1/*
2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
3 *
4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * There are three ways that this I2C controller can be driven:
11 *
12 * - Raw control of the SDA and SCK signals.
13 *
14 *   This corresponds to MODE_RAW, which takes control of the signals
15 *   directly for a certain number of clock cycles (the INT_TIMING
16 *   interrupt can be used for timing).
17 *
18 * - Atomic commands. A low level I2C symbol (such as generate
19 *   start/stop/ack/nack bit, generate byte, receive byte, and receive
20 *   ACK) is given to the hardware, with detection of completion by bits
21 *   in the LINESTAT register.
22 *
23 *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
24 *   state machine in the interrupt handler to compose/react to I2C
25 *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
26 *   which emits a simple fixed sequence of atomic mode commands.
27 *
28 *   Due to software control, the use of atomic commands usually results
29 *   in suboptimal use of the bus, with gaps between the I2C symbols while
30 *   the driver decides what to do next.
31 *
32 * - Automatic mode. A bus address, and whether to read/write is
33 *   specified, and the hardware takes care of the I2C state machine,
34 *   using a FIFO to send/receive bytes of data to an I2C slave. The
35 *   driver just has to keep the FIFO drained or filled in response to the
36 *   appropriate FIFO interrupts.
37 *
38 *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39 *   with control of repeated start bits between I2C messages.
40 *
41 *   Use of automatic mode and the FIFO can make much more efficient use
42 *   of the bus compared to individual atomic commands, with potentially
43 *   no wasted time between I2C symbols or I2C messages.
44 *
45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
48 * started by the writing of data into the FIFO.
49 *
50 * The other modes are used in specific circumstances where MODE_ATOMIC and
51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53 * it is in a sane state.
54 *
55 * Notice that the driver implements a timer-based timeout mechanism.
56 * The reason for this mechanism is to reduce the number of interrupts
57 * received in automatic mode.
58 *
59 * The driver would get a slave event and transaction done interrupts for
60 * each atomic mode command that gets completed. However, these events are
61 * not needed in automatic mode, becase those atomic mode commands are
62 * managed automatically by the hardware.
63 *
64 * In practice, normal I2C transactions will be complete well before you
65 * get the timer interrupt, as the timer is re-scheduled during FIFO
66 * maintenance and disabled after the transaction is complete.
67 *
68 * In this way normal automatic mode operation isn't impacted by
69 * unnecessary interrupts, but the exceptional abort condition can still be
70 * detected (with a slight delay).
71 */
72
73#include <linux/bitops.h>
74#include <linux/clk.h>
75#include <linux/completion.h>
76#include <linux/err.h>
77#include <linux/i2c.h>
78#include <linux/init.h>
79#include <linux/interrupt.h>
80#include <linux/io.h>
81#include <linux/kernel.h>
82#include <linux/module.h>
83#include <linux/of_platform.h>
84#include <linux/platform_device.h>
85#include <linux/slab.h>
86#include <linux/timer.h>
87
88/* Register offsets */
89
90#define SCB_STATUS_REG			0x00
91#define SCB_OVERRIDE_REG		0x04
92#define SCB_READ_ADDR_REG		0x08
93#define SCB_READ_COUNT_REG		0x0c
94#define SCB_WRITE_ADDR_REG		0x10
95#define SCB_READ_DATA_REG		0x14
96#define SCB_WRITE_DATA_REG		0x18
97#define SCB_FIFO_STATUS_REG		0x1c
98#define SCB_CONTROL_SOFT_RESET		0x1f
99#define SCB_CLK_SET_REG			0x3c
100#define SCB_INT_STATUS_REG		0x40
101#define SCB_INT_CLEAR_REG		0x44
102#define SCB_INT_MASK_REG		0x48
103#define SCB_CONTROL_REG			0x4c
104#define SCB_TIME_TPL_REG		0x50
105#define SCB_TIME_TPH_REG		0x54
106#define SCB_TIME_TP2S_REG		0x58
107#define SCB_TIME_TBI_REG		0x60
108#define SCB_TIME_TSL_REG		0x64
109#define SCB_TIME_TDL_REG		0x68
110#define SCB_TIME_TSDL_REG		0x6c
111#define SCB_TIME_TSDH_REG		0x70
112#define SCB_READ_XADDR_REG		0x74
113#define SCB_WRITE_XADDR_REG		0x78
114#define SCB_WRITE_COUNT_REG		0x7c
115#define SCB_CORE_REV_REG		0x80
116#define SCB_TIME_TCKH_REG		0x84
117#define SCB_TIME_TCKL_REG		0x88
118#define SCB_FIFO_FLUSH_REG		0x8c
119#define SCB_READ_FIFO_REG		0x94
120#define SCB_CLEAR_REG			0x98
121
122/* SCB_CONTROL_REG bits */
123
124#define SCB_CONTROL_CLK_ENABLE		0x1e0
125#define SCB_CONTROL_TRANSACTION_HALT	0x200
126
127#define FIFO_READ_FULL			BIT(0)
128#define FIFO_READ_EMPTY			BIT(1)
129#define FIFO_WRITE_FULL			BIT(2)
130#define FIFO_WRITE_EMPTY		BIT(3)
131
132/* SCB_CLK_SET_REG bits */
