1/*
2 *  ads7871 - driver for TI ADS7871 A/D converter
3 *
4 *  Copyright (c) 2010 Paul Thomas <pthomas8589@gmail.com>
5 *
6 *  This program is distributed in the hope that it will be useful,
7 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
8 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 *  GNU General Public License for more details.
10 *
11 *  This program is free software; you can redistribute it and/or modify
12 *  it under the terms of the GNU General Public License version 2 or
13 *  later as publishhed by the Free Software Foundation.
14 *
15 *	You need to have something like this in struct spi_board_info
16 *	{
17 *		.modalias	= "ads7871",
18 *		.max_speed_hz	= 2*1000*1000,
19 *		.chip_select	= 0,
20 *		.bus_num	= 1,
21 *	},
22 */
23
24/*From figure 18 in the datasheet*/
25/*Register addresses*/
26#define REG_LS_BYTE	0 /*A/D Output Data, LS Byte*/
27#define REG_MS_BYTE	1 /*A/D Output Data, MS Byte*/
28#define REG_PGA_VALID	2 /*PGA Valid Register*/
29#define REG_AD_CONTROL	3 /*A/D Control Register*/
30#define REG_GAIN_MUX	4 /*Gain/Mux Register*/
31#define REG_IO_STATE	5 /*Digital I/O State Register*/
32#define REG_IO_CONTROL	6 /*Digital I/O Control Register*/
33#define REG_OSC_CONTROL	7 /*Rev/Oscillator Control Register*/
34#define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
35#define REG_ID		31 /*ID Register*/
36
37/*
38 * From figure 17 in the datasheet
39 * These bits get ORed with the address to form
40 * the instruction byte
41 */
42/*Instruction Bit masks*/
43#define INST_MODE_BM	(1 << 7)
44#define INST_READ_BM	(1 << 6)
45#define INST_16BIT_BM	(1 << 5)
46
47/*From figure 18 in the datasheet*/
48/*bit masks for Rev/Oscillator Control Register*/
49#define MUX_CNV_BV	7
50#define MUX_CNV_BM	(1 << MUX_CNV_BV)
51#define MUX_M3_BM	(1 << 3) /*M3 selects single ended*/
52#define MUX_G_BV	4 /*allows for reg = (gain << MUX_G_BV) | ...*/
53
54/*From figure 18 in the datasheet*/
55/*bit masks for Rev/Oscillator Control Register*/
56#define OSC_OSCR_BM	(1 << 5)
57#define OSC_OSCE_BM	(1 << 4)
58#define OSC_REFE_BM	(1 << 3)
59#define OSC_BUFE_BM	(1 << 2)
60#define OSC_R2V_BM	(1 << 1)
61#define OSC_RBG_BM	(1 << 0)
62
63#include <linux/module.h>
64#include <linux/init.h>
65#include <linux/spi/spi.h>
66#include <linux/hwmon.h>
67#include <linux/hwmon-sysfs.h>
68#include <linux/err.h>
69#include <linux/mutex.h>
70#include <linux/delay.h>
71
72#define DEVICE_NAME	"ads7871"
73
74struct ads7871_data {
75	struct device	*hwmon_dev;
76	struct mutex	update_lock;
77};
78
79static int ads7871_read_reg8(struct spi_device *spi, int reg)
80{
81	int ret;
82	reg = reg | INST_READ_BM;
83	ret = spi_w8r8(spi, reg);
84	return ret;
85}
86
87static int ads7871_read_reg16(struct spi_device *spi, int reg)
88{
89	int ret;
90	reg = reg | INST_READ_BM | INST_16BIT_BM;
91	ret = spi_w8r16(spi, reg);
92	return ret;
93}
94
95static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
96{
97	u8 tmp[2] = {reg, val};
98	return spi_write(spi, tmp, sizeof(tmp));
99}
100
101static ssize_t show_voltage(struct device *dev,
102		struct device_attribute *da, char *buf)
103{
104	struct spi_device *spi = to_spi_device(dev);
105	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
106	int ret, val, i = 0;
107	uint8_t channel, mux_cnv;
108
109	channel = attr->index;
110	/*
111	 * TODO: add support for conversions
112	 * other than single ended with a gain of 1
113	 */
114	/*MUX_M3_BM forces single ended*/
115	/*This is also where the gain of the PGA would be set*/
116	ads7871_write_reg8(spi, REG_GAIN_MUX,
117		(MUX_CNV_BM | MUX_M3_BM | channel));
118
119	ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
120	mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV);
121	/*
122	 * on 400MHz arm9 platform the conversion
123	 * is already done when we do this test
124	 */
125	while ((i < 2) && mux_cnv) {
126		i++;
