauai_pio_timings[] = 294{ 295 { 930 , 0x08000fff }, 296 { 600 , 0x08000a92 }, 297 { 383 , 0x0800060f }, 298 { 360 , 0x08000492 }, 299 { 330 , 0x0800048f }, 300 { 300 , 0x080003cf }, 301 { 270 , 0x080003cc }, 302 { 240 , 0x0800038b }, 303 { 239 , 0x0800030c }, 304 { 180 , 0x05000249 }, 305 { 120 , 0x04000148 }, 306 { 0 , 0 }, 307}; 308 309static struct kauai_timing kauai_mdma_timings[] = 310{ 311 { 1260 , 0x00fff000 }, 312 { 480 , 0x00618000 }, 313 { 360 , 0x00492000 }, 314 { 270 , 0x0038e000 }, 315 { 240 , 0x0030c000 }, 316 { 210 , 0x002cb000 }, 317 { 180 , 0x00249000 }, 318 { 150 , 0x00209000 }, 319 { 120 , 0x00148000 }, 320 { 0 , 0 }, 321}; 322 323static struct kauai_timing kauai_udma_timings[] = 324{ 325 { 120 , 0x000070c0 }, 326 { 90 , 0x00005d80 }, 327 { 60 , 0x00004a60 }, 328 { 45 , 0x00003a50 }, 329 { 30 , 0x00002a30 }, 330 { 20 , 0x00002921 }, 331 { 0 , 0 }, 332}; 333 334static struct kauai_timing shasta_pio_timings[] = 335{ 336 { 930 , 0x08000fff }, 337 { 600 , 0x0A000c97 }, 338 { 383 , 0x07000712 }, 339 { 360 , 0x040003cd }, 340 { 330 , 0x040003cd }, 341 { 300 , 0x040003cd }, 342 { 270 , 0x040003cd }, 343 { 240 , 0x040003cd }, 344 { 239 , 0x040003cd }, 345 { 180 , 0x0400028b }, 346 { 120 , 0x0400010a }, 347 { 0 , 0 }, 348}; 349 350static struct kauai_timing shasta_mdma_timings[] = 351{ 352 { 1260 , 0x00fff000 }, 353 { 480 , 0x00820800 }, 354 { 360 , 0x00820800 }, 355 { 270 , 0x00820800 }, 356 { 240 , 0x00820800 }, 357 { 210 , 0x00820800 }, 358 { 180 , 0x00820800 }, 359 { 150 , 0x0028b000 }, 360 { 120 , 0x001ca000 }, 361 { 0 , 0 }, 362}; 363 364static struct kauai_timing shasta_udma133_timings[] = 365{ 366 { 120 , 0x00035901, }, 367 { 90 , 0x000348b1, }, 368 { 60 , 0x00033881, }, 369 { 45 , 0x00033861, }, 370 { 30 , 0x00033841, }, 371 { 20 , 0x00033031, }, 372 { 15 , 0x00033021, }, 373 { 0 , 0 }, 374}; 375 376 377static inline u32 378kauai_lookup_timing(struct kauai_timing* table, int cycle_time) 379{ 380 int i; 381 382 for (i=0; table[i].cycle_time; i++) 383 if (cycle_time > table[i+1].cycle_time) 384 return table[i].timing_reg; 385 BUG(); 386 return 0; 387} 388 389/* allow up to 256 DBDMA commands per xfer */ 390#define MAX_DCMDS 256 391 392/* 393 * Wait 1s for disk to answer on IDE bus after a hard reset 394 * of the device (via GPIO/FCR). 395 * 396 * Some devices seem to "pollute" the bus even after dropping 397 * the BSY bit (typically some combo drives slave on the UDMA 398 * bus) after a hard reset. Since we hard reset all drives on 399 * KeyLargo ATA66, we have to keep that delay around. I may end 400 * up not hard resetting anymore on these and keep the delay only 401 * for older interfaces instead (we have to reset when coming 402 * from MacOS...) --BenH. 403 */ 404#define IDE_WAKEUP_DELAY (1*HZ) 405 406static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *); 407 408#define PMAC_IDE_REG(x) \ 409 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x))) 410 411/* 412 * Apply the timings of the proper unit (master/slave) to the shared 413 * timing register when selecting that unit. This version is for 414 * ASICs with a single timing register 415 */ 416static void pmac_ide_apply_timings(ide_drive_t *drive) 417{ 418 ide_hwif_t *hwif = drive->hwif; 419 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 420 421 if (drive->dn & 1) 422 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG)); 423 else 424 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG)); 425 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); 426} 427 428/* 429 * Apply the timings of the proper unit (master/slave) to the shared 430 * timing register when selecting that unit. This version is for 431 * ASICs with a dual timing register (Kauai) 432 */ 433static void pmac_ide_kauai_apply_timings(ide_drive_t *drive) 434{ 435 ide_hwif_t *hwif = drive->hwif; 436 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 437 438 if (drive->dn & 1) { 439 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); 440 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); 441 } else { 442 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); 443 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); 444 } 445 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); 446} 447 448/* 449 * Force an update of controller timing values for a given drive 450 */ 451static void 452pmac_ide_do_update_timings(ide_drive_t *drive) 453{ 454 ide_hwif_t *hwif = drive->hwif; 455 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 456 457 if (pmif->kind == controller_sh_ata6 || 458 pmif->kind == controller_un_ata6 || 459 pmif->kind == controller_k2_ata6) 460 pmac_ide_kauai_apply_timings(drive); 461 else 462 pmac_ide_apply_timings(drive); 463} 464 465static void pmac_dev_select(ide_drive_t *drive) 466{ 467 pmac_ide_apply_timings(drive); 468 469 writeb(drive->select | ATA_DEVICE_OBS, 470 (void __iomem *)drive->hwif->io_ports.device_addr); 471} 472 473static void pmac_kauai_dev_select(ide_drive_t *drive) 474{ 475 pmac_ide_kauai_apply_timings(drive); 476 477 writeb(drive->select | ATA_DEVICE_OBS, 478 (void __iomem *)drive->hwif->io_ports.device_addr); 479} 480 