133#define SCB_FILT_DISABLE		BIT(31)
134#define SCB_FILT_BYPASS			BIT(30)
135#define SCB_FILT_INC_MASK		0x7f
136#define SCB_FILT_INC_SHIFT		16
137#define SCB_INC_MASK			0x7f
138#define SCB_INC_SHIFT			8
139
140/* SCB_INT_*_REG bits */
141
142#define INT_BUS_INACTIVE		BIT(0)
143#define INT_UNEXPECTED_START		BIT(1)
144#define INT_SCLK_LOW_TIMEOUT		BIT(2)
145#define INT_SDAT_LOW_TIMEOUT		BIT(3)
146#define INT_WRITE_ACK_ERR		BIT(4)
147#define INT_ADDR_ACK_ERR		BIT(5)
148#define INT_FIFO_FULL			BIT(9)
149#define INT_FIFO_FILLING		BIT(10)
150#define INT_FIFO_EMPTY			BIT(11)
151#define INT_FIFO_EMPTYING		BIT(12)
152#define INT_TRANSACTION_DONE		BIT(15)
153#define INT_SLAVE_EVENT			BIT(16)
154#define INT_TIMING			BIT(18)
155
156#define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
157#define INT_FIFO_EMPTY_EMPTYING	(INT_FIFO_EMPTY | INT_FIFO_EMPTYING)
158
159/* Level interrupts need clearing after handling instead of before */
160#define INT_LEVEL			0x01e00
161
162/* Don't allow any interrupts while the clock may be off */
163#define INT_ENABLE_MASK_INACTIVE	0x00000
164
165/* Interrupt masks for the different driver modes */
166
167#define INT_ENABLE_MASK_RAW		INT_TIMING
168
169#define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
170					 INT_SLAVE_EVENT      | \
171					 INT_ADDR_ACK_ERR     | \
172					 INT_WRITE_ACK_ERR)
173
174#define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
175					 INT_ADDR_ACK_ERR     | \
176					 INT_WRITE_ACK_ERR    | \
177					 INT_FIFO_FULL        | \
178					 INT_FIFO_FILLING     | \
179					 INT_FIFO_EMPTY       | \
180					 INT_FIFO_EMPTYING)
181
182#define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
183					 INT_ADDR_ACK_ERR     | \
184					 INT_WRITE_ACK_ERR)
185
186/* SCB_STATUS_REG fields */
187
188#define LINESTAT_SCLK_LINE_STATUS	BIT(0)
189#define LINESTAT_SCLK_EN		BIT(1)
190#define LINESTAT_SDAT_LINE_STATUS	BIT(2)
191#define LINESTAT_SDAT_EN		BIT(3)
192#define LINESTAT_DET_START_STATUS	BIT(4)
193#define LINESTAT_DET_STOP_STATUS	BIT(5)
194#define LINESTAT_DET_ACK_STATUS		BIT(6)
195#define LINESTAT_DET_NACK_STATUS	BIT(7)
196#define LINESTAT_BUS_IDLE		BIT(8)
197#define LINESTAT_T_DONE_STATUS		BIT(9)
198#define LINESTAT_SCLK_OUT_STATUS	BIT(10)
199#define LINESTAT_SDAT_OUT_STATUS	BIT(11)
200#define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
201#define LINESTAT_START_BIT_DET		BIT(13)
202#define LINESTAT_STOP_BIT_DET		BIT(14)
203#define LINESTAT_ACK_DET		BIT(15)
204#define LINESTAT_NACK_DET		BIT(16)
205#define LINESTAT_INPUT_HELD_V		BIT(17)
206#define LINESTAT_ABORT_DET		BIT(18)
207#define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208#define LINESTAT_INPUT_DATA		0xff000000
209#define LINESTAT_INPUT_DATA_SHIFT	24
210
211#define LINESTAT_CLEAR_SHIFT		13
212#define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
213
214/* SCB_OVERRIDE_REG fields */
215
216#define OVERRIDE_SCLK_OVR		BIT(0)
217#define OVERRIDE_SCLKEN_OVR		BIT(1)
218#define OVERRIDE_SDAT_OVR		BIT(2)
219#define OVERRIDE_SDATEN_OVR		BIT(3)
220#define OVERRIDE_MASTER			BIT(9)
221#define OVERRIDE_LINE_OVR_EN		BIT(10)
222#define OVERRIDE_DIRECT			BIT(11)
223#define OVERRIDE_CMD_SHIFT		4
224#define OVERRIDE_CMD_MASK		0x1f
225#define OVERRIDE_DATA_SHIFT		24
226
227#define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
228					 OVERRIDE_SCLKEN_OVR)
229#define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
230					 OVERRIDE_SCLKEN_OVR | \
231					 OVERRIDE_SCLK_OVR)
232#define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
233					 OVERRIDE_SDATEN_OVR)
234#define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
235					 OVERRIDE_SDATEN_OVR | \
236					 OVERRIDE_SDAT_OVR)
237
238/* OVERRIDE_CMD values */
239
240#define CMD_PAUSE			0x00
241#define CMD_GEN_DATA			0x01
242#define CMD_GEN_START			0x02
243#define CMD_GEN_STOP			0x03
244#define CMD_GEN_ACK			0x04
245#define CMD_GEN_NACK			0x05
246#define CMD_RET_DATA			0x08
247#define CMD_RET_ACK			0x09
248
249/* Fixed timing values */
250
251#define TIMEOUT_TBI			0x0
252#define TIMEOUT_TSL			0xffff
253#define TIMEOUT_TDL			0x0
254
255/* Transaction timeout */
256
257#define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
258
259/*
260 * Worst incs are 1 (innacurate) and 16*256 (irregular).
261 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262 * in the middle of the valid range (0-127).
263 */
264#define SCB_OPT_INC		64
265
266/* Setup the clock enable filtering for 25 ns */
267#define SCB_FILT_GLITCH		25
268
269/*
270 * Bits to return from interrupt handler functions for different modes.
271 * This delays completion until we've finished with the registers, so that the
272 * function waiting for completion can safely disable the clock to save power.
