1/*
2 * lm80.c - From lm_sensors, Linux kernel modules for hardware
3 *	    monitoring
4 * Copyright (C) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
5 *			     and Philip Edelbrock <phil@netroedge.com>
6 *
7 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/i2c.h>
29#include <linux/hwmon.h>
30#include <linux/hwmon-sysfs.h>
31#include <linux/err.h>
32#include <linux/mutex.h>
33
34/* Addresses to scan */
35static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
36						0x2e, 0x2f, I2C_CLIENT_END };
37
38/* Many LM80 constants specified below */
39
40/* The LM80 registers */
41#define LM80_REG_IN_MAX(nr)		(0x2a + (nr) * 2)
42#define LM80_REG_IN_MIN(nr)		(0x2b + (nr) * 2)
43#define LM80_REG_IN(nr)			(0x20 + (nr))
44
45#define LM80_REG_FAN1			0x28
46#define LM80_REG_FAN2			0x29
47#define LM80_REG_FAN_MIN(nr)		(0x3b + (nr))
48
49#define LM80_REG_TEMP			0x27
50#define LM80_REG_TEMP_HOT_MAX		0x38
51#define LM80_REG_TEMP_HOT_HYST		0x39
52#define LM80_REG_TEMP_OS_MAX		0x3a
53#define LM80_REG_TEMP_OS_HYST		0x3b
54
55#define LM80_REG_CONFIG			0x00
56#define LM80_REG_ALARM1			0x01
57#define LM80_REG_ALARM2			0x02
58#define LM80_REG_MASK1			0x03
59#define LM80_REG_MASK2			0x04
60#define LM80_REG_FANDIV			0x05
61#define LM80_REG_RES			0x06
62
63#define LM96080_REG_CONV_RATE		0x07
64#define LM96080_REG_MAN_ID		0x3e
65#define LM96080_REG_DEV_ID		0x3f
66
67
68/*
69 * Conversions. Rounding and limit checking is only done on the TO_REG
70 * variants. Note that you should be a bit careful with which arguments
71 * these macros are called: arguments may be evaluated more than once.
72 * Fixing this is just not worth it.
73 */
74
75#define IN_TO_REG(val)		(clamp_val(((val) + 5) / 10, 0, 255))
76#define IN_FROM_REG(val)	((val) * 10)
77
78static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
79{
80	if (rpm == 0)
81		return 255;
82	rpm = clamp_val(rpm, 1, 1000000);
83	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
84}
85
86#define FAN_FROM_REG(val, div)	((val) == 0 ? -1 : \
87				(val) == 255 ? 0 : 1350000/((div) * (val)))
88
89#define TEMP_FROM_REG(reg)	((reg) * 125 / 32)
90#define TEMP_TO_REG(temp)	(DIV_ROUND_CLOSEST(clamp_val((temp), \
91					-128000, 127000), 1000) << 8)
92
93#define DIV_FROM_REG(val)		(1 << (val))
94
95enum temp_index {
96	t_input = 0,
97	t_hot_max,
98	t_hot_hyst,
99	t_os_max,
100	t_os_hyst,
101	t_num_temp
102};
103
104static const u8 temp_regs[t_num_temp] = {
105	[t_input] = LM80_REG_TEMP,
106	[t_hot_max] = LM80_REG_TEMP_HOT_MAX,
107	[t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
108	[t_os_max] = LM80_REG_TEMP_OS_MAX,
109	[t_os_hyst] = LM80_REG_TEMP_OS_HYST,
110};
111
112enum in_index {
113	i_input = 0,
114	i_max,
115	i_min,
116	i_num_in
117};
118
119enum fan_index {
120	f_input,
121	f_min,
122	f_num_fan
123};
124
125/*
126 * Client data (each client gets its own)
127 */
128
129struct lm80_data {
130	struct i2c_client *client;
131	struct mutex update_lock;
132	char error;		/* !=0 if error occurred during last update */
133	char valid;		/* !=0 if following fields are valid */
134	unsigned long last_updated;	/* In jiffies */
135
136	u8 in[i_num_in][7];	/* Register value, 1st index is enum in_index */
137	u8 fan[f_num_fan][2];	/* Register value, 1st index enum fan_index */
138	u8 fan_div[2];		/* Register encoding, shifted right */
139	s16 temp[t_num_temp];	/* Register values, normalized to 16 bit */
140	u16 alarms;		/* Register encoding, combined */
141};
142
143static int lm80_read_value(struct i2c_client *client, u8 reg)
144{
145	return i2c_smbus_read_byte_data(client, reg);
146}
147
148static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
149{
150	return i2c_smbus_write_byte_data(client, reg, value);
151}
152
153/* Called when we have found a new LM80 and after read errors */
154static void lm80_init_client(struct i2c_client *client)
155{
156	/*
157	 * Reset all except Watchdog values and last conversion values
158	 * This sets fan-divs to 2, among others. This makes most other
159	 * initializations unnecessary
160	 */
161	lm80_write_value(client, LM80_REG_CONFIG, 0x80);
162	/* Set 11-bit temperature resolution */
163	lm80_write_value(client, LM80_REG_RES, 0x08);
164
165	/* Start monitoring */
