1/*
2 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3 *	       monitoring
4 * Based on lm75.c and lm85.c
5 * Supports adm1030 / adm1031
6 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7 * Reworked by Jean Delvare <jdelvare@suse.de>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/i2c.h>
29#include <linux/hwmon.h>
30#include <linux/hwmon-sysfs.h>
31#include <linux/err.h>
32#include <linux/mutex.h>
33
34/* Following macros takes channel parameter starting from 0 to 2 */
35#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37#define ADM1031_REG_PWM			(0x22)
38#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39#define ADM1031_REG_FAN_FILTER		(0x23)
40
41#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
42#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
43#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
44#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
45
46#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
47#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
48
49#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
50
51#define ADM1031_REG_CONF1		0x00
52#define ADM1031_REG_CONF2		0x01
53#define ADM1031_REG_EXT_TEMP		0x06
54
55#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
56#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
57#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
58
59#define ADM1031_CONF2_PWM1_ENABLE	0x01
60#define ADM1031_CONF2_PWM2_ENABLE	0x02
61#define ADM1031_CONF2_TACH1_ENABLE	0x04
62#define ADM1031_CONF2_TACH2_ENABLE	0x08
63#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
64
65#define ADM1031_UPDATE_RATE_MASK	0x1c
66#define ADM1031_UPDATE_RATE_SHIFT	2
67
68/* Addresses to scan */
69static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70
71enum chips { adm1030, adm1031 };
72
73typedef u8 auto_chan_table_t[8][2];
74
75/* Each client has this additional data */
76struct adm1031_data {
77	struct i2c_client *client;
78	const struct attribute_group *groups[3];
79	struct mutex update_lock;
80	int chip_type;
81	char valid;		/* !=0 if following fields are valid */
82	unsigned long last_updated;	/* In jiffies */
83	unsigned int update_interval;	/* In milliseconds */
84	/*
85	 * The chan_select_table contains the possible configurations for
86	 * auto fan control.
87	 */
88	const auto_chan_table_t *chan_select_table;
89	u16 alarm;
90	u8 conf1;
91	u8 conf2;
92	u8 fan[2];
93	u8 fan_div[2];
94	u8 fan_min[2];
95	u8 pwm[2];
96	u8 old_pwm[2];
97	s8 temp[3];
98	u8 ext_temp[3];
99	u8 auto_temp[3];
100	u8 auto_temp_min[3];
101	u8 auto_temp_off[3];
102	u8 auto_temp_max[3];
103	s8 temp_offset[3];
104	s8 temp_min[3];
105	s8 temp_max[3];
106	s8 temp_crit[3];
107};
108
109static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
110{
111	return i2c_smbus_read_byte_data(client, reg);
112}
113
114static inline int
115adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
116{
117	return i2c_smbus_write_byte_data(client, reg, value);
118}
119
120static struct adm1031_data *adm1031_update_device(struct device *dev)
121{
122	struct adm1031_data *data = dev_get_drvdata(dev);
123	struct i2c_client *client = data->client;
124	unsigned long next_update;
125	int chan;
126
127	mutex_lock(&data->update_lock);
128
129	next_update = data->last_updated
130	  + msecs_to_jiffies(data->update_interval);
131	if (time_after(jiffies, next_update) || !data->valid) {
132
133		dev_dbg(&client->dev, "Starting adm1031 update\n");
134		for (chan = 0;
135		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
136			u8 oldh, newh;
137
138			oldh =
139			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
140			data->ext_temp[chan] =
141			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
142			newh =
143			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
144			if (newh != oldh) {
145				data->ext_temp[chan] =
146				    adm1031_read_value(client,
147						       ADM1031_REG_EXT_TEMP);
148#ifdef DEBUG
149				oldh =
150				    adm1031_read_value(client,
151						       ADM1031_REG_TEMP(chan));
152
153				/* oldh is actually newer */
154				if (newh != oldh)
155					dev_warn(&client->dev,
156					  "Remote temperature may be wrong.\n");
157#endif
158			}
159			data->temp[chan] = newh;
160
161			data->temp_offset[chan] =
162			    adm1031_read_value(client,
163					       ADM1031_REG_TEMP_OFFSET(chan));
164			data->temp_min[chan] =
165			    adm1031_read_value(client,