273 */
274#define ISR_COMPLETE_M		BIT(31)
275#define ISR_FATAL_M		BIT(30)
276#define ISR_WAITSTOP		BIT(29)
277#define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
278#define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279#define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
280
281#define REL_SOC_IP_SCB_2_2_1	0x00020201
282
283enum img_i2c_mode {
284	MODE_INACTIVE,
285	MODE_RAW,
286	MODE_ATOMIC,
287	MODE_AUTOMATIC,
288	MODE_SEQUENCE,
289	MODE_FATAL,
290	MODE_WAITSTOP,
291	MODE_SUSPEND,
292};
293
294/* Timing parameters for i2c modes (in ns) */
295struct img_i2c_timings {
296	const char *name;
297	unsigned int max_bitrate;
298	unsigned int tckh, tckl, tsdh, tsdl;
299	unsigned int tp2s, tpl, tph;
300};
301
302/* The timings array must be ordered from slower to faster */
303static struct img_i2c_timings timings[] = {
304	/* Standard mode */
305	{
306		.name = "standard",
307		.max_bitrate = 100000,
308		.tckh = 4000,
309		.tckl = 4700,
310		.tsdh = 4700,
311		.tsdl = 8700,
312		.tp2s = 4700,
313		.tpl = 4700,
314		.tph = 4000,
315	},
316	/* Fast mode */
317	{
318		.name = "fast",
319		.max_bitrate = 400000,
320		.tckh = 600,
321		.tckl = 1300,
322		.tsdh = 600,
323		.tsdl = 1200,
324		.tp2s = 1300,
325		.tpl = 600,
326		.tph = 600,
327	},
328};
329
330/* Reset dance */
331static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
332				  CMD_GEN_DATA, 0xff,
333				  CMD_RET_ACK,
334				  CMD_GEN_START,
335				  CMD_GEN_STOP,
336				  0 };
337/* Just issue a stop (after an abort condition) */
338static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
339				  0 };
340
341/* We're interested in different interrupts depending on the mode */
342static unsigned int img_i2c_int_enable_by_mode[] = {
343	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
344	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
345	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
346	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
347	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
348	[MODE_FATAL]     = 0,
349	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
350	[MODE_SUSPEND]   = 0,
351};
352
353/* Atomic command names */
354static const char * const img_i2c_atomic_cmd_names[] = {
355	[CMD_PAUSE]	= "PAUSE",
356	[CMD_GEN_DATA]	= "GEN_DATA",
357	[CMD_GEN_START]	= "GEN_START",
358	[CMD_GEN_STOP]	= "GEN_STOP",
359	[CMD_GEN_ACK]	= "GEN_ACK",
360	[CMD_GEN_NACK]	= "GEN_NACK",
361	[CMD_RET_DATA]	= "RET_DATA",
362	[CMD_RET_ACK]	= "RET_ACK",
363};
364
365struct img_i2c {
366	struct i2c_adapter adap;
367
368	void __iomem *base;
369
370	/*
371	 * The scb core clock is used to get the input frequency, and to disable
372	 * it after every set of transactions to save some power.
373	 */
374	struct clk *scb_clk, *sys_clk;
375	unsigned int bitrate;
376	bool need_wr_rd_fence;
377
378	/* state */
379	struct completion msg_complete;
380	spinlock_t lock;	/* lock before doing anything with the state */
381	struct i2c_msg msg;
382
383	/* After the last transaction, wait for a stop bit */
384	bool last_msg;
385	int msg_status;
386
387	enum img_i2c_mode mode;
388	u32 int_enable;		/* depends on mode */
389	u32 line_status;	/* line status over command */
390
391	/*
392	 * To avoid slave event interrupts in automatic mode, use a timer to
393	 * poll the abort condition if we don't get an interrupt for too long.
394	 */
395	struct timer_list check_timer;
396	bool t_halt;
397
398	/* atomic mode state */
399	bool at_t_done;
400	bool at_slave_event;
401	int at_cur_cmd;
402	u8 at_cur_data;
403
404	/* Sequence: either reset or stop. See img_i2c_sequence. */
405	u8 *seq;
406
407	/* raw mode */
408	unsigned int raw_timeout;
409};
410
411static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
412{
413	writel(value, i2c->base + offset);
414}
415
416static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
417{
418	return readl(i2c->base + offset);
419}
420
421/*
422 * The code to read from the master read fifo, and write to the master
423 * write fifo, checks a bit in an SCB register before every byte to
424 * ensure that the fifo is not full (write fifo) or empty (read fifo).
425 * Due to clock domain crossing inside the SCB block the updated value
426 * of this bit is only visible after 2 cycles.
427 *
428 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
429 * revision register), and it's called after reading from or writing to the
430 * fifos to ensure that subsequent reads of the fifo status bits do not read
431 * stale values.