166	lm80_write_value(client, LM80_REG_CONFIG, 0x01);
167}
168
169static struct lm80_data *lm80_update_device(struct device *dev)
170{
171	struct lm80_data *data = dev_get_drvdata(dev);
172	struct i2c_client *client = data->client;
173	int i;
174	int rv;
175	int prev_rv;
176	struct lm80_data *ret = data;
177
178	mutex_lock(&data->update_lock);
179
180	if (data->error)
181		lm80_init_client(client);
182
183	if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
184		dev_dbg(dev, "Starting lm80 update\n");
185		for (i = 0; i <= 6; i++) {
186			rv = lm80_read_value(client, LM80_REG_IN(i));
187			if (rv < 0)
188				goto abort;
189			data->in[i_input][i] = rv;
190
191			rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
192			if (rv < 0)
193				goto abort;
194			data->in[i_min][i] = rv;
195
196			rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
197			if (rv < 0)
198				goto abort;
199			data->in[i_max][i] = rv;
200		}
201
202		rv = lm80_read_value(client, LM80_REG_FAN1);
203		if (rv < 0)
204			goto abort;
205		data->fan[f_input][0] = rv;
206
207		rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
208		if (rv < 0)
209			goto abort;
210		data->fan[f_min][0] = rv;
211
212		rv = lm80_read_value(client, LM80_REG_FAN2);
213		if (rv < 0)
214			goto abort;
215		data->fan[f_input][1] = rv;
216
217		rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
218		if (rv < 0)
219			goto abort;
220		data->fan[f_min][1] = rv;
221
222		prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
223		if (rv < 0)
224			goto abort;
225		rv = lm80_read_value(client, LM80_REG_RES);
226		if (rv < 0)
227			goto abort;
228		data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
229
230		for (i = t_input + 1; i < t_num_temp; i++) {
231			rv = lm80_read_value(client, temp_regs[i]);
232			if (rv < 0)
233				goto abort;
234			data->temp[i] = rv << 8;
235		}
236
237		rv = lm80_read_value(client, LM80_REG_FANDIV);
238		if (rv < 0)
239			goto abort;
240		data->fan_div[0] = (rv >> 2) & 0x03;
241		data->fan_div[1] = (rv >> 4) & 0x03;
242
243		prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
244		if (rv < 0)
245			goto abort;
246		rv = lm80_read_value(client, LM80_REG_ALARM2);
247		if (rv < 0)
248			goto abort;
249		data->alarms = prev_rv + (rv << 8);
250
251		data->last_updated = jiffies;
252		data->valid = 1;
253		data->error = 0;
254	}
255	goto done;
256
257abort:
258	ret = ERR_PTR(rv);
259	data->valid = 0;
260	data->error = 1;
261
262done:
263	mutex_unlock(&data->update_lock);
264
265	return ret;
266}
267
268/*
269 * Sysfs stuff
270 */
271
272static ssize_t show_in(struct device *dev, struct device_attribute *attr,
273		       char *buf)
274{
275	struct lm80_data *data = lm80_update_device(dev);
276	int index = to_sensor_dev_attr_2(attr)->index;
277	int nr = to_sensor_dev_attr_2(attr)->nr;
278
279	if (IS_ERR(data))
280		return PTR_ERR(data);
281	return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
282}
283
284static ssize_t set_in(struct device *dev, struct device_attribute *attr,
285		      const char *buf, size_t count)
286{
287	struct lm80_data *data = dev_get_drvdata(dev);
288	struct i2c_client *client = data->client;
289	int index = to_sensor_dev_attr_2(attr)->index;
290	int nr = to_sensor_dev_attr_2(attr)->nr;
291	long val;
292	u8 reg;
293	int err = kstrtol(buf, 10, &val);
294	if (err < 0)
295		return err;
296
297	reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
298
299	mutex_lock(&data->update_lock);
300	data->in[nr][index] = IN_TO_REG(val);
301	lm80_write_value(client, reg, data->in[nr][index]);
302	mutex_unlock(&data->update_lock);
303	return count;
304}
305
306static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
307			char *buf)
308{
309	int index = to_sensor_dev_attr_2(attr)->index;
310	int nr = to_sensor_dev_attr_2(attr)->nr;
311	struct lm80_data *data = lm80_update_device(dev);
312	if (IS_ERR(data))
313		return PTR_ERR(data);
314	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
315		       DIV_FROM_REG(data->fan_div[index])));
316}
317
318static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
319	char *buf)
320{
321	int nr = to_sensor_dev_attr(attr)->index;
322	struct lm80_data *data = lm80_update_device(dev);
323	if (IS_ERR(data))
324		return PTR_ERR(data);