481static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd) 482{ 483 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr); 484 (void)readl((void __iomem *)(hwif->io_ports.data_addr 485 + IDE_TIMING_CONFIG)); 486} 487 488static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl) 489{ 490 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr); 491 (void)readl((void __iomem *)(hwif->io_ports.data_addr 492 + IDE_TIMING_CONFIG)); 493} 494 495/* 496 * Old tuning functions (called on hdparm -p), sets up drive PIO timings 497 */ 498static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive) 499{ 500 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 501 const u8 pio = drive->pio_mode - XFER_PIO_0; 502 struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio); 503 u32 *timings, t; 504 unsigned accessTicks, recTicks; 505 unsigned accessTime, recTime; 506 unsigned int cycle_time; 507 508 /* which drive is it ? */ 509 timings = &pmif->timings[drive->dn & 1]; 510 t = *timings; 511 512 cycle_time = ide_pio_cycle_time(drive, pio); 513 514 switch (pmif->kind) { 515 case controller_sh_ata6: { 516 /* 133Mhz cell */ 517 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time); 518 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr; 519 break; 520 } 521 case controller_un_ata6: 522 case controller_k2_ata6: { 523 /* 100Mhz cell */ 524 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time); 525 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr; 526 break; 527 } 528 case controller_kl_ata4: 529 /* 66Mhz cell */ 530 recTime = cycle_time - tim->active - tim->setup; 531 recTime = max(recTime, 150U); 532 accessTime = tim->active; 533 accessTime = max(accessTime, 150U); 534 accessTicks = SYSCLK_TICKS_66(accessTime); 535 accessTicks = min(accessTicks, 0x1fU); 536 recTicks = SYSCLK_TICKS_66(recTime); 537 recTicks = min(recTicks, 0x1fU); 538 t = (t & ~TR_66_PIO_MASK) | 539 (accessTicks << TR_66_PIO_ACCESS_SHIFT) | 540 (recTicks << TR_66_PIO_RECOVERY_SHIFT); 541 break; 542 default: { 543 /* 33Mhz cell */ 544 int ebit = 0; 545 recTime = cycle_time - tim->active - tim->setup; 546 recTime = max(recTime, 150U); 547 accessTime = tim->active; 548 accessTime = max(accessTime, 150U); 549 accessTicks = SYSCLK_TICKS(accessTime); 550 accessTicks = min(accessTicks, 0x1fU); 551 accessTicks = max(accessTicks, 4U); 552 recTicks = SYSCLK_TICKS(recTime); 553 recTicks = min(recTicks, 0x1fU); 554 recTicks = max(recTicks, 5U) - 4; 555 if (recTicks > 9) { 556 recTicks--; /* guess, but it's only for PIO0, so... */ 557 ebit = 1; 558 } 559 t = (t & ~TR_33_PIO_MASK) | 560 (accessTicks << TR_33_PIO_ACCESS_SHIFT) | 561 (recTicks << TR_33_PIO_RECOVERY_SHIFT); 562 if (ebit) 563 t |= TR_33_PIO_E; 564 break; 565 } 566 } 567 568#ifdef IDE_PMAC_DEBUG 569 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n", 570 drive->name, pio, *timings); 571#endif 572 573 *timings = t; 574 pmac_ide_do_update_timings(drive); 575} 576 577/* 578 * Calculate KeyLargo ATA/66 UDMA timings 579 */ 580static int 581set_timings_udma_ata4(u32 *timings, u8 speed) 582{ 583 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks; 584 585 if (speed > XFER_UDMA_4) 586 return 1; 587 588 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause); 589 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup); 590 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup); 591 592 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) | 593 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | 594 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) | 595 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) | 596 TR_66_UDMA_EN; 597#ifdef IDE_PMAC_DEBUG 598 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n", 599 speed & 0xf, *timings); 600#endif 601 602 return 0; 603} 604 605/* 606 * Calculate Kauai ATA/100 UDMA timings 607 */ 608static int 609set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed) 610{ 611 struct ide_timing *t = ide_timing_find_mode(speed); 612 u32 tr; 613 614 if (speed > XFER_UDMA_5 || t == NULL) 615 return 1; 616 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma); 617 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr; 618 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN; 619 620 return 0; 621} 622 623/* 624 * Calculate Shasta ATA/133 UDMA timings 625 */ 626static int 627set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed) 628{ 629 struct ide_timing *t = ide_timing_find_mode(speed); 630 u32 tr; 631 632 if (speed > XFER_UDMA_6 || t == NULL) 633 return 1; 634 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma); 635 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr; 636 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN; 637 638 return 0; 639} 640 641/* 642 * Calculate MDMA timings for all cells 643 */ 644static void 645set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2, 646 u8 speed) 647{ 648 u16 *id = drive->id; 649 int cycleTime, accessTime = 0, recTime = 0; 650 unsigned accessTicks, recTicks; 651 struct mdma_timings_t* tm = NULL; 652 int i; 653 654 /* Get default cycle time for mode */ 655 switch(speed & 0xf) { 656 case 0: cycleTime = 480; break; 657 case 1: cycleTime = 150; break; 658 case 2: cycleTime = 120; break; 659 default: 660 BUG(); 661 break; 662 } 663 664 /* Check if drive provides explicit DMA cycle time */ 665 if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME]) 666 cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime); 667 668 /* OHare limits according to some old Apple sources */ 669 if ((intf_type == controller_ohare) && (cycleTime < 150)) 670 cycleTime = 150; 671 /* Get the proper timing array for this controller */ 672 switch(intf_type) { 673 case controller_sh_ata6: 674 case controller_un_ata6: 675 case controller_k2_ata6: 676 break; 677 case controller_kl_ata4: 678 tm = mdma_timings_66; 679 break; 680 case controller_kl_ata3: 681 tm = mdma_timings_33k; 682 break; 683 default: 684 tm = mdma_timings_33; 685 break; 686 } 687 if (tm != NULL) { 688 /* Lookup matching access & recovery times */ 689 i = -1; 690 for (;;) { 691 if (tm[i+1].cycleTime < cycleTime) 692 break; 693 i++; 694 } 695 cycleTime = tm[i].cycleTime; 696 accessTime = tm[i].accessTime; 697 recTime = tm[i].recoveryTime; 698 699#ifdef IDE_PMAC_DEBUG 700 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n", 701 drive->name, cycleTime, accessTime, recTime); 702#endif 703 } 704 switch(intf_type) { 705 case controller_sh_ata6: { 706 /* 133Mhz cell */ 707 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime); 708 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr; 709 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN; 710 } 711 case controller_un_ata6: 712 case controller_k2_ata6: { 713 /* 100Mhz cell */ 714 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime); 715 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr; 716 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN; 717 } 718 break; 719 case controller_kl_ata4: 720 /* 66Mhz cell */ 721 accessTicks = SYSCLK_TICKS_66(accessTime); 722 accessTicks = min(accessTicks, 0x1fU); 723 accessTicks = max(accessTicks, 0x1U); 724 recTicks = SYSCLK_TICKS_66(recTime); 725 recTicks = min(recTicks, 0x1fU); 726 recTicks = max(recTicks, 0x3U); 727 /* Clear out mdma bits and disable udma */ 728 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) | 729 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) | 730 (recTicks << TR_66_MDMA_RECOVERY_SHIFT); 731 break; 732 case controller_kl_ata3: 733 /* 33Mhz cell on KeyLargo */ 734 accessTicks = SYSCLK_TICKS(accessTime); 735 accessTicks = max(accessTicks, 1U); 736 accessTicks = min(accessTicks, 0x1fU); 737 accessTime = accessTicks * IDE_SYSCLK_NS; 738 recTicks = SYSCLK_TICKS(recTime); 739 recTicks = max(recTicks, 1U); 740 recTicks = min(recTicks, 0x1fU); 741 *timings = ((*timings) & ~TR_33_MDMA_MASK) | 742 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | 743 (recTicks << TR_33_MDMA_RECOVERY_SHIFT); 744 break; 745 default: { 746 /* 33Mhz cell on others */ 747 int halfTick = 0; 748 int origAccessTime = accessTime; 749 int origRecTime = recTime; 750 751 accessTicks = SYSCLK_TICKS(accessTime); 752 accessTicks = max(accessTicks, 1U); 753 accessTicks = min(accessTicks, 0x1fU); 754 accessTime = accessTicks * IDE_SYSCLK_NS; 755 recTicks = SYSCLK_TICKS(recTime); 756 recTicks = max(recTicks, 2U) - 1; 757 recTicks = min(recTicks, 0x1fU); 758 recTime = (recTicks + 1) * IDE_SYSCLK_NS; 759 if ((accessTicks > 1) && 760 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) && 761 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) { 762 halfTick = 1; 763 accessTicks--; 764 } 765 *timings = ((*timings) & ~TR_33_MDMA_MASK) | 766 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | 767 (recTicks << TR_33_MDMA_RECOVERY_SHIFT); 768 if (halfTick) 769 *timings |= TR_33_MDMA_HALFTICK; 770 } 771 } 772#ifdef IDE_PMAC_DEBUG 773 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n", 774 drive->name, speed & 0xf, *timings); 775#endif 776} 777 778static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive) 779{ 780 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 781 int ret = 0; 782 u32 *timings, *timings2, tl[2]; 783 u8 unit = drive->dn & 1; 784 const u8 speed = drive->dma_mode; 785 786 timings = &pmif->timings[unit]; 787 timings2 = &pmif->timings[unit+2]; 788 789 /* Copy timings to local image */ 790 tl[0] = *timings; 791 tl[1] = *timings2; 792 793 if (speed >= XFER_UDMA_0) { 794 if (pmif->kind == controller_kl_ata4) 795 ret = set_timings_udma_ata4(&tl[0], speed); 796 else if (pmif->kind == controller_un_ata6 797 || pmif->kind == controller_k2_ata6) 798 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed); 799 else if (pmif->kind == controller_sh_ata6) 800 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed); 801 else 802 ret = -1; 803 } else 804 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed); 805 806 if (ret) 807 return; 808 809 /* Apply timings to controller */ 810 *timings = tl[0]; 811 *timings2 = tl[1]; 812 813 pmac_ide_do_update_timings(drive); 814} 815 816/* 817 * Blast some well known "safe" values to the timing registers at init or 818 * wakeup from sleep time, before we do real calculation 819 */ 820static void 821sanitize_timings(pmac_ide_hwif_t *pmif) 822{ 823 unsigned int value, value2 = 0; 824 