166					       ADM1031_REG_TEMP_MIN(chan));
167			data->temp_max[chan] =
168			    adm1031_read_value(client,
169					       ADM1031_REG_TEMP_MAX(chan));
170			data->temp_crit[chan] =
171			    adm1031_read_value(client,
172					       ADM1031_REG_TEMP_CRIT(chan));
173			data->auto_temp[chan] =
174			    adm1031_read_value(client,
175					       ADM1031_REG_AUTO_TEMP(chan));
176
177		}
178
179		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
180		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
181
182		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
183		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
184		if (data->chip_type == adm1030)
185			data->alarm &= 0xc0ff;
186
187		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
188		     chan++) {
189			data->fan_div[chan] =
190			    adm1031_read_value(client,
191					       ADM1031_REG_FAN_DIV(chan));
192			data->fan_min[chan] =
193			    adm1031_read_value(client,
194					       ADM1031_REG_FAN_MIN(chan));
195			data->fan[chan] =
196			    adm1031_read_value(client,
197					       ADM1031_REG_FAN_SPEED(chan));
198			data->pwm[chan] =
199			  (adm1031_read_value(client,
200					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
201		}
202		data->last_updated = jiffies;
203		data->valid = 1;
204	}
205
206	mutex_unlock(&data->update_lock);
207
208	return data;
209}
210
211#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
212					((val + 500) / 1000)))
213
214#define TEMP_FROM_REG(val)		((val) * 1000)
215
216#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
217
218#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
219#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
220						      (val) | 0x70 : (val))
221
222#define FAN_FROM_REG(reg, div)		((reg) ? \
223					 (11250 * 60) / ((reg) * (div)) : 0)
224
225static int FAN_TO_REG(int reg, int div)
226{
227	int tmp;
228	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
229	return tmp > 255 ? 255 : tmp;
230}
231
232#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
233
234#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
235#define PWM_FROM_REG(val)		((val) << 4)
236
237#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
238#define FAN_CHAN_TO_REG(val, reg)	\
239	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
240
241#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
242	((((val) / 500) & 0xf8) | ((reg) & 0x7))
243#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
244#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
245
246#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
247
248#define AUTO_TEMP_OFF_FROM_REG(reg)		\
249	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
250
251#define AUTO_TEMP_MAX_FROM_REG(reg)		\
252	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
253	AUTO_TEMP_MIN_FROM_REG(reg))
254
255static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
256{
257	int ret;
258	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
259
260	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
261	ret = ((reg & 0xf8) |
262	       (range < 10000 ? 0 :
263		range < 20000 ? 1 :
264		range < 40000 ? 2 : range < 80000 ? 3 : 4));
265	return ret;
266}
267
268/* FAN auto control */
269#define GET_FAN_AUTO_BITFIELD(data, idx)	\
270	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
271
272/*
273 * The tables below contains the possible values for the auto fan
274 * control bitfields. the index in the table is the register value.
275 * MSb is the auto fan control enable bit, so the four first entries
276 * in the table disables auto fan control when both bitfields are zero.
277 */
278static const auto_chan_table_t auto_channel_select_table_adm1031 = {
279	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
280	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
281	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
282	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
283	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
284};
285
286static const auto_chan_table_t auto_channel_select_table_adm1030 = {
287	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
288	{ 2 /* 0b10 */		, 0 },
289	{ 0xff /* invalid */	, 0 },
290	{ 0xff /* invalid */	, 0 },
291	{ 3 /* 0b11 */		, 0 },
292};
293
294/*
295 * That function checks if a bitfield is valid and returns the other bitfield
296 * nearest match if no exact match where found.