325	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
326}
327
328static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
329	const char *buf, size_t count)
330{
331	int index = to_sensor_dev_attr_2(attr)->index;
332	int nr = to_sensor_dev_attr_2(attr)->nr;
333	struct lm80_data *data = dev_get_drvdata(dev);
334	struct i2c_client *client = data->client;
335	unsigned long val;
336	int err = kstrtoul(buf, 10, &val);
337	if (err < 0)
338		return err;
339
340	mutex_lock(&data->update_lock);
341	data->fan[nr][index] = FAN_TO_REG(val,
342					  DIV_FROM_REG(data->fan_div[index]));
343	lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
344			 data->fan[nr][index]);
345	mutex_unlock(&data->update_lock);
346	return count;
347}
348
349/*
350 * Note: we save and restore the fan minimum here, because its value is
351 * determined in part by the fan divisor.  This follows the principle of
352 * least surprise; the user doesn't expect the fan minimum to change just
353 * because the divisor changed.
354 */
355static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
356	const char *buf, size_t count)
357{
358	int nr = to_sensor_dev_attr(attr)->index;
359	struct lm80_data *data = dev_get_drvdata(dev);
360	struct i2c_client *client = data->client;
361	unsigned long min, val;
362	u8 reg;
363	int err = kstrtoul(buf, 10, &val);
364	if (err < 0)
365		return err;
366
367	/* Save fan_min */
368	mutex_lock(&data->update_lock);
369	min = FAN_FROM_REG(data->fan[f_min][nr],
370			   DIV_FROM_REG(data->fan_div[nr]));
371
372	switch (val) {
373	case 1:
374		data->fan_div[nr] = 0;
375		break;
376	case 2:
377		data->fan_div[nr] = 1;
378		break;
379	case 4:
380		data->fan_div[nr] = 2;
381		break;
382	case 8:
383		data->fan_div[nr] = 3;
384		break;
385	default:
386		dev_err(dev,
387			"fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
388			val);
389		mutex_unlock(&data->update_lock);
390		return -EINVAL;
391	}
392
393	reg = (lm80_read_value(client, LM80_REG_FANDIV) &
394	       ~(3 << (2 * (nr + 1)))) | (data->fan_div[nr] << (2 * (nr + 1)));
395	lm80_write_value(client, LM80_REG_FANDIV, reg);
396
397	/* Restore fan_min */
398	data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
399	lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
400			 data->fan[f_min][nr]);
401	mutex_unlock(&data->update_lock);
402
403	return count;
404}
405
406static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
407			 char *buf)
408{
409	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
410	struct lm80_data *data = lm80_update_device(dev);
411	if (IS_ERR(data))
412		return PTR_ERR(data);
413	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
414}
415
416static ssize_t set_temp(struct device *dev, struct device_attribute *devattr,
417			const char *buf, size_t count)
418{
419	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
420	struct lm80_data *data = dev_get_drvdata(dev);
421	struct i2c_client *client = data->client;
422	int nr = attr->index;
423	long val;
424	int err = kstrtol(buf, 10, &val);
425	if (err < 0)
426		return err;
427
428	mutex_lock(&data->update_lock);
429	data->temp[nr] = TEMP_TO_REG(val);
430	lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
431	mutex_unlock(&data->update_lock);
432	return count;
433}
434
435static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
436			   char *buf)
437{
438	struct lm80_data *data = lm80_update_device(dev);
439	if (IS_ERR(data))
440		return PTR_ERR(data);
441	return sprintf(buf, "%u\n", data->alarms);
442}
443
444static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
445			  char *buf)
446{
447	int bitnr = to_sensor_dev_attr(attr)->index;
448	struct lm80_data *data = lm80_update_device(dev);
449	if (IS_ERR(data))
450		return PTR_ERR(data);
451	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
452}
453
454static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO,
455		show_in, set_in, i_min, 0);
456static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO,
457		show_in, set_in, i_min, 1);
458static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO,
459		show_in, set_in, i_min, 2);
460static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO,
461		show_in, set_in, i_min, 3);
