1/*
2 * Copyright (c) 2012, Microsoft Corporation.
3 *
4 * Author:
5 *   K. Y. Srinivasan <kys@microsoft.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT.  See the GNU General Public License for more
15 * details.
16 *
17 */
18
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include <linux/kernel.h>
22#include <linux/jiffies.h>
23#include <linux/mman.h>
24#include <linux/delay.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/slab.h>
28#include <linux/kthread.h>
29#include <linux/completion.h>
30#include <linux/memory_hotplug.h>
31#include <linux/memory.h>
32#include <linux/notifier.h>
33#include <linux/percpu_counter.h>
34
35#include <linux/hyperv.h>
36
37/*
38 * We begin with definitions supporting the Dynamic Memory protocol
39 * with the host.
40 *
41 * Begin protocol definitions.
42 */
43
44
45
46/*
47 * Protocol versions. The low word is the minor version, the high word the major
48 * version.
49 *
50 * History:
51 * Initial version 1.0
52 * Changed to 0.1 on 2009/03/25
53 * Changes to 0.2 on 2009/05/14
54 * Changes to 0.3 on 2009/12/03
55 * Changed to 1.0 on 2011/04/05
56 */
57
58#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62enum {
63	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65
66	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68
69	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
70};
71
72
73
74/*
75 * Message Types
76 */
77
78enum dm_message_type {
79	/*
80	 * Version 0.3
81	 */
82	DM_ERROR			= 0,
83	DM_VERSION_REQUEST		= 1,
84	DM_VERSION_RESPONSE		= 2,
85	DM_CAPABILITIES_REPORT		= 3,
86	DM_CAPABILITIES_RESPONSE	= 4,
87	DM_STATUS_REPORT		= 5,
88	DM_BALLOON_REQUEST		= 6,
89	DM_BALLOON_RESPONSE		= 7,
90	DM_UNBALLOON_REQUEST		= 8,
91	DM_UNBALLOON_RESPONSE		= 9,
92	DM_MEM_HOT_ADD_REQUEST		= 10,
93	DM_MEM_HOT_ADD_RESPONSE		= 11,
94	DM_VERSION_03_MAX		= 11,
95	/*
96	 * Version 1.0.
97	 */
98	DM_INFO_MESSAGE			= 12,
99	DM_VERSION_1_MAX		= 12
100};
101
102
103/*
104 * Structures defining the dynamic memory management
105 * protocol.
106 */
107
108union dm_version {
109	struct {
110		__u16 minor_version;
111		__u16 major_version;
112	};
113	__u32 version;
114} __packed;
115
116
117union dm_caps {
118	struct {
119		__u64 balloon:1;
120		__u64 hot_add:1;
121		/*
122		 * To support guests that may have alignment
123		 * limitations on hot-add, the guest can specify
124		 * its alignment requirements; a value of n
125		 * represents an alignment of 2^n in mega bytes.
126		 */
127		__u64 hot_add_alignment:4;
128		__u64 reservedz:58;
129	} cap_bits;
130	__u64 caps;
131} __packed;
132
133union dm_mem_page_range {
134	struct  {
135		/*
136		 * The PFN number of the first page in the range.
137		 * 40 bits is the architectural limit of a PFN
138		 * number for AMD64.
139		 */
140		__u64 start_page:40;
141		/*
142		 * The number of pages in the range.
143		 */
144		__u64 page_cnt:24;
145	} finfo;
146	__u64  page_range;
147} __packed;
148
149
150
151/*
152 * The header for all dynamic memory messages:
153 *
154 * type: Type of the message.
155 * size: Size of the message in bytes; including the header.
156 * trans_id: The guest is responsible for manufacturing this ID.
157 */
158
159struct dm_header {
160	__u16 type;
161	__u16 size;
162	__u32 trans_id;
163} __packed;
164
165/*
166 * A generic message format for dynamic memory.
167 * Specific message formats are defined later in the file.
168 */
169
170struct dm_message {
171	struct dm_header hdr;
172	__u8 data[]; /* enclosed message */
173} __packed;
174
175
176/*
177 * Specific message types supporting the dynamic memory protocol.
178 */
179
180/*
181 * Version negotiation message. Sent from the guest to the host.
182 * The guest is free to try different versions until the host
183 * accepts the version.
184 *
185 * dm_version: The protocol version requested.
186 * is_last_attempt: If TRUE, this is the last version guest will request.