297 */
298static int
299get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
300{
301	int i;
302	int first_match = -1, exact_match = -1;
303	u8 other_reg_val =
304	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
305
306	if (val == 0)
307		return 0;
308
309	for (i = 0; i < 8; i++) {
310		if ((val == (*data->chan_select_table)[i][chan]) &&
311		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
312		     other_reg_val)) {
313			/* We found an exact match */
314			exact_match = i;
315			break;
316		} else if (val == (*data->chan_select_table)[i][chan] &&
317			   first_match == -1) {
318			/*
319			 * Save the first match in case of an exact match has
320			 * not been found
321			 */
322			first_match = i;
323		}
324	}
325
326	if (exact_match >= 0)
327		return exact_match;
328	else if (first_match >= 0)
329		return first_match;
330
331	return -EINVAL;
332}
333
334static ssize_t show_fan_auto_channel(struct device *dev,
335				     struct device_attribute *attr, char *buf)
336{
337	int nr = to_sensor_dev_attr(attr)->index;
338	struct adm1031_data *data = adm1031_update_device(dev);
339	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
340}
341
342static ssize_t
343set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
344		     const char *buf, size_t count)
345{
346	struct adm1031_data *data = dev_get_drvdata(dev);
347	struct i2c_client *client = data->client;
348	int nr = to_sensor_dev_attr(attr)->index;
349	long val;
350	u8 reg;
351	int ret;
352	u8 old_fan_mode;
353
354	ret = kstrtol(buf, 10, &val);
355	if (ret)
356		return ret;
357
358	old_fan_mode = data->conf1;
359
360	mutex_lock(&data->update_lock);
361
362	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
363	if (ret < 0) {
364		mutex_unlock(&data->update_lock);
365		return ret;
366	}
367	reg = ret;
368	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
369	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
370	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
371		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
372			/*
373			 * Switch to Auto Fan Mode
374			 * Save PWM registers
375			 * Set PWM registers to 33% Both
376			 */
377			data->old_pwm[0] = data->pwm[0];
378			data->old_pwm[1] = data->pwm[1];
379			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
380		} else {
381			/* Switch to Manual Mode */
382			data->pwm[0] = data->old_pwm[0];
383			data->pwm[1] = data->old_pwm[1];
384			/* Restore PWM registers */
385			adm1031_write_value(client, ADM1031_REG_PWM,
386					    data->pwm[0] | (data->pwm[1] << 4));
387		}
388	}
389	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
390	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
391	mutex_unlock(&data->update_lock);
392	return count;
393}
394
395static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
396		show_fan_auto_channel, set_fan_auto_channel, 0);
397static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
398		show_fan_auto_channel, set_fan_auto_channel, 1);
399
400/* Auto Temps */
401static ssize_t show_auto_temp_off(struct device *dev,
402				  struct device_attribute *attr, char *buf)
403{
404	int nr = to_sensor_dev_attr(attr)->index;
405	struct adm1031_data *data = adm1031_update_device(dev);
406	return sprintf(buf, "%d\n",
407		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
408}
409static ssize_t show_auto_temp_min(struct device *dev,
410				  struct device_attribute *attr, char *buf)
411{
412	int nr = to_sensor_dev_attr(attr)->index;
413	struct adm1031_data *data = adm1031_update_device(dev);
414	return sprintf(buf, "%d\n",
415		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
416}
417static ssize_t
418set_auto_temp_min(struct device *dev, struct device_attribute *attr,
419		  const char *buf, size_t count)
420{
421	struct adm1031_data *data = dev_get_drvdata(dev);
422	struct i2c_client *client = data->client;
423	int nr = to_sensor_dev_attr(attr)->index;
424	long val;
425	int ret;
426
427	ret = kstrtol(buf, 10, &val);
428	if (ret)
429		return ret;
430
431	val = clamp_val(val, 0, 127000);
432	mutex_lock(&data->update_lock);
433	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