825 switch(pmif->kind) { 826 case controller_sh_ata6: 827 value = 0x0a820c97; 828 value2 = 0x00033031; 829 break; 830 case controller_un_ata6: 831 case controller_k2_ata6: 832 value = 0x08618a92; 833 value2 = 0x00002921; 834 break; 835 case controller_kl_ata4: 836 value = 0x0008438c; 837 break; 838 case controller_kl_ata3: 839 value = 0x00084526; 840 break; 841 case controller_heathrow: 842 case controller_ohare: 843 default: 844 value = 0x00074526; 845 break; 846 } 847 pmif->timings[0] = pmif->timings[1] = value; 848 pmif->timings[2] = pmif->timings[3] = value2; 849} 850 851static int on_media_bay(pmac_ide_hwif_t *pmif) 852{ 853 return pmif->mdev && pmif->mdev->media_bay != NULL; 854} 855 856/* Suspend call back, should be called after the child devices 857 * have actually been suspended 858 */ 859static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif) 860{ 861 /* We clear the timings */ 862 pmif->timings[0] = 0; 863 pmif->timings[1] = 0; 864 865 disable_irq(pmif->irq); 866 867 /* The media bay will handle itself just fine */ 868 if (on_media_bay(pmif)) 869 return 0; 870 871 /* Kauai has bus control FCRs directly here */ 872 if (pmif->kauai_fcr) { 873 u32 fcr = readl(pmif->kauai_fcr); 874 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE); 875 writel(fcr, pmif->kauai_fcr); 876 } 877 878 /* Disable the bus on older machines and the cell on kauai */ 879 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 880 0); 881 882 return 0; 883} 884 885/* Resume call back, should be called before the child devices 886 * are resumed 887 */ 888static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif) 889{ 890 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */ 891 if (!on_media_bay(pmif)) { 892 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1); 893 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1); 894 msleep(10); 895 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0); 896 897 /* Kauai has it different */ 898 if (pmif->kauai_fcr) { 899 u32 fcr = readl(pmif->kauai_fcr); 900 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE; 901 writel(fcr, pmif->kauai_fcr); 902 } 903 904 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); 905 } 906 907 /* Sanitize drive timings */ 908 sanitize_timings(pmif); 909 910 enable_irq(pmif->irq); 911 912 return 0; 913} 914 915static u8 pmac_ide_cable_detect(ide_hwif_t *hwif) 916{ 917 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 918 struct device_node *np = pmif->node; 919 const char *cable = of_get_property(np, "cable-type", NULL); 920 struct device_node *root = of_find_node_by_path("/"); 921 const char *model = of_get_property(root, "model", NULL); 922 923 /* Get cable type from device-tree. */ 924 if (cable && !strncmp(cable, "80-", 3)) { 925 /* Some drives fail to detect 80c cable in PowerBook */ 926 /* These machine use proprietary short IDE cable anyway */ 927 if (!strncmp(model, "PowerBook", 9)) 928 return ATA_CBL_PATA40_SHORT; 929 else 930 return ATA_CBL_PATA80; 931 } 932 933 /* 934 * G5's seem to have incorrect cable type in device-tree. 935 * Let's assume they have a 80 conductor cable, this seem 936 * to be always the case unless the user mucked around. 937 */ 938 if (of_device_is_compatible(np, "K2-UATA") || 939 of_device_is_compatible(np, "shasta-ata")) 940 return ATA_CBL_PATA80; 941 942 return ATA_CBL_PATA40; 943} 944 945static void pmac_ide_init_dev(ide_drive_t *drive) 946{ 947 ide_hwif_t *hwif = drive->hwif; 948 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 949 950 if (on_media_bay(pmif)) { 951 if (check_media_bay(pmif->mdev->media_bay) == MB_CD) { 952 drive->dev_flags &= ~IDE_DFLAG_NOPROBE; 953 return; 954 } 955 drive->dev_flags |= IDE_DFLAG_NOPROBE; 956 } 957} 958 959static const struct ide_tp_ops pmac_tp_ops = { 960 .exec_command = pmac_exec_command, 961 .read_status = ide_read_status, 962 .read_altstatus = ide_read_altstatus, 963 .write_devctl = pmac_write_devctl, 964 965 .dev_select = pmac_dev_select, 966 .tf_load = ide_tf_load, 967 .tf_read = ide_tf_read, 968 969 .input_data = ide_input_data, 970 .output_data = ide_output_data, 971}; 972 973static const struct ide_tp_ops pmac_ata6_tp_ops = { 974 .exec_command = pmac_exec_command, 975 .read_status = ide_read_status, 976 .read_altstatus = ide_read_altstatus, 977 .write_devctl = pmac_write_devctl, 978 979 .dev_select = pmac_kauai_dev_select, 980 .tf_load = ide_tf_load, 981 .tf_read = ide_tf_read, 982 983 .input_data = ide_input_data, 984 .output_data = ide_output_data, 985}; 986 987static const struct ide_port_ops pmac_ide_ata4_port_ops = { 988 .init_dev = pmac_ide_init_dev, 989 .set_pio_mode = pmac_ide_set_pio_mode, 990 .set_dma_mode = pmac_ide_set_dma_mode, 991 .cable_detect = pmac_ide_cable_detect, 992}; 993 994static const struct ide_port_ops pmac_ide_port_ops = { 995 .init_dev = pmac_ide_init_dev, 996 .set_pio_mode = pmac_ide_set_pio_mode, 997 .set_dma_mode = pmac_ide_set_dma_mode, 998}; 999 1000static const struct ide_dma_ops pmac_dma_ops; 1001 1002static const struct ide_port_info pmac_port_info = { 1003 .name = DRV_NAME, 1004 .init_dma = pmac_ide_init_dma, 1005 .chipset = ide_pmac, 1006 .tp_ops = &pmac_tp_ops, 1007 .port_ops = &pmac_ide_port_ops, 1008 .dma_ops = &pmac_dma_ops, 1009 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA | 1010 IDE_HFLAG_POST_SET_MODE | 1011 IDE_HFLAG_MMIO | 1012 IDE_HFLAG_UNMASK_IRQS, 1013 .pio_mask = ATA_PIO4, 1014 .mwdma_mask = ATA_MWDMA2, 1015}; 1016 1017/* 1018 * Setup, register & probe an IDE channel driven by this driver, this is 1019 * called by one of the 2 probe functions (macio or PCI). 