432 */
433static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
434{
435	if (i2c->need_wr_rd_fence) {
436		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
437		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
438	}
439}
440
441static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
442{
443	i2c->mode = mode;
444	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
445	i2c->line_status = 0;
446}
447
448static void img_i2c_raw_op(struct img_i2c *i2c)
449{
450	i2c->raw_timeout = 0;
451	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
452		OVERRIDE_SCLKEN_OVR |
453		OVERRIDE_SDATEN_OVR |
454		OVERRIDE_MASTER |
455		OVERRIDE_LINE_OVR_EN |
456		OVERRIDE_DIRECT |
457		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
458		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
459}
460
461static const char *img_i2c_atomic_op_name(unsigned int cmd)
462{
463	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
464		return "UNKNOWN";
465	return img_i2c_atomic_cmd_names[cmd];
466}
467
468/* Send a single atomic mode command to the hardware */
469static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
470{
471	i2c->at_cur_cmd = cmd;
472	i2c->at_cur_data = data;
473
474	/* work around lack of data setup time when generating data */
475	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
476		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
477
478		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
479			/* hold the data line down for a moment */
480			img_i2c_switch_mode(i2c, MODE_RAW);
481			img_i2c_raw_op(i2c);
482			return;
483		}
484	}
485
486	dev_dbg(i2c->adap.dev.parent,
487		"atomic cmd=%s (%d) data=%#x\n",
488		img_i2c_atomic_op_name(cmd), cmd, data);
489	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
490	i2c->at_slave_event = false;
491	i2c->line_status = 0;
492
493	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
494		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
495		OVERRIDE_MASTER |
496		OVERRIDE_DIRECT |
497		(data << OVERRIDE_DATA_SHIFT));
498}
499
500/* Start a transaction in atomic mode */
501static void img_i2c_atomic_start(struct img_i2c *i2c)
502{
503	img_i2c_switch_mode(i2c, MODE_ATOMIC);
504	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
505	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
506}
507
508static void img_i2c_soft_reset(struct img_i2c *i2c)
509{
510	i2c->t_halt = false;
511	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
512	img_i2c_writel(i2c, SCB_CONTROL_REG,
513		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
514}
515
516/* enable or release transaction halt for control of repeated starts */
517static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
518{
519	u32 val;
520
521	if (i2c->t_halt == t_halt)
522		return;
523	i2c->t_halt = t_halt;
524	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
525	if (t_halt)
526		val |= SCB_CONTROL_TRANSACTION_HALT;
527	else
528		val &= ~SCB_CONTROL_TRANSACTION_HALT;
529	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
530}
531
532/* Drain data from the FIFO into the buffer (automatic mode) */
533static void img_i2c_read_fifo(struct img_i2c *i2c)
534{
535	while (i2c->msg.len) {
536		u32 fifo_status;
537		u8 data;
538
539		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
540		if (fifo_status & FIFO_READ_EMPTY)
541			break;
542
543		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
544		*i2c->msg.buf = data;
545
546		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
547		img_i2c_wr_rd_fence(i2c);
548		i2c->msg.len--;
549		i2c->msg.buf++;
550	}
551}
552
553/* Fill the FIFO with data from the buffer (automatic mode) */
554static void img_i2c_write_fifo(struct img_i2c *i2c)
555{
556	while (i2c->msg.len) {
557		u32 fifo_status;
558
559		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
560		if (fifo_status & FIFO_WRITE_FULL)
561			break;
562
563		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
564		img_i2c_wr_rd_fence(i2c);
565		i2c->msg.len--;
566		i2c->msg.buf++;
567	}
568
569	/* Disable fifo emptying interrupt if nothing more to write */
570	if (!i2c->msg.len)
571		i2c->int_enable &= ~INT_FIFO_EMPTYING;
572}
573
574/* Start a read transaction in automatic mode */
575static void img_i2c_read(struct img_i2c *i2c)
576{
577	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
578	if (!i2c->last_msg)
579		i2c->int_enable |= INT_SLAVE_EVENT;
580
581	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
582	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
583	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
584
585	img_i2c_transaction_halt(i2c, false);
586	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
587}
588
589/* Start a write transaction in automatic mode */
590static void img_i2c_write(struct img_i2c *i2c)
591{
592	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
593	if (!i2c->last_msg)
594		i2c->int_enable |= INT_SLAVE_EVENT;
595
596	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
597	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
598
599	img_i2c_transaction_halt(i2c, false);
600	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
601	img_i2c_write_fifo(i2c);
602
603	/* img_i2c_write_fifo() may modify int_enable */
604	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
605}
606
607/*
608 * Indicate that the transaction is complete. This is called from the
609 * ISR to wake up the waiting thread, after which the ISR must not
610 * access any more SCB registers.
611 */
612static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
613{
614	img_i2c_switch_mode(i2c, MODE_INACTIVE);
615	if (status) {
616		i2c->msg_status = status;
617		img_i2c_transaction_halt(i2c, false);
618	}
619	complete(&i2c->msg_complete);
620}
621
622static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
623					u32 int_status, u32 line_status)
624{
625	/* Stay in raw mode for this, so we don't just loop infinitely */
626	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
627	img_i2c_switch_mode(i2c, MODE_ATOMIC);
628	return 0;
629}
630
631static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
632				u32 line_status)
633{
634	if (int_status & INT_TIMING) {
635		if (i2c->raw_timeout == 0)
636			return img_i2c_raw_atomic_delay_handler(i2c,
637				int_status, line_status);
638		--i2c->raw_timeout;
639	}
640	return 0;
641}
642
643static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
644{
645	static const unsigned int continue_bits[] = {
646		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
647		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
648		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
649		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
650		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
651	};
652	int next_cmd = -1;