434	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
435			    data->auto_temp[nr]);
436	mutex_unlock(&data->update_lock);
437	return count;
438}
439static ssize_t show_auto_temp_max(struct device *dev,
440				  struct device_attribute *attr, char *buf)
441{
442	int nr = to_sensor_dev_attr(attr)->index;
443	struct adm1031_data *data = adm1031_update_device(dev);
444	return sprintf(buf, "%d\n",
445		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
446}
447static ssize_t
448set_auto_temp_max(struct device *dev, struct device_attribute *attr,
449		  const char *buf, size_t count)
450{
451	struct adm1031_data *data = dev_get_drvdata(dev);
452	struct i2c_client *client = data->client;
453	int nr = to_sensor_dev_attr(attr)->index;
454	long val;
455	int ret;
456
457	ret = kstrtol(buf, 10, &val);
458	if (ret)
459		return ret;
460
461	val = clamp_val(val, 0, 127000);
462	mutex_lock(&data->update_lock);
463	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
464						  data->pwm[nr]);
465	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
466			    data->temp_max[nr]);
467	mutex_unlock(&data->update_lock);
468	return count;
469}
470
471#define auto_temp_reg(offset)						\
472static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
473		show_auto_temp_off, NULL, offset - 1);			\
474static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
475		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
476static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
477		show_auto_temp_max, set_auto_temp_max, offset - 1)
478
479auto_temp_reg(1);
480auto_temp_reg(2);
481auto_temp_reg(3);
482
483/* pwm */
484static ssize_t show_pwm(struct device *dev,
485			struct device_attribute *attr, char *buf)
486{
487	int nr = to_sensor_dev_attr(attr)->index;
488	struct adm1031_data *data = adm1031_update_device(dev);
489	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
490}
491static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
492		       const char *buf, size_t count)
493{
494	struct adm1031_data *data = dev_get_drvdata(dev);
495	struct i2c_client *client = data->client;
496	int nr = to_sensor_dev_attr(attr)->index;
497	long val;
498	int ret, reg;
499
500	ret = kstrtol(buf, 10, &val);
501	if (ret)
502		return ret;
503
504	mutex_lock(&data->update_lock);
505	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
506	    (((val>>4) & 0xf) != 5)) {
507		/* In automatic mode, the only PWM accepted is 33% */
508		mutex_unlock(&data->update_lock);
509		return -EINVAL;
510	}
511	data->pwm[nr] = PWM_TO_REG(val);
512	reg = adm1031_read_value(client, ADM1031_REG_PWM);
513	adm1031_write_value(client, ADM1031_REG_PWM,
514			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
515			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
516	mutex_unlock(&data->update_lock);
517	return count;
518}
519
520static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
521static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
522static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
523		show_pwm, set_pwm, 0);
524static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
525		show_pwm, set_pwm, 1);
526
527/* Fans */
528
529/*
530 * That function checks the cases where the fan reading is not
531 * relevant.  It is used to provide 0 as fan reading when the fan is
532 * not supposed to run
533 */
534static int trust_fan_readings(struct adm1031_data *data, int chan)
535{
536	int res = 0;
537
538	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
539		switch (data->conf1 & 0x60) {
540		case 0x00:
541			/*
542			 * remote temp1 controls fan1,
543			 * remote temp2 controls fan2
544			 */
545			res = data->temp[chan+1] >=
546			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
547			break;
548		case 0x20:	/* remote temp1 controls both fans */
549			res =
550			    data->temp[1] >=
551			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
552			break;
553		case 0x40:	/* remote temp2 controls both fans */
554			res =
555			    data->temp[2] >=
556			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
557			break;
558		case 0x60:	/* max controls both fans */
559			res =
560			    data->temp[0] >=