1020 */ 1021static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, struct ide_hw *hw) 1022{ 1023 struct device_node *np = pmif->node; 1024 const int *bidp; 1025 struct ide_host *host; 1026 ide_hwif_t *hwif; 1027 struct ide_hw *hws[] = { hw }; 1028 struct ide_port_info d = pmac_port_info; 1029 int rc; 1030 1031 pmif->broken_dma = pmif->broken_dma_warn = 0; 1032 if (of_device_is_compatible(np, "shasta-ata")) { 1033 pmif->kind = controller_sh_ata6; 1034 d.tp_ops = &pmac_ata6_tp_ops; 1035 d.port_ops = &pmac_ide_ata4_port_ops; 1036 d.udma_mask = ATA_UDMA6; 1037 } else if (of_device_is_compatible(np, "kauai-ata")) { 1038 pmif->kind = controller_un_ata6; 1039 d.tp_ops = &pmac_ata6_tp_ops; 1040 d.port_ops = &pmac_ide_ata4_port_ops; 1041 d.udma_mask = ATA_UDMA5; 1042 } else if (of_device_is_compatible(np, "K2-UATA")) { 1043 pmif->kind = controller_k2_ata6; 1044 d.tp_ops = &pmac_ata6_tp_ops; 1045 d.port_ops = &pmac_ide_ata4_port_ops; 1046 d.udma_mask = ATA_UDMA5; 1047 } else if (of_device_is_compatible(np, "keylargo-ata")) { 1048 if (strcmp(np->name, "ata-4") == 0) { 1049 pmif->kind = controller_kl_ata4; 1050 d.port_ops = &pmac_ide_ata4_port_ops; 1051 d.udma_mask = ATA_UDMA4; 1052 } else 1053 pmif->kind = controller_kl_ata3; 1054 } else if (of_device_is_compatible(np, "heathrow-ata")) { 1055 pmif->kind = controller_heathrow; 1056 } else { 1057 pmif->kind = controller_ohare; 1058 pmif->broken_dma = 1; 1059 } 1060 1061 bidp = of_get_property(np, "AAPL,bus-id", NULL); 1062 pmif->aapl_bus_id = bidp ? *bidp : 0; 1063 1064 /* On Kauai-type controllers, we make sure the FCR is correct */ 1065 if (pmif->kauai_fcr) 1066 writel(KAUAI_FCR_UATA_MAGIC | 1067 KAUAI_FCR_UATA_RESET_N | 1068 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr); 1069 1070 /* Make sure we have sane timings */ 1071 sanitize_timings(pmif); 1072 1073 /* If we are on a media bay, wait for it to settle and lock it */ 1074 if (pmif->mdev) 1075 lock_media_bay(pmif->mdev->media_bay); 1076 1077 host = ide_host_alloc(&d, hws, 1); 1078 if (host == NULL) { 1079 rc = -ENOMEM; 1080 goto bail; 1081 } 1082 hwif = pmif->hwif = host->ports[0]; 1083 1084 if (on_media_bay(pmif)) { 1085 /* Fixup bus ID for media bay */ 1086 if (!bidp) 1087 pmif->aapl_bus_id = 1; 1088 } else if (pmif->kind == controller_ohare) { 1089 /* The code below is having trouble on some ohare machines 1090 * (timing related ?). Until I can put my hand on one of these 1091 * units, I keep the old way 1092 */ 1093 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1); 1094 } else { 1095 /* This is necessary to enable IDE when net-booting */ 1096 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1); 1097 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1); 1098 msleep(10); 1099 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0); 1100 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); 1101 } 1102 1103 printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), " 1104 "bus ID %d%s, irq %d\n", model_name[pmif->kind], 1105 pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id, 1106 on_media_bay(pmif) ? " (mediabay)" : "", hw->irq); 1107 1108 rc = ide_host_register(host, &d, hws); 1109 if (rc) 1110 pmif->hwif = NULL; 1111 1112 if (pmif->mdev) 1113 unlock_media_bay(pmif->mdev->media_bay); 1114 1115 bail: 1116 if (rc && host) 1117 ide_host_free(host); 1118 return rc; 1119} 1120 1121static void pmac_ide_init_ports(struct ide_hw *hw, unsigned long base) 1122{ 1123 int i; 1124 1125 for (i = 0; i < 8; ++i) 1126 hw->io_ports_array[i] = base + i * 0x10; 1127 1128 hw->io_ports.ctl_addr = base + 0x160; 1129} 1130 1131/* 1132 * Attach to a macio probed interface 1133 */ 1134static int pmac_ide_macio_attach(struct macio_dev *mdev, 1135 const struct of_device_id *match) 1136{ 1137 void __iomem *base; 1138 unsigned long regbase; 1139 pmac_ide_hwif_t *pmif; 1140 int irq, rc; 1141 struct ide_hw hw; 1142 1143 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL); 1144 if (pmif == NULL) 1145 return -ENOMEM; 1146 1147 if (macio_resource_count(mdev) == 0) { 1148 printk(KERN_WARNING "ide-pmac: no address for %s\n", 1149 mdev->ofdev.dev.of_node->full_name); 1150 rc = -ENXIO; 1151 goto out_free_pmif; 1152 } 1153 1154 /* Request memory resource for IO ports */ 1155 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) { 1156 printk(KERN_ERR "ide-pmac: can't request MMIO resource for " 1157 "%s!\n", mdev->ofdev.dev.of_node->full_name); 1158 rc = -EBUSY; 1159 goto out_free_pmif; 1160 } 1161 1162 /* XXX This is bogus. Should be fixed in the registry by checking 1163 * the kind of host interrupt controller, a bit like gatwick 1164 * fixes in irq.c. That works well enough for the single case 1165 * where that happens though... 