653	u8 next_data = 0x00;
654
655	if (int_status & INT_SLAVE_EVENT)
656		i2c->at_slave_event = true;
657	if (int_status & INT_TRANSACTION_DONE)
658		i2c->at_t_done = true;
659
660	if (!i2c->at_slave_event || !i2c->at_t_done)
661		return 0;
662
663	/* wait if no continue bits are set */
664	if (i2c->at_cur_cmd >= 0 &&
665	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
666		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
667
668		if (cont_bits) {
669			cont_bits |= LINESTAT_ABORT_DET;
670			if (!(i2c->line_status & cont_bits))
671				return 0;
672		}
673	}
674
675	/* follow the sequence of commands in i2c->seq */
676	next_cmd = *i2c->seq;
677	/* stop on a nil */
678	if (!next_cmd) {
679		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
680		return ISR_COMPLETE(0);
681	}
682	/* when generating data, the next byte is the data */
683	if (next_cmd == CMD_GEN_DATA) {
684		++i2c->seq;
685		next_data = *i2c->seq;
686	}
687	++i2c->seq;
688	img_i2c_atomic_op(i2c, next_cmd, next_data);
689
690	return 0;
691}
692
693static void img_i2c_reset_start(struct img_i2c *i2c)
694{
695	/* Initiate the magic dance */
696	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
697	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
698	i2c->seq = img_i2c_reset_seq;
699	i2c->at_slave_event = true;
700	i2c->at_t_done = true;
701	i2c->at_cur_cmd = -1;
702
703	/* img_i2c_reset_seq isn't empty so the following won't fail */
704	img_i2c_sequence(i2c, 0);
705}
706
707static void img_i2c_stop_start(struct img_i2c *i2c)
708{
709	/* Initiate a stop bit sequence */
710	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
711	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
712	i2c->seq = img_i2c_stop_seq;
713	i2c->at_slave_event = true;
714	i2c->at_t_done = true;
715	i2c->at_cur_cmd = -1;
716
717	/* img_i2c_stop_seq isn't empty so the following won't fail */
718	img_i2c_sequence(i2c, 0);
719}
720
721static unsigned int img_i2c_atomic(struct img_i2c *i2c,
722				   u32 int_status,
723				   u32 line_status)
724{
725	int next_cmd = -1;
726	u8 next_data = 0x00;
727
728	if (int_status & INT_SLAVE_EVENT)
729		i2c->at_slave_event = true;
730	if (int_status & INT_TRANSACTION_DONE)
731		i2c->at_t_done = true;
732
733	if (!i2c->at_slave_event || !i2c->at_t_done)
734		goto next_atomic_cmd;
735	if (i2c->line_status & LINESTAT_ABORT_DET) {
736		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
737		next_cmd = CMD_GEN_STOP;
738		i2c->msg_status = -EIO;
739		goto next_atomic_cmd;
740	}
741
742	/* i2c->at_cur_cmd may have completed */
743	switch (i2c->at_cur_cmd) {
744	case CMD_GEN_START:
745		next_cmd = CMD_GEN_DATA;
746		next_data = (i2c->msg.addr << 1);
747		if (i2c->msg.flags & I2C_M_RD)
748			next_data |= 0x1;
749		break;
750	case CMD_GEN_DATA:
751		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
752			next_cmd = CMD_RET_ACK;
753		break;
754	case CMD_RET_ACK:
755		if (i2c->line_status & LINESTAT_ACK_DET) {
756			if (i2c->msg.len == 0) {
757				next_cmd = CMD_GEN_STOP;
758			} else if (i2c->msg.flags & I2C_M_RD) {
759				next_cmd = CMD_RET_DATA;
760			} else {
761				next_cmd = CMD_GEN_DATA;
762				next_data = *i2c->msg.buf;
763				--i2c->msg.len;
764				++i2c->msg.buf;
765			}
766		} else if (i2c->line_status & LINESTAT_NACK_DET) {
767			i2c->msg_status = -EIO;
768			next_cmd = CMD_GEN_STOP;
769		}
770		break;
771	case CMD_RET_DATA:
772		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
773			*i2c->msg.buf = (i2c->line_status &
774						LINESTAT_INPUT_DATA)
775					>> LINESTAT_INPUT_DATA_SHIFT;
776			--i2c->msg.len;
777			++i2c->msg.buf;
778			if (i2c->msg.len)
779				next_cmd = CMD_GEN_ACK;
780			else
781				next_cmd = CMD_GEN_NACK;
782		}
783		break;
784	case CMD_GEN_ACK:
785		if (i2c->line_status & LINESTAT_ACK_DET) {
786			next_cmd = CMD_RET_DATA;
787		} else {
788			i2c->msg_status = -EIO;
789			next_cmd = CMD_GEN_STOP;
790		}
791		break;
792	case CMD_GEN_NACK:
793		next_cmd = CMD_GEN_STOP;
794		break;
795	case CMD_GEN_STOP:
796		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
797		return ISR_COMPLETE(0);
798	default:
799		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
800			i2c->at_cur_cmd);
801		i2c->msg_status = -EIO;
802		next_cmd = CMD_GEN_STOP;
803		break;
804	}
805
806next_atomic_cmd:
807	if (next_cmd != -1) {
808		/* don't actually stop unless we're the last transaction */
809		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
810						!i2c->last_msg)
811			return ISR_COMPLETE(0);
812		img_i2c_atomic_op(i2c, next_cmd, next_data);
813	}
814	return 0;
815}
816
817/*
818 * Timer function to check if something has gone wrong in automatic mode (so we
819 * don't have to handle so many interrupts just to catch an exception).
820 */
821static void img_i2c_check_timer(unsigned long arg)
822{
823	struct img_i2c *i2c = (struct img_i2c *)arg;
824	unsigned long flags;
825	unsigned int line_status;
826
827	spin_lock_irqsave(&i2c->lock, flags);
828	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
829
830	/* check for an abort condition */
831	if (line_status & LINESTAT_ABORT_DET) {
832		dev_dbg(i2c->adap.dev.parent,
833			"abort condition detected by check timer\n");
834		/* enable slave event interrupt mask to trigger irq */
835		img_i2c_writel(i2c, SCB_INT_MASK_REG,
836			       i2c->int_enable | INT_SLAVE_EVENT);
837	}
838
839	spin_unlock_irqrestore(&i2c->lock, flags);
840}
841
842static unsigned int img_i2c_auto(struct img_i2c *i2c,
843				 unsigned int int_status,
844				 unsigned int line_status)
845{
846	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
847		return ISR_COMPLETE(EIO);
848
849	if (line_status & LINESTAT_ABORT_DET) {
850		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
851		/* empty the read fifo */
852		if ((i2c->msg.flags & I2C_M_RD) &&
853		    (int_status & INT_FIFO_FULL_FILLING))
854			img_i2c_read_fifo(i2c);
855		/* use atomic mode and try to force a stop bit */
856		i2c->msg_status = -EIO;
857		img_i2c_stop_start(i2c);
858		return 0;
859	}
860
861	/* Enable transaction halt on start bit */
862	if (!i2c->last_msg && i2c->line_status & LINESTAT_START_BIT_DET) {
863		img_i2c_transaction_halt(i2c, true);
864		/* we're no longer interested in the slave event */
865		i2c->int_enable &= ~INT_SLAVE_EVENT;
866	}
867
868	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
869
870	if (i2c->msg.flags & I2C_M_RD) {
871		if (int_status & INT_FIFO_FULL_FILLING) {
872			img_i2c_read_fifo(i2c);
873			if (i2c->msg.len == 0)
874				return ISR_WAITSTOP;
875		}
876	} else {
877		if (int_status & INT_FIFO_EMPTY_EMPTYING) {
878			/*
879			 * The write fifo empty indicates that we're in the
880			 * last byte so it's safe to start a new write
881			 * transaction without losing any bytes from the
882			 * previous one.