561			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
562			    || data->temp[1] >=
563			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
564			    || (data->chip_type == adm1031
565				&& data->temp[2] >=
566				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
567			break;
568		}
569	} else {
570		res = data->pwm[chan] > 0;
571	}
572	return res;
573}
574
575
576static ssize_t show_fan(struct device *dev,
577			struct device_attribute *attr, char *buf)
578{
579	int nr = to_sensor_dev_attr(attr)->index;
580	struct adm1031_data *data = adm1031_update_device(dev);
581	int value;
582
583	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
584				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
585	return sprintf(buf, "%d\n", value);
586}
587
588static ssize_t show_fan_div(struct device *dev,
589			    struct device_attribute *attr, char *buf)
590{
591	int nr = to_sensor_dev_attr(attr)->index;
592	struct adm1031_data *data = adm1031_update_device(dev);
593	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
594}
595static ssize_t show_fan_min(struct device *dev,
596			    struct device_attribute *attr, char *buf)
597{
598	int nr = to_sensor_dev_attr(attr)->index;
599	struct adm1031_data *data = adm1031_update_device(dev);
600	return sprintf(buf, "%d\n",
601		       FAN_FROM_REG(data->fan_min[nr],
602				    FAN_DIV_FROM_REG(data->fan_div[nr])));
603}
604static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
605			   const char *buf, size_t count)
606{
607	struct adm1031_data *data = dev_get_drvdata(dev);
608	struct i2c_client *client = data->client;
609	int nr = to_sensor_dev_attr(attr)->index;
610	long val;
611	int ret;
612
613	ret = kstrtol(buf, 10, &val);
614	if (ret)
615		return ret;
616
617	mutex_lock(&data->update_lock);
618	if (val) {
619		data->fan_min[nr] =
620			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
621	} else {
622		data->fan_min[nr] = 0xff;
623	}
624	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
625	mutex_unlock(&data->update_lock);
626	return count;
627}
628static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
629			   const char *buf, size_t count)
630{
631	struct adm1031_data *data = dev_get_drvdata(dev);
632	struct i2c_client *client = data->client;
633	int nr = to_sensor_dev_attr(attr)->index;
634	long val;
635	u8 tmp;
636	int old_div;
637	int new_min;
638	int ret;
639
640	ret = kstrtol(buf, 10, &val);
641	if (ret)
642		return ret;
643
644	tmp = val == 8 ? 0xc0 :
645	      val == 4 ? 0x80 :
646	      val == 2 ? 0x40 :
647	      val == 1 ? 0x00 :
648	      0xff;
649	if (tmp == 0xff)
650		return -EINVAL;
651
652	mutex_lock(&data->update_lock);
653	/* Get fresh readings */
654	data->fan_div[nr] = adm1031_read_value(client,
655					       ADM1031_REG_FAN_DIV(nr));
656	data->fan_min[nr] = adm1031_read_value(client,
657					       ADM1031_REG_FAN_MIN(nr));
658
659	/* Write the new clock divider and fan min */
660	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
661	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
662	new_min = data->fan_min[nr] * old_div / val;
663	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
664
665	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
666			    data->fan_div[nr]);
667	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
668			    data->fan_min[nr]);
669
670	/* Invalidate the cache: fan speed is no longer valid */
671	data->valid = 0;
672	mutex_unlock(&data->update_lock);
673	return count;
674}
675
676#define fan_offset(offset)						\
677static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
678		show_fan, NULL, offset - 1);				\
679static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
680		show_fan_min, set_fan_min, offset - 1);			\
681static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
682		show_fan_div, set_fan_div, offset - 1)
683
684fan_offset(1);
685fan_offset(2);
686
687
688/* Temps */
689static ssize_t show_temp(struct device *dev,
690			 struct device_attribute *attr, char *buf)
691{
692	int nr = to_sensor_dev_attr(attr)->index;
693	struct adm1031_data *data = adm1031_update_device(dev);
694	int ext;
695	ext = nr == 0 ?