1166 */ 1167 if (macio_irq_count(mdev) == 0) { 1168 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using " 1169 "13\n", mdev->ofdev.dev.of_node->full_name); 1170 irq = irq_create_mapping(NULL, 13); 1171 } else 1172 irq = macio_irq(mdev, 0); 1173 1174 base = ioremap(macio_resource_start(mdev, 0), 0x400); 1175 regbase = (unsigned long) base; 1176 1177 pmif->mdev = mdev; 1178 pmif->node = mdev->ofdev.dev.of_node; 1179 pmif->regbase = regbase; 1180 pmif->irq = irq; 1181 pmif->kauai_fcr = NULL; 1182 1183 if (macio_resource_count(mdev) >= 2) { 1184 if (macio_request_resource(mdev, 1, "ide-pmac (dma)")) 1185 printk(KERN_WARNING "ide-pmac: can't request DMA " 1186 "resource for %s!\n", 1187 mdev->ofdev.dev.of_node->full_name); 1188 else 1189 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000); 1190 } else 1191 pmif->dma_regs = NULL; 1192 1193 dev_set_drvdata(&mdev->ofdev.dev, pmif); 1194 1195 memset(&hw, 0, sizeof(hw)); 1196 pmac_ide_init_ports(&hw, pmif->regbase); 1197 hw.irq = irq; 1198 hw.dev = &mdev->bus->pdev->dev; 1199 hw.parent = &mdev->ofdev.dev; 1200 1201 rc = pmac_ide_setup_device(pmif, &hw); 1202 if (rc != 0) { 1203 /* The inteface is released to the common IDE layer */ 1204 dev_set_drvdata(&mdev->ofdev.dev, NULL); 1205 iounmap(base); 1206 if (pmif->dma_regs) { 1207 iounmap(pmif->dma_regs); 1208 macio_release_resource(mdev, 1); 1209 } 1210 macio_release_resource(mdev, 0); 1211 kfree(pmif); 1212 } 1213 1214 return rc; 1215 1216out_free_pmif: 1217 kfree(pmif); 1218 return rc; 1219} 1220 1221static int 1222pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg) 1223{ 1224 pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev); 1225 int rc = 0; 1226 1227 if (mesg.event != mdev->ofdev.dev.power.power_state.event 1228 && (mesg.event & PM_EVENT_SLEEP)) { 1229 rc = pmac_ide_do_suspend(pmif); 1230 if (rc == 0) 1231 mdev->ofdev.dev.power.power_state = mesg; 1232 } 1233 1234 return rc; 1235} 1236 1237static int 1238pmac_ide_macio_resume(struct macio_dev *mdev) 1239{ 1240 pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev); 1241 int rc = 0; 1242 1243 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) { 1244 rc = pmac_ide_do_resume(pmif); 1245 if (rc == 0) 1246 mdev->ofdev.dev.power.power_state = PMSG_ON; 1247 } 1248 1249 return rc; 1250} 1251 1252/* 1253 * Attach to a PCI probed interface 1254 */ 1255static int pmac_ide_pci_attach(struct pci_dev *pdev, 1256 const struct pci_device_id *id) 1257{ 1258 struct device_node *np; 1259 pmac_ide_hwif_t *pmif; 1260 void __iomem *base; 1261 unsigned long rbase, rlen; 1262 int rc; 1263 struct ide_hw hw; 1264 1265 np = pci_device_to_OF_node(pdev); 1266 if (np == NULL) { 1267 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n"); 1268 return -ENODEV; 1269 } 1270 1271 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL); 1272 if (pmif == NULL) 1273 return -ENOMEM; 1274 1275 if (pci_enable_device(pdev)) { 1276 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for " 1277 "%s\n", np->full_name); 1278 rc = -ENXIO; 1279 goto out_free_pmif; 1280 } 1281 pci_set_master(pdev); 1282 1283 if (pci_request_regions(pdev, "Kauai ATA")) { 1284 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for " 1285 "%s\n", np->full_name); 1286 rc = -ENXIO; 1287 goto out_free_pmif; 1288 } 1289 1290 pmif->mdev = NULL; 1291 pmif->node = np; 1292 1293 rbase = pci_resource_start(pdev, 0); 1294 rlen = pci_resource_len(pdev, 0); 1295 1296 base = ioremap(rbase, rlen); 1297 pmif->regbase = (unsigned long) base + 0x2000; 1298 pmif->dma_regs = base + 0x1000; 1299 pmif->kauai_fcr = base; 1300 pmif->irq = pdev->irq; 1301 1302 pci_set_drvdata(pdev, pmif); 1303 1304 memset(&hw, 0, sizeof(hw)); 1305 pmac_ide_init_ports(&hw, pmif->regbase); 1306 hw.irq = pdev->irq; 1307 hw.dev = &pdev->dev; 1308 1309 rc = pmac_ide_setup_device(pmif, &hw); 1310 if (rc != 0) { 1311 /* The inteface is released to the common IDE layer */ 1312 iounmap(base); 1313 pci_release_regions(pdev); 1314 kfree(pmif); 1315 } 1316 1317 return rc; 1318 1319out_free_pmif: 1320 kfree(pmif); 1321 return rc; 1322} 1323 1324static int 1325pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg) 1326{ 1327 pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev); 1328 int rc = 0; 1329 1330 if (mesg.event != pdev->dev.power.power_state.event 1331 && (mesg.event & PM_EVENT_SLEEP)) { 1332 rc = pmac_ide_do_suspend(pmif); 1333 if (rc == 0) 1334 pdev->dev.power.power_state = mesg; 1335 } 1336 1337 return rc; 1338} 1339 1340static int 1341pmac_ide_pci_resume(struct pci_dev *pdev) 1342{ 1343 pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev); 1344 int rc = 0; 1345 1346 if (pdev->dev.power.power_state.event != PM_EVENT_ON) { 1347 rc = pmac_ide_do_resume(pmif); 1348 if (rc == 0) 1349 pdev->dev.power.power_state = PMSG_ON; 1350 } 1351 1352 return rc; 1353} 1354 1355#ifdef CONFIG_PMAC_MEDIABAY 1356static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state) 1357{ 1358 pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev); 1359 1360 switch(mb_state) { 1361 case MB_CD: 1362 if (!pmif->hwif->present) 1363 ide_port_scan(pmif->hwif); 1364 break; 1365 default: 1366 if (pmif->hwif->present) 1367 ide_port_unregister_devices(pmif->hwif); 1368 } 1369} 1370#endif /* CONFIG_PMAC_MEDIABAY */ 1371 1372 1373static struct of_device_id pmac_ide_macio_match[] = 1374{ 1375 { 1376 .name = "IDE", 1377 }, 1378 { 1379 .name = "ATA", 1380 }, 1381 { 1382 .type = "ide", 1383 }, 1384 { 1385 .type = "ata", 1386 }, 1387 {}, 1388}; 1389 1390static struct macio_driver pmac_ide_macio_driver = 1391{ 1392 .driver = { 1393 .name = "ide-pmac", 1394 .owner = THIS_MODULE, 1395 .of_match_table = pmac_ide_macio_match, 1396 }, 1397 .probe = pmac_ide_macio_attach, 1398 .suspend = pmac_ide_macio_suspend, 1399 .resume = pmac_ide_macio_resume, 1400#ifdef CONFIG_PMAC_MEDIABAY 1401 .mediabay_event = pmac_ide_macio_mb_event, 1402#endif 1403}; 1404 1405static const struct pci_device_id pmac_ide_pci_match[] = { 1406 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 }, 1407 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 }, 1408 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 }, 1409 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 }, 1410 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 }, 1411 {}, 1412}; 1413 1414static struct pci_driver pmac_ide_pci_driver = { 1415 .name = "ide-pmac", 1416 .id_table = pmac_ide_pci_match, 1417 .probe = pmac_ide_pci_attach, 1418 .suspend = pmac_ide_pci_suspend, 1419 .resume = pmac_ide_pci_resume, 1420}; 1421MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match); 1422 1423int __init pmac_ide_probe(void) 1424{ 1425 int error; 1426 1427 if (!machine_is(powermac)) 1428 return -ENODEV; 1429 1430#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST 1431 error = pci_register_driver(&pmac_ide_pci_driver); 1432 if (error) 1433 goto out; 1434 error = macio_register_driver(&pmac_ide_macio_driver); 1435 if (error) { 1436 pci_unregister_driver(&pmac_ide_pci_driver); 1437 goto out; 1438 } 1439#else 1440 error = macio_register_driver(&pmac_ide_macio_driver); 1441 if (error) 1442 goto out; 1443 error = pci_register_driver(&pmac_ide_pci_driver); 1444 if (error) { 1445 macio_unregister_driver(&pmac_ide_macio_driver); 1446 goto out; 1447 } 1448#endif 1449out: 1450 return error; 1451} 1452 1453/* 1454 * pmac_ide_build_dmatable builds the DBDMA command list 1455 * for a transfer and sets the DBDMA channel to point to it. 1456 */ 1457static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd) 1458{ 1459 ide_hwif_t *hwif = drive->hwif; 1460 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 1461 struct dbdma_cmd *table; 1462 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; 1463 struct scatterlist *sg; 1464 int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE); 1465 int i = cmd->sg_nents, count = 0; 1466 1467 /* DMA table is already aligned */ 1468 table = (struct dbdma_cmd *) pmif->dma_table_cpu; 1469 1470 /* Make sure DMA controller is stopped (necessary ?) */ 1471 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control); 1472 while (readl(&dma->status) & RUN) 1473 udelay(1); 1474 1475 /* Build DBDMA commands list */ 1476 sg = hwif->sg_table; 1477 while (i && sg_dma_len(sg)) { 1478 u32 cur_addr; 1479 u32 cur_len; 1480 1481 cur_addr = sg_dma_address(sg); 1482 cur_len = sg_dma_len(sg); 1483 1484 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) { 1485 if (pmif->broken_dma_warn == 0) { 1486 printk(KERN_WARNING "%s: DMA on non aligned address, " 1487 "switching to PIO on Ohare chipset\n", drive->name); 1488 pmif->broken_dma_warn = 1; 1489 } 1490 return 0; 1491 } 1492 while (cur_len) { 1493 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00; 1494 1495 if (count++ >= MAX_DCMDS) { 1496 printk(KERN_WARNING "%s: DMA table too small\n", 1497 drive->name); 1498 return 0; 1499 } 1500 table->command = cpu_to_le16(wr? OUTPUT_MORE: INPUT_MORE); 1501 table->req_count = cpu_to_le16(tc); 1502 table->phy_addr = cpu_to_le32(cur_addr); 1503 table->cmd_dep = 0; 1504 table->xfer_status = 0; 1505 table->res_count = 0; 1506 cur_addr += tc; 1507 cur_len -= tc; 1508 ++table; 1509 } 1510 sg = sg_next(sg); 1511 i--; 1512 } 1513 1514 /* convert the last command to an input/output last command */ 1515 if (count) { 1516 table[-1].command = cpu_to_le16(wr? OUTPUT_LAST: INPUT_LAST); 1517 /* add the stop command to the end of the list */ 1518 memset(table, 0, sizeof(struct dbdma_cmd)); 1519 table->command = cpu_to_le16(DBDMA_STOP); 1520 mb(); 1521 writel(hwif->dmatable_dma, &dma->cmdptr); 1522 return 1; 1523 } 1524 1525 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name); 1526 1527 return 0; /* revert to PIO for this request */ 1528} 1529 1530/* 1531 * Prepare a DMA transfer. We build the DMA table, adjust the timings for 1532 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion 1533 */ 1534static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd) 1535{ 1536 ide_hwif_t *hwif = drive->hwif; 1537 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 1538 u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4); 1539 u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE); 1540 1541 if (pmac_ide_build_dmatable(drive, cmd) == 0) 1542 return 1; 1543 1544 /* Apple adds 60ns to wrDataSetup on reads */ 1545 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) { 1546 writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL), 1547 PMAC_IDE_REG(IDE_TIMING_CONFIG)); 1548 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); 1549 } 1550 1551 return 0; 1552} 1553 1554/* 1555 * Kick the DMA controller into life after the DMA command has been issued 1556 * to the drive. 