883			 * see 2.3.7 Repeated Start Transactions.
884			 */
885			if ((int_status & INT_FIFO_EMPTY) &&
886			    i2c->msg.len == 0)
887				return ISR_WAITSTOP;
888			img_i2c_write_fifo(i2c);
889		}
890	}
891
892	return 0;
893}
894
895static irqreturn_t img_i2c_isr(int irq, void *dev_id)
896{
897	struct img_i2c *i2c = (struct img_i2c *)dev_id;
898	u32 int_status, line_status;
899	/* We handle transaction completion AFTER accessing registers */
900	unsigned int hret;
901
902	/* Read interrupt status register. */
903	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
904	/* Clear detected interrupts. */
905	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
906
907	/*
908	 * Read line status and clear it until it actually is clear.  We have
909	 * to be careful not to lose any line status bits that get latched.
910	 */
911	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
912	if (line_status & LINESTAT_LATCHED) {
913		img_i2c_writel(i2c, SCB_CLEAR_REG,
914			      (line_status & LINESTAT_LATCHED)
915				>> LINESTAT_CLEAR_SHIFT);
916		img_i2c_wr_rd_fence(i2c);
917	}
918
919	spin_lock(&i2c->lock);
920
921	/* Keep track of line status bits received */
922	i2c->line_status &= ~LINESTAT_INPUT_DATA;
923	i2c->line_status |= line_status;
924
925	/*
926	 * Certain interrupts indicate that sclk low timeout is not
927	 * a problem. If any of these are set, just continue.
928	 */
929	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
930	    !(int_status & (INT_SLAVE_EVENT |
931			    INT_FIFO_EMPTY |
932			    INT_FIFO_FULL))) {
933		dev_crit(i2c->adap.dev.parent,
934			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
935			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
936			 i2c->msg.addr);
937		hret = ISR_FATAL(EIO);
938		goto out;
939	}
940
941	if (i2c->mode == MODE_ATOMIC)
942		hret = img_i2c_atomic(i2c, int_status, line_status);
943	else if (i2c->mode == MODE_AUTOMATIC)
944		hret = img_i2c_auto(i2c, int_status, line_status);
945	else if (i2c->mode == MODE_SEQUENCE)
946		hret = img_i2c_sequence(i2c, int_status);
947	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
948			 (line_status & LINESTAT_STOP_BIT_DET))
949		hret = ISR_COMPLETE(0);
950	else if (i2c->mode == MODE_RAW)
951		hret = img_i2c_raw(i2c, int_status, line_status);
952	else
953		hret = 0;
954
955	/* Clear detected level interrupts. */
956	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
957
958out:
959	if (hret & ISR_WAITSTOP) {
960		/*
961		 * Only wait for stop on last message.
962		 * Also we may already have detected the stop bit.
963		 */
964		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
965			hret = ISR_COMPLETE(0);
966		else
967			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
968	}
969
970	/* now we've finished using regs, handle transaction completion */
971	if (hret & ISR_COMPLETE_M) {
972		int status = -(hret & ISR_STATUS_M);
973
974		img_i2c_complete_transaction(i2c, status);
975		if (hret & ISR_FATAL_M)
976			img_i2c_switch_mode(i2c, MODE_FATAL);
977	}
978
979	/* Enable interrupts (int_enable may be altered by changing mode) */
980	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
981
982	spin_unlock(&i2c->lock);
983
984	return IRQ_HANDLED;
985}
986
987/* Force a bus reset sequence and wait for it to complete */
988static int img_i2c_reset_bus(struct img_i2c *i2c)
989{
990	unsigned long flags;
991	unsigned long time_left;
992
993	spin_lock_irqsave(&i2c->lock, flags);
994	reinit_completion(&i2c->msg_complete);
995	img_i2c_reset_start(i2c);
996	spin_unlock_irqrestore(&i2c->lock, flags);
997
998	time_left = wait_for_completion_timeout(&i2c->msg_complete,
999					      IMG_I2C_TIMEOUT);
1000	if (time_left == 0)
1001		return -ETIMEDOUT;
1002	return 0;
1003}
1004
1005static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1006			int num)
1007{
1008	struct img_i2c *i2c = i2c_get_adapdata(adap);
1009	bool atomic = false;
1010	int i, ret;
1011	unsigned long time_left;
1012
1013	if (i2c->mode == MODE_SUSPEND) {
1014		WARN(1, "refusing to service transaction in suspended state\n");
1015		return -EIO;
1016	}
1017
1018	if (i2c->mode == MODE_FATAL)
1019		return -EIO;
1020
1021	for (i = 0; i < num; i++) {
1022		if (likely(msgs[i].len))
1023			continue;
1024		/*
1025		 * 0 byte reads are not possible because the slave could try
1026		 * and pull the data line low, preventing a stop bit.
1027		 */
1028		if (unlikely(msgs[i].flags & I2C_M_RD))
1029			return -EIO;
1030		/*
1031		 * 0 byte writes are possible and used for probing, but we
1032		 * cannot do them in automatic mode, so use atomic mode
1033		 * instead.
1034		 */
1035		atomic = true;
1036	}
1037
1038	ret = clk_prepare_enable(i2c->scb_clk);
1039	if (ret)
1040		return ret;
1041
1042	for (i = 0; i < num; i++) {
1043		struct i2c_msg *msg = &msgs[i];
1044		unsigned long flags;
1045
1046		spin_lock_irqsave(&i2c->lock, flags);
1047
1048		/*
1049		 * Make a copy of the message struct. We mustn't modify the
1050		 * original or we'll confuse drivers and i2c-dev.