462static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO,
463		show_in, set_in, i_min, 4);
464static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO,
465		show_in, set_in, i_min, 5);
466static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO,
467		show_in, set_in, i_min, 6);
468static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO,
469		show_in, set_in, i_max, 0);
470static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO,
471		show_in, set_in, i_max, 1);
472static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO,
473		show_in, set_in, i_max, 2);
474static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO,
475		show_in, set_in, i_max, 3);
476static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO,
477		show_in, set_in, i_max, 4);
478static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO,
479		show_in, set_in, i_max, 5);
480static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO,
481		show_in, set_in, i_max, 6);
482static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_in, NULL, i_input, 0);
483static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_in, NULL, i_input, 1);
484static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_in, NULL, i_input, 2);
485static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_in, NULL, i_input, 3);
486static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_in, NULL, i_input, 4);
487static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_in, NULL, i_input, 5);
488static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO, show_in, NULL, i_input, 6);
489static SENSOR_DEVICE_ATTR_2(fan1_min, S_IWUSR | S_IRUGO,
490		show_fan, set_fan_min, f_min, 0);
491static SENSOR_DEVICE_ATTR_2(fan2_min, S_IWUSR | S_IRUGO,
492		show_fan, set_fan_min, f_min, 1);
493static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, f_input, 0);
494static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, f_input, 1);
495static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
496		show_fan_div, set_fan_div, 0);
497static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
498		show_fan_div, set_fan_div, 1);
499static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, t_input);
500static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp,
501		set_temp, t_hot_max);
502static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp,
503		set_temp, t_hot_hyst);
504static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp,
505		set_temp, t_os_max);
506static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp,
507		set_temp, t_os_hyst);
508static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
509static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
510static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
511static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
512static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
513static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4);
514static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5);
515static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6);
516static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
517static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
518static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8);
519static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13);
520
521/*
522 * Real code
523 */
524
525static struct attribute *lm80_attrs[] = {
526	&sensor_dev_attr_in0_min.dev_attr.attr,
527	&sensor_dev_attr_in1_min.dev_attr.attr,
528	&sensor_dev_attr_in2_min.dev_attr.attr,
529	&sensor_dev_attr_in3_min.dev_attr.attr,
530	&sensor_dev_attr_in4_min.dev_attr.attr,
531	&sensor_dev_attr_in5_min.dev_attr.attr,
532	&sensor_dev_attr_in6_min.dev_attr.attr,
533	&sensor_dev_attr_in0_max.dev_attr.attr,
534	&sensor_dev_attr_in1_max.dev_attr.attr,
535	&sensor_dev_attr_in2_max.dev_attr.attr,
536	&sensor_dev_attr_in3_max.dev_attr.attr,
537	&sensor_dev_attr_in4_max.dev_attr.attr,
538	&sensor_dev_attr_in5_max.dev_attr.attr,
539	&sensor_dev_attr_in6_max.dev_attr.attr,
540	&sensor_dev_attr_in0_input.dev_attr.attr,
541	&sensor_dev_attr_in1_input.dev_attr.attr,
542	&sensor_dev_attr_in2_input.dev_attr.attr,
543	&sensor_dev_attr_in3_input.dev_attr.attr,