1557 */ 1558static void 1559pmac_ide_dma_start(ide_drive_t *drive) 1560{ 1561 ide_hwif_t *hwif = drive->hwif; 1562 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 1563 volatile struct dbdma_regs __iomem *dma; 1564 1565 dma = pmif->dma_regs; 1566 1567 writel((RUN << 16) | RUN, &dma->control); 1568 /* Make sure it gets to the controller right now */ 1569 (void)readl(&dma->control); 1570} 1571 1572/* 1573 * After a DMA transfer, make sure the controller is stopped 1574 */ 1575static int 1576pmac_ide_dma_end (ide_drive_t *drive) 1577{ 1578 ide_hwif_t *hwif = drive->hwif; 1579 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 1580 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; 1581 u32 dstat; 1582 1583 dstat = readl(&dma->status); 1584 writel(((RUN|WAKE|DEAD) << 16), &dma->control); 1585 1586 /* verify good dma status. we don't check for ACTIVE beeing 0. We should... 1587 * in theory, but with ATAPI decices doing buffer underruns, that would 1588 * cause us to disable DMA, which isn't what we want 1589 */ 1590 return (dstat & (RUN|DEAD)) != RUN; 1591} 1592 1593/* 1594 * Check out that the interrupt we got was for us. We can't always know this 1595 * for sure with those Apple interfaces (well, we could on the recent ones but 1596 * that's not implemented yet), on the other hand, we don't have shared interrupts 1597 * so it's not really a problem 1598 */ 1599static int 1600pmac_ide_dma_test_irq (ide_drive_t *drive) 1601{ 1602 ide_hwif_t *hwif = drive->hwif; 1603 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 1604 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; 1605 unsigned long status, timeout; 1606 1607 /* We have to things to deal with here: 1608 * 1609 * - The dbdma won't stop if the command was started 1610 * but completed with an error without transferring all 1611 * datas. This happens when bad blocks are met during 1612 * a multi-block transfer. 1613 * 1614 * - The dbdma fifo hasn't yet finished flushing to 1615 * to system memory when the disk interrupt occurs. 1616 * 1617 */ 1618 1619 /* If ACTIVE is cleared, the STOP command have passed and 1620 * transfer is complete. 1621 */ 1622 status = readl(&dma->status); 1623 if (!(status & ACTIVE)) 1624 return 1; 1625 1626 /* If dbdma didn't execute the STOP command yet, the 1627 * active bit is still set. We consider that we aren't 1628 * sharing interrupts (which is hopefully the case with 1629 * those controllers) and so we just try to flush the 1630 * channel for pending data in the fifo 1631 */ 1632 udelay(1); 1633 writel((FLUSH << 16) | FLUSH, &dma->control); 1634 timeout = 0; 1635 for (;;) { 1636 udelay(1); 1637 status = readl(&dma->status); 1638 if ((status & FLUSH) == 0) 1639 break; 1640 if (++timeout > 100) { 1641 printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n", 1642 hwif->index); 1643 break; 1644 } 1645 } 1646 return 1; 1647} 1648 1649static void pmac_ide_dma_host_set(ide_drive_t *drive, int on) 1650{ 1651} 1652 1653static void 1654pmac_ide_dma_lost_irq (ide_drive_t *drive) 1655{ 1656 ide_hwif_t *hwif = drive->hwif; 1657 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 1658 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; 1659 unsigned long status = readl(&dma->status); 1660 1661 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status); 1662} 1663 1664static const struct ide_dma_ops pmac_dma_ops = { 1665 .dma_host_set = pmac_ide_dma_host_set, 1666 .dma_setup = pmac_ide_dma_setup, 1667 .dma_start = pmac_ide_dma_start, 1668 .dma_end = pmac_ide_dma_end, 1669 .dma_test_irq = pmac_ide_dma_test_irq, 1670 .dma_lost_irq = pmac_ide_dma_lost_irq, 1671}; 1672 1673/* 1674 * Allocate the data structures needed for using DMA with an interface 1675 * and fill the proper list of functions pointers 1676 */ 1677static int pmac_ide_init_dma(ide_hwif_t *hwif, const struct ide_port_info *d) 1678{ 1679 pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent); 1680 struct pci_dev *dev = to_pci_dev(hwif->dev); 1681 1682 /* We won't need pci_dev if we switch to generic consistent 1683 * DMA routines ... 1684 */ 1685 if (dev == NULL || pmif->dma_regs == 0) 1686 return -ENODEV; 1687 /* 1688 * Allocate space for the DBDMA commands. 1689 * The +2 is +1 for the stop command and +1 to allow for 1690 * aligning the start address to a multiple of 16 bytes. 1691 */ 1692 pmif->dma_table_cpu = dma_alloc_coherent(&dev->dev, 1693 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd), 1694 &hwif->dmatable_dma, GFP_KERNEL); 1695 if (pmif->dma_table_cpu == NULL) { 1696 printk(KERN_ERR "%s: unable to allocate DMA command list\n", 1697 hwif->name); 1698 return -ENOMEM; 1699 } 1700 1701 hwif->sg_max_nents = MAX_DCMDS; 1702 1703 return 0; 1704} 1705 1706module_init(pmac_ide_probe); 1707 1708MODULE_LICENSE("GPL"); 1709