1051		 */
1052		i2c->msg = *msg;
1053		i2c->msg_status = 0;
1054
1055		/*
1056		 * After the last message we must have waited for a stop bit.
1057		 * Not waiting can cause problems when the clock is disabled
1058		 * before the stop bit is sent, and the linux I2C interface
1059		 * requires separate transfers not to joined with repeated
1060		 * start.
1061		 */
1062		i2c->last_msg = (i == num - 1);
1063		reinit_completion(&i2c->msg_complete);
1064
1065		if (atomic)
1066			img_i2c_atomic_start(i2c);
1067		else if (msg->flags & I2C_M_RD)
1068			img_i2c_read(i2c);
1069		else
1070			img_i2c_write(i2c);
1071		spin_unlock_irqrestore(&i2c->lock, flags);
1072
1073		time_left = wait_for_completion_timeout(&i2c->msg_complete,
1074						      IMG_I2C_TIMEOUT);
1075		del_timer_sync(&i2c->check_timer);
1076
1077		if (time_left == 0) {
1078			dev_err(adap->dev.parent, "i2c transfer timed out\n");
1079			i2c->msg_status = -ETIMEDOUT;
1080			break;
1081		}
1082
1083		if (i2c->msg_status)
1084			break;
1085	}
1086
1087	clk_disable_unprepare(i2c->scb_clk);
1088
1089	return i2c->msg_status ? i2c->msg_status : num;
1090}
1091
1092static u32 img_i2c_func(struct i2c_adapter *adap)
1093{
1094	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1095}
1096
1097static const struct i2c_algorithm img_i2c_algo = {
1098	.master_xfer = img_i2c_xfer,
1099	.functionality = img_i2c_func,
1100};
1101
1102static int img_i2c_init(struct img_i2c *i2c)
1103{
1104	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1105	unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
1106	struct img_i2c_timings timing;
1107	u32 rev;
1108
1109	ret = clk_prepare_enable(i2c->scb_clk);
1110	if (ret)
1111		return ret;
1112
1113	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1114	if ((rev & 0x00ffffff) < 0x00020200) {
1115		dev_info(i2c->adap.dev.parent,
1116			 "Unknown hardware revision (%d.%d.%d.%d)\n",
1117			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1118			 (rev >> 8) & 0xff, rev & 0xff);
1119		clk_disable_unprepare(i2c->scb_clk);
1120		return -EINVAL;
1121	}
1122
1123	if (rev == REL_SOC_IP_SCB_2_2_1) {
1124		i2c->need_wr_rd_fence = true;
1125		dev_info(i2c->adap.dev.parent, "fence quirk enabled");
1126	}
1127
1128	bitrate_khz = i2c->bitrate / 1000;
1129	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1130
1131	/* Determine what mode we're in from the bitrate */
1132	timing = timings[0];
1133	for (i = 0; i < ARRAY_SIZE(timings); i++) {
1134		if (i2c->bitrate <= timings[i].max_bitrate) {
1135			timing = timings[i];
1136			break;
1137		}
1138	}
1139
1140	/* Find the prescale that would give us that inc (approx delay = 0) */
1141	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1142	prescale = clamp_t(unsigned int, prescale, 1, 8);
1143	clk_khz /= prescale;
1144
1145	/* Setup the clock increment value */
1146	inc = (256 * 16 * bitrate_khz) / clk_khz;
1147
1148	/*
1149	 * The clock generation logic allows to filter glitches on the bus.
1150	 * This filter is able to remove bus glitches shorter than 50ns.
1151	 * If the clock enable rate is greater than 20 MHz, no filtering
1152	 * is required, so we need to disable it.
1153	 * If it's between the 20-40 MHz range, there's no need to divide
1154	 * the clock to get a filter.
1155	 */
1156	if (clk_khz < 20000) {
1157		filt = SCB_FILT_DISABLE;
1158	} else if (clk_khz < 40000) {
1159		filt = SCB_FILT_BYPASS;
1160	} else {
1161		/* Calculate filter clock */
1162		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1163
1164		/* Scale up if needed */
1165		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1166			inc++;
1167
1168		if (filt > SCB_FILT_INC_MASK)
1169			filt = SCB_FILT_INC_MASK;
1170
1171		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1172	}
1173	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1174	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1175
1176	/* Obtain the clock period of the fx16 clock in ns */
1177	clk_period = (256 * 1000000) / (clk_khz * inc);
1178
1179	/* Calculate the bitrate in terms of internal clock pulses */
1180	int_bitrate = 1000000 / (bitrate_khz * clk_period);
1181	if ((1000000 % (bitrate_khz * clk_period)) >=
1182	    ((bitrate_khz * clk_period) / 2))
1183		int_bitrate++;
1184
1185	/* Setup TCKH value */
1186	tckh = timing.tckh / clk_period;
1187	if (timing.tckh % clk_period)
1188		tckh++;
1189
1190	if (tckh > 0)
1191		data = tckh - 1;
1192	else
1193		data = 0;
1194
1195	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, data);
1196
1197	/* Setup TCKL value */
1198	tckl = int_bitrate - tckh;
1199
1200	if (tckl > 0)
1201		data = tckl - 1;
1202	else
1203		data = 0;
1204
1205	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, data);
1206
1207	/* Setup TSDH value */
1208	tsdh = timing.tsdh / clk_period;
1209	if (timing.tsdh % clk_period)
1210		tsdh++;
1211
1212	if (tsdh > 1)
1213		data = tsdh - 1;
1214	else
1215		data = 0x01;
1216	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1217
1218	/* This value is used later */
1219	tsdh = data;
1220
1221	/* Setup TPL value */
1222	data = timing.tpl / clk_period;
1223	if (data > 0)
1224		--data;
1225	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1226