544	&sensor_dev_attr_in4_input.dev_attr.attr,
545	&sensor_dev_attr_in5_input.dev_attr.attr,
546	&sensor_dev_attr_in6_input.dev_attr.attr,
547	&sensor_dev_attr_fan1_min.dev_attr.attr,
548	&sensor_dev_attr_fan2_min.dev_attr.attr,
549	&sensor_dev_attr_fan1_input.dev_attr.attr,
550	&sensor_dev_attr_fan2_input.dev_attr.attr,
551	&sensor_dev_attr_fan1_div.dev_attr.attr,
552	&sensor_dev_attr_fan2_div.dev_attr.attr,
553	&sensor_dev_attr_temp1_input.dev_attr.attr,
554	&sensor_dev_attr_temp1_max.dev_attr.attr,
555	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
556	&sensor_dev_attr_temp1_crit.dev_attr.attr,
557	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
558	&dev_attr_alarms.attr,
559	&sensor_dev_attr_in0_alarm.dev_attr.attr,
560	&sensor_dev_attr_in1_alarm.dev_attr.attr,
561	&sensor_dev_attr_in2_alarm.dev_attr.attr,
562	&sensor_dev_attr_in3_alarm.dev_attr.attr,
563	&sensor_dev_attr_in4_alarm.dev_attr.attr,
564	&sensor_dev_attr_in5_alarm.dev_attr.attr,
565	&sensor_dev_attr_in6_alarm.dev_attr.attr,
566	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
567	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
568	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
569	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
570	NULL
571};
572ATTRIBUTE_GROUPS(lm80);
573
574/* Return 0 if detection is successful, -ENODEV otherwise */
575static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
576{
577	struct i2c_adapter *adapter = client->adapter;
578	int i, cur, man_id, dev_id;
579	const char *name = NULL;
580
581	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
582		return -ENODEV;
583
584	/* First check for unused bits, common to both chip types */
585	if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
586	 || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
587		return -ENODEV;
588
589	/*
590	 * The LM96080 has manufacturer and stepping/die rev registers so we
591	 * can just check that. The LM80 does not have such registers so we
592	 * have to use a more expensive trick.
593	 */
594	man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
595	dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
596	if (man_id == 0x01 && dev_id == 0x08) {
597		/* Check more unused bits for confirmation */
598		if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
599			return -ENODEV;
600
601		name = "lm96080";
602	} else {
603		/* Check 6-bit addressing */
604		for (i = 0x2a; i <= 0x3d; i++) {
605			cur = i2c_smbus_read_byte_data(client, i);
606			if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
607			 || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
608			 || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
609				return -ENODEV;
610		}
611
612		name = "lm80";
613	}
614
615	strlcpy(info->type, name, I2C_NAME_SIZE);
616
617	return 0;
618}
619
620static int lm80_probe(struct i2c_client *client,
621		      const struct i2c_device_id *id)
622{
623	struct device *dev = &client->dev;
624	struct device *hwmon_dev;
625	struct lm80_data *data;
626
627	data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
628	if (!data)
629		return -ENOMEM;
630
631	data->client = client;
632	mutex_init(&data->update_lock);
633
634	/* Initialize the LM80 chip */
635	lm80_init_client(client);
636
637	/* A few vars need to be filled upon startup */
638	data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
639	data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
640
641	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
642							   data, lm80_groups);
643
644	return PTR_ERR_OR_ZERO(hwmon_dev);
645}
646
647/*
648 * Driver data (common to all clients)
649 */
650
651static const struct i2c_device_id lm80_id[] = {
652	{ "lm80", 0 },
653	{ "lm96080", 1 },
654	{ }
655};
656MODULE_DEVICE_TABLE(i2c, lm80_id);
657
658static struct i2c_driver lm80_driver = {
659	.class		= I2C_CLASS_HWMON,
660	.driver = {
661		.name	= "lm80",
662	},
663	.probe		= lm80_probe,
664	.id_table	= lm80_id,
665	.detect		= lm80_detect,
666	.address_list	= normal_i2c,
667};
668
669module_i2c_driver(lm80_driver);
670
671MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
672	"Philip Edelbrock <phil@netroedge.com>");
673MODULE_DESCRIPTION("LM80 driver");
674MODULE_LICENSE("GPL");
675