696	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
697	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
698	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
699}
700static ssize_t show_temp_offset(struct device *dev,
701				struct device_attribute *attr, char *buf)
702{
703	int nr = to_sensor_dev_attr(attr)->index;
704	struct adm1031_data *data = adm1031_update_device(dev);
705	return sprintf(buf, "%d\n",
706		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
707}
708static ssize_t show_temp_min(struct device *dev,
709			     struct device_attribute *attr, char *buf)
710{
711	int nr = to_sensor_dev_attr(attr)->index;
712	struct adm1031_data *data = adm1031_update_device(dev);
713	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
714}
715static ssize_t show_temp_max(struct device *dev,
716			     struct device_attribute *attr, char *buf)
717{
718	int nr = to_sensor_dev_attr(attr)->index;
719	struct adm1031_data *data = adm1031_update_device(dev);
720	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
721}
722static ssize_t show_temp_crit(struct device *dev,
723			      struct device_attribute *attr, char *buf)
724{
725	int nr = to_sensor_dev_attr(attr)->index;
726	struct adm1031_data *data = adm1031_update_device(dev);
727	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
728}
729static ssize_t set_temp_offset(struct device *dev,
730			       struct device_attribute *attr, const char *buf,
731			       size_t count)
732{
733	struct adm1031_data *data = dev_get_drvdata(dev);
734	struct i2c_client *client = data->client;
735	int nr = to_sensor_dev_attr(attr)->index;
736	long val;
737	int ret;
738
739	ret = kstrtol(buf, 10, &val);
740	if (ret)
741		return ret;
742
743	val = clamp_val(val, -15000, 15000);
744	mutex_lock(&data->update_lock);
745	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
746	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
747			    data->temp_offset[nr]);
748	mutex_unlock(&data->update_lock);
749	return count;
750}
751static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
752			    const char *buf, size_t count)
753{
754	struct adm1031_data *data = dev_get_drvdata(dev);
755	struct i2c_client *client = data->client;
756	int nr = to_sensor_dev_attr(attr)->index;
757	long val;
758	int ret;
759
760	ret = kstrtol(buf, 10, &val);
761	if (ret)
762		return ret;
763
764	val = clamp_val(val, -55000, 127000);
765	mutex_lock(&data->update_lock);
766	data->temp_min[nr] = TEMP_TO_REG(val);
767	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
768			    data->temp_min[nr]);
769	mutex_unlock(&data->update_lock);
770	return count;
771}
772static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
773			    const char *buf, size_t count)
774{
775	struct adm1031_data *data = dev_get_drvdata(dev);
776	struct i2c_client *client = data->client;
777	int nr = to_sensor_dev_attr(attr)->index;
778	long val;
779	int ret;
780
781	ret = kstrtol(buf, 10, &val);
782	if (ret)
783		return ret;
784
785	val = clamp_val(val, -55000, 127000);
786	mutex_lock(&data->update_lock);
787	data->temp_max[nr] = TEMP_TO_REG(val);
788	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
789			    data->temp_max[nr]);
790	mutex_unlock(&data->update_lock);
791	return count;
792}
793static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
794			     const char *buf, size_t count)
795{
796	struct adm1031_data *data = dev_get_drvdata(dev);
797	struct i2c_client *client = data->client;
798	int nr = to_sensor_dev_attr(attr)->index;
799	long val;
800	int ret;
801
802	ret = kstrtol(buf, 10, &val);
803	if (ret)
804		return ret;
805
806	val = clamp_val(val, -55000, 127000);
807	mutex_lock(&data->update_lock);
808	data->temp_crit[nr] = TEMP_TO_REG(val);
809	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
810			    data->temp_crit[nr]);
811	mutex_unlock(&data->update_lock);
812	return count;
813}
814
815#define temp_reg(offset)						\
816static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
817		show_temp, NULL, offset - 1);				\
818static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
819		show_temp_offset, set_temp_offset, offset - 1);		\
820static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
821		show_temp_min, set_temp_min, offset - 1);		\
822static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
823		show_temp_max, set_temp_max, offset - 1);		\
824static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
825		show_temp_crit, set_temp_crit, offset - 1)
826
827temp_reg(1);
828temp_reg(2);
829temp_reg(3);
830
831/* Alarms */
832static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
833			   char *buf)
834{
835	struct adm1031_data *data = adm1031_update_device(dev);
836	return sprintf(buf, "%d\n", data->alarm);