127		ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
128		mux_cnv = ((ret & MUX_CNV_BM) >> MUX_CNV_BV);
129		msleep_interruptible(1);
130	}
131
132	if (mux_cnv == 0) {
133		val = ads7871_read_reg16(spi, REG_LS_BYTE);
134		/*result in volts*10000 = (val/8192)*2.5*10000*/
135		val = ((val >> 2) * 25000) / 8192;
136		return sprintf(buf, "%d\n", val);
137	} else {
138		return -1;
139	}
140}
141
142static ssize_t ads7871_show_name(struct device *dev,
143				 struct device_attribute *devattr, char *buf)
144{
145	return sprintf(buf, "%s\n", to_spi_device(dev)->modalias);
146}
147
148static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_voltage, NULL, 0);
149static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_voltage, NULL, 1);
150static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_voltage, NULL, 2);
151static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_voltage, NULL, 3);
152static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_voltage, NULL, 4);
153static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_voltage, NULL, 5);
154static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_voltage, NULL, 6);
155static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_voltage, NULL, 7);
156
157static DEVICE_ATTR(name, S_IRUGO, ads7871_show_name, NULL);
158
159static struct attribute *ads7871_attributes[] = {
160	&sensor_dev_attr_in0_input.dev_attr.attr,
161	&sensor_dev_attr_in1_input.dev_attr.attr,
162	&sensor_dev_attr_in2_input.dev_attr.attr,
163	&sensor_dev_attr_in3_input.dev_attr.attr,
164	&sensor_dev_attr_in4_input.dev_attr.attr,
165	&sensor_dev_attr_in5_input.dev_attr.attr,
166	&sensor_dev_attr_in6_input.dev_attr.attr,
167	&sensor_dev_attr_in7_input.dev_attr.attr,
168	&dev_attr_name.attr,
169	NULL
170};
171
172static const struct attribute_group ads7871_group = {
173	.attrs = ads7871_attributes,
174};
175
176static int ads7871_probe(struct spi_device *spi)
177{
178	int ret, err;
179	uint8_t val;
180	struct ads7871_data *pdata;
181
182	dev_dbg(&spi->dev, "probe\n");
183
184	/* Configure the SPI bus */
185	spi->mode = (SPI_MODE_0);
186	spi->bits_per_word = 8;
187	spi_setup(spi);
188
189	ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
190	ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
191
192	val = (OSC_OSCR_BM | OSC_OSCE_BM | OSC_REFE_BM | OSC_BUFE_BM);
193	ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
194	ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
195
196	dev_dbg(&spi->dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
197	/*
198	 * because there is no other error checking on an SPI bus
199	 * we need to make sure we really have a chip
200	 */
201	if (val != ret)
202		return -ENODEV;
203
204	pdata = devm_kzalloc(&spi->dev, sizeof(struct ads7871_data),
205			     GFP_KERNEL);
206	if (!pdata)
207		return -ENOMEM;
208
209	err = sysfs_create_group(&spi->dev.kobj, &ads7871_group);
210	if (err < 0)
211		return err;
212
213	spi_set_drvdata(spi, pdata);
214
215	pdata->hwmon_dev = hwmon_device_register(&spi->dev);
216	if (IS_ERR(pdata->hwmon_dev)) {
217		err = PTR_ERR(pdata->hwmon_dev);
218		goto error_remove;
219	}
220
221	return 0;
222
223error_remove:
224	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
225	return err;
226}
227
228static int ads7871_remove(struct spi_device *spi)
229{
230	struct ads7871_data *pdata = spi_get_drvdata(spi);
231
232	hwmon_device_unregister(pdata->hwmon_dev);
233	sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
234	return 0;
235}
236
237static struct spi_driver ads7871_driver = {
238	.driver = {
239		.name = DEVICE_NAME,
240		.owner = THIS_MODULE,
241	},
242
243	.probe = ads7871_probe,
244	.remove = ads7871_remove,
245};
246
247module_spi_driver(ads7871_driver);
248
249MODULE_AUTHOR("Paul Thomas <pthomas8589@gmail.com>");
250MODULE_DESCRIPTION("TI ADS7871 A/D driver");
251MODULE_LICENSE("GPL");
252