1227	/* Setup TPH value */
1228	data = timing.tph / clk_period;
1229	if (data > 0)
1230		--data;
1231	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1232
1233	/* Setup TSDL value to TPL + TSDH + 2 */
1234	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1235
1236	/* Setup TP2S value */
1237	data = timing.tp2s / clk_period;
1238	if (data > 0)
1239		--data;
1240	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1241
1242	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1243	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1244	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1245
1246	/* Take module out of soft reset and enable clocks */
1247	img_i2c_soft_reset(i2c);
1248
1249	/* Disable all interrupts */
1250	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1251
1252	/* Clear all interrupts */
1253	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1254
1255	/* Clear the scb_line_status events */
1256	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1257
1258	/* Enable interrupts */
1259	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1260
1261	/* Perform a synchronous sequence to reset the bus */
1262	ret = img_i2c_reset_bus(i2c);
1263
1264	clk_disable_unprepare(i2c->scb_clk);
1265
1266	return ret;
1267}
1268
1269static int img_i2c_probe(struct platform_device *pdev)
1270{
1271	struct device_node *node = pdev->dev.of_node;
1272	struct img_i2c *i2c;
1273	struct resource *res;
1274	int irq, ret;
1275	u32 val;
1276
1277	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1278	if (!i2c)
1279		return -ENOMEM;
1280
1281	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1282	i2c->base = devm_ioremap_resource(&pdev->dev, res);
1283	if (IS_ERR(i2c->base))
1284		return PTR_ERR(i2c->base);
1285
1286	irq = platform_get_irq(pdev, 0);
1287	if (irq < 0) {
1288		dev_err(&pdev->dev, "can't get irq number\n");
1289		return irq;
1290	}
1291
1292	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1293	if (IS_ERR(i2c->sys_clk)) {
1294		dev_err(&pdev->dev, "can't get system clock\n");
1295		return PTR_ERR(i2c->sys_clk);
1296	}
1297
1298	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1299	if (IS_ERR(i2c->scb_clk)) {
1300		dev_err(&pdev->dev, "can't get core clock\n");
1301		return PTR_ERR(i2c->scb_clk);
1302	}
1303
1304	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1305			       pdev->name, i2c);
1306	if (ret) {
1307		dev_err(&pdev->dev, "can't request irq %d\n", irq);
1308		return ret;
1309	}
1310
1311	/* Set up the exception check timer */
1312	init_timer(&i2c->check_timer);
1313	i2c->check_timer.function = img_i2c_check_timer;
1314	i2c->check_timer.data = (unsigned long)i2c;
1315
1316	i2c->bitrate = timings[0].max_bitrate;
1317	if (!of_property_read_u32(node, "clock-frequency", &val))
1318		i2c->bitrate = val;
1319
1320	i2c_set_adapdata(&i2c->adap, i2c);
1321	i2c->adap.dev.parent = &pdev->dev;
1322	i2c->adap.dev.of_node = node;
1323	i2c->adap.owner = THIS_MODULE;
1324	i2c->adap.algo = &img_i2c_algo;
1325	i2c->adap.retries = 5;
1326	i2c->adap.nr = pdev->id;
1327	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1328
1329	img_i2c_switch_mode(i2c, MODE_INACTIVE);
1330	spin_lock_init(&i2c->lock);
1331	init_completion(&i2c->msg_complete);
1332
1333	platform_set_drvdata(pdev, i2c);
1334
1335	ret = clk_prepare_enable(i2c->sys_clk);
1336	if (ret)
1337		return ret;
1338
1339	ret = img_i2c_init(i2c);
1340	if (ret)
1341		goto disable_clk;
1342
1343	ret = i2c_add_numbered_adapter(&i2c->adap);
1344	if (ret < 0) {
1345		dev_err(&pdev->dev, "failed to add adapter\n");
1346		goto disable_clk;
1347	}
1348
1349	return 0;
1350
1351disable_clk:
1352	clk_disable_unprepare(i2c->sys_clk);
1353	return ret;
1354}
1355
1356static int img_i2c_remove(struct platform_device *dev)
1357{
1358	struct img_i2c *i2c = platform_get_drvdata(dev);
1359
1360	i2c_del_adapter(&i2c->adap);
1361	clk_disable_unprepare(i2c->sys_clk);
1362
1363	return 0;
1364}
1365
1366#ifdef CONFIG_PM_SLEEP
1367static int img_i2c_suspend(struct device *dev)
1368{
1369	struct img_i2c *i2c = dev_get_drvdata(dev);
1370
1371	img_i2c_switch_mode(i2c, MODE_SUSPEND);
1372
1373	clk_disable_unprepare(i2c->sys_clk);
1374
1375	return 0;
1376}
1377
1378static int img_i2c_resume(struct device *dev)
1379{
1380	struct img_i2c *i2c = dev_get_drvdata(dev);
1381	int ret;
1382
1383	ret = clk_prepare_enable(i2c->sys_clk);
1384	if (ret)
1385		return ret;
1386
1387	img_i2c_init(i2c);
1388
1389	return 0;
1390}
1391#endif /* CONFIG_PM_SLEEP */
1392
1393static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
1394
1395static const struct of_device_id img_scb_i2c_match[] = {
1396	{ .compatible = "img,scb-i2c" },
1397	{ }
1398};
1399MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1400
1401static struct platform_driver img_scb_i2c_driver = {
1402	.driver = {
1403		.name		= "img-i2c-scb",
1404		.of_match_table	= img_scb_i2c_match,
1405		.pm		= &img_i2c_pm,
1406	},
1407	.probe = img_i2c_probe,
1408	.remove = img_i2c_remove,
1409};
1410module_platform_driver(img_scb_i2c_driver);
1411
1412MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1413MODULE_DESCRIPTION("IMG host I2C driver");
1414MODULE_LICENSE("GPL v2");
1415