837}
838
839static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
840
841static ssize_t show_alarm(struct device *dev,
842			  struct device_attribute *attr, char *buf)
843{
844	int bitnr = to_sensor_dev_attr(attr)->index;
845	struct adm1031_data *data = adm1031_update_device(dev);
846	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
847}
848
849static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
850static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
851static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
852static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
853static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
854static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
855static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
856static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
857static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
858static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
859static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
860static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
861static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
862static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
863static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
864
865/* Update Interval */
866static const unsigned int update_intervals[] = {
867	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
868};
869
870static ssize_t show_update_interval(struct device *dev,
871				    struct device_attribute *attr, char *buf)
872{
873	struct adm1031_data *data = dev_get_drvdata(dev);
874
875	return sprintf(buf, "%u\n", data->update_interval);
876}
877
878static ssize_t set_update_interval(struct device *dev,
879				   struct device_attribute *attr,
880				   const char *buf, size_t count)
881{
882	struct adm1031_data *data = dev_get_drvdata(dev);
883	struct i2c_client *client = data->client;
884	unsigned long val;
885	int i, err;
886	u8 reg;
887
888	err = kstrtoul(buf, 10, &val);
889	if (err)
890		return err;
891
892	/*
893	 * Find the nearest update interval from the table.
894	 * Use it to determine the matching update rate.
895	 */
896	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
897		if (val >= update_intervals[i])
898			break;
899	}
900	/* if not found, we point to the last entry (lowest update interval) */
901
902	/* set the new update rate while preserving other settings */
903	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
904	reg &= ~ADM1031_UPDATE_RATE_MASK;
905	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
906	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
907
908	mutex_lock(&data->update_lock);
909	data->update_interval = update_intervals[i];
910	mutex_unlock(&data->update_lock);
911
912	return count;
913}
914
915static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
916		   set_update_interval);
917
918static struct attribute *adm1031_attributes[] = {
919	&sensor_dev_attr_fan1_input.dev_attr.attr,
920	&sensor_dev_attr_fan1_div.dev_attr.attr,
921	&sensor_dev_attr_fan1_min.dev_attr.attr,
922	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
923	&sensor_dev_attr_fan1_fault.dev_attr.attr,
924	&sensor_dev_attr_pwm1.dev_attr.attr,
925	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
926	&sensor_dev_attr_temp1_input.dev_attr.attr,
927	&sensor_dev_attr_temp1_offset.dev_attr.attr,
928	&sensor_dev_attr_temp1_min.dev_attr.attr,
929	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
930	&sensor_dev_attr_temp1_max.dev_attr.attr,
931	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
932	&sensor_dev_attr_temp1_crit.dev_attr.attr,
933	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
934	&sensor_dev_attr_temp2_input.dev_attr.attr,
935	&sensor_dev_attr_temp2_offset.dev_attr.attr,
936	&sensor_dev_attr_temp2_min.dev_attr.attr,
937	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
938	&sensor_dev_attr_temp2_max.dev_attr.attr,
939	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
940	&sensor_dev_attr_temp2_crit.dev_attr.attr,
941	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
942	&sensor_dev_attr_temp2_fault.dev_attr.attr,
943
944	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
945	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
946	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
947
948	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
949	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
950	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
951
952	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
953
954	&dev_attr_update_interval.attr,
955	&dev_attr_alarms.attr,
956
957	NULL
958};
959
960static const struct attribute_group adm1031_group = {
961	.attrs = adm1031_attributes,
962};
963
964static struct attribute *adm1031_attributes_opt[] = {
965	&sensor_dev_attr_fan2_input.dev_attr.attr,
966	&sensor_dev_attr_fan2_div.dev_attr.attr,
967	&sensor_dev_attr_fan2_min.dev_attr.attr,
968	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
969	&sensor_dev_attr_fan2_fault.dev_attr.attr,
970	&sensor_dev_attr_pwm2.dev_attr.attr,
971	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
972	&sensor_dev_attr_temp3_input.dev_attr.attr,
973	&sensor_dev_attr_temp3_offset.dev_attr.attr,
974	&sensor_dev_attr_temp3_min.dev_attr.attr,
975	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
976	&sensor_dev_attr_temp3_max.dev_attr.attr,
977	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
978	&sensor_dev_attr_temp3_crit.dev_attr.attr,
979	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
980	&sensor_dev_attr_temp3_fault.dev_attr.attr,
981	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
982	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
983	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
984	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
985	NULL
986};
987
988static const struct attribute_group adm1031_group_opt = {
989	.attrs = adm1031_attributes_opt,
990};
991
992/* Return 0 if detection is successful, -ENODEV otherwise */
993static int adm1031_detect(struct i2c_client *client,
994			  struct i2c_board_info *info)
995{
996	struct i2c_adapter *adapter = client->adapter;
997	const char *name;
998	int id, co;
999
1000	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1001		return -ENODEV;
1002
1003	id = i2c_smbus_read_byte_data(client, 0x3d);
1004	co = i2c_smbus_read_byte_data(client, 0x3e);
1005
1006	if (!((id == 0x31 || id == 0x30) && co == 0x41))
1007		return -ENODEV;
1008	name = (id == 0x30) ? "adm1030" : "adm1031";
1009
1010	strlcpy(info->type, name, I2C_NAME_SIZE);
1011
1012	return 0;
1013}
1014
1015static void adm1031_init_client(struct i2c_client *client)
1016{
1017	unsigned int read_val;
1018	unsigned int mask;
1019	int i;
1020	struct adm1031_data *data = i2c_get_clientdata(client);
1021
1022	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1023	if (data->chip_type == adm1031) {
1024		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1025			ADM1031_CONF2_TACH2_ENABLE);
1026	}
1027	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1028	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1029	if ((read_val | mask) != read_val)
1030		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1031
1032	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1033	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1034		adm1031_write_value(client, ADM1031_REG_CONF1,
1035				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1036	}
1037
1038	/* Read the chip's update rate */
1039	mask = ADM1031_UPDATE_RATE_MASK;
1040	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1041	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1042	/* Save it as update interval */
1043	data->update_interval = update_intervals[i];
1044}
1045
1046static int adm1031_probe(struct i2c_client *client,
1047			 const struct i2c_device_id *id)
1048{
1049	struct device *dev = &client->dev;
1050	struct device *hwmon_dev;
1051	struct adm1031_data *data;
1052
1053	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1054	if (!data)
1055		return -ENOMEM;
1056
1057	i2c_set_clientdata(client, data);
1058	data->client = client;
1059	data->chip_type = id->driver_data;
1060	mutex_init(&data->update_lock);
1061
1062	if (data->chip_type == adm1030)
1063		data->chan_select_table = &auto_channel_select_table_adm1030;
1064	else
1065		data->chan_select_table = &auto_channel_select_table_adm1031;
1066
1067	/* Initialize the ADM1031 chip */
1068	adm1031_init_client(client);
1069
1070	/* sysfs hooks */
1071	data->groups[0] = &adm1031_group;
1072	if (data->chip_type == adm1031)
1073		data->groups[1] = &adm1031_group_opt;
1074
1075	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1076							   data, data->groups);
1077	return PTR_ERR_OR_ZERO(hwmon_dev);
1078}
1079
1080static const struct i2c_device_id adm1031_id[] = {
1081	{ "adm1030", adm1030 },
1082	{ "adm1031", adm1031 },
1083	{ }
1084};
1085MODULE_DEVICE_TABLE(i2c, adm1031_id);
1086
1087static struct i2c_driver adm1031_driver = {
1088	.class		= I2C_CLASS_HWMON,
1089	.driver = {
1090		.name = "adm1031",
1091	},
1092	.probe		= adm1031_probe,
1093	.id_table	= adm1031_id,
1094	.detect		= adm1031_detect,
1095	.address_list	= normal_i2c,
1096};
1097
1098module_i2c_driver(adm1031_driver);
1099
1100MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1101MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1102MODULE_LICENSE("GPL");
1103