187 * reservedz: Reserved field, set to zero.
188 */
189
190struct dm_version_request {
191	struct dm_header hdr;
192	union dm_version version;
193	__u32 is_last_attempt:1;
194	__u32 reservedz:31;
195} __packed;
196
197/*
198 * Version response message; Host to Guest and indicates
199 * if the host has accepted the version sent by the guest.
200 *
201 * is_accepted: If TRUE, host has accepted the version and the guest
202 * should proceed to the next stage of the protocol. FALSE indicates that
203 * guest should re-try with a different version.
204 *
205 * reservedz: Reserved field, set to zero.
206 */
207
208struct dm_version_response {
209	struct dm_header hdr;
210	__u64 is_accepted:1;
211	__u64 reservedz:63;
212} __packed;
213
214/*
215 * Message reporting capabilities. This is sent from the guest to the
216 * host.
217 */
218
219struct dm_capabilities {
220	struct dm_header hdr;
221	union dm_caps caps;
222	__u64 min_page_cnt;
223	__u64 max_page_number;
224} __packed;
225
226/*
227 * Response to the capabilities message. This is sent from the host to the
228 * guest. This message notifies if the host has accepted the guest's
229 * capabilities. If the host has not accepted, the guest must shutdown
230 * the service.
231 *
232 * is_accepted: Indicates if the host has accepted guest's capabilities.
233 * reservedz: Must be 0.
234 */
235
236struct dm_capabilities_resp_msg {
237	struct dm_header hdr;
238	__u64 is_accepted:1;
239	__u64 reservedz:63;
240} __packed;
241
242/*
243 * This message is used to report memory pressure from the guest.
244 * This message is not part of any transaction and there is no
245 * response to this message.
246 *
247 * num_avail: Available memory in pages.
248 * num_committed: Committed memory in pages.
249 * page_file_size: The accumulated size of all page files
250 *		   in the system in pages.
251 * zero_free: The nunber of zero and free pages.
252 * page_file_writes: The writes to the page file in pages.
253 * io_diff: An indicator of file cache efficiency or page file activity,
254 *	    calculated as File Cache Page Fault Count - Page Read Count.
255 *	    This value is in pages.
256 *
257 * Some of these metrics are Windows specific and fortunately
258 * the algorithm on the host side that computes the guest memory
259 * pressure only uses num_committed value.
260 */
261
262struct dm_status {
263	struct dm_header hdr;
264	__u64 num_avail;
265	__u64 num_committed;
266	__u64 page_file_size;
267	__u64 zero_free;
268	__u32 page_file_writes;
269	__u32 io_diff;
270} __packed;
271
272
273/*
274 * Message to ask the guest to allocate memory - balloon up message.
275 * This message is sent from the host to the guest. The guest may not be
276 * able to allocate as much memory as requested.
277 *
278 * num_pages: number of pages to allocate.
279 */
280
281struct dm_balloon {
282	struct dm_header hdr;
283	__u32 num_pages;
284	__u32 reservedz;
285} __packed;
286
287
288/*
289 * Balloon response message; this message is sent from the guest
290 * to the host in response to the balloon message.
291 *
292 * reservedz: Reserved; must be set to zero.
293 * more_pages: If FALSE, this is the last message of the transaction.
294 * if TRUE there will atleast one more message from the guest.
295 *
296 * range_count: The number of ranges in the range array.
297 *
298 * range_array: An array of page ranges returned to the host.
299 *
300 */
301
302struct dm_balloon_response {
303	struct dm_header hdr;
304	__u32 reservedz;
305	__u32 more_pages:1;
306	__u32 range_count:31;
307	union dm_mem_page_range range_array[];
308} __packed;
309
310/*
311 * Un-balloon message; this message is sent from the host
312 * to the guest to give guest more memory.
313 *
314 * more_pages: If FALSE, this is the last message of the transaction.
315 * if TRUE there will atleast one more message from the guest.
316 *
317 * reservedz: Reserved; must be set to zero.
318 *
319 * range_count: The number of ranges in the range array.
320 *
321 * range_array: An array of page ranges returned to the host.
322 *
323 */
324
325struct dm_unballoon_request {
326	struct dm_header hdr;
327	__u32 more_pages:1;
328	__u32 reservedz:31;
329	__u32 range_count;
330	union dm_mem_page_range range_array[];
331} __packed;
332
333/*
334 * Un-balloon response message; this message is sent from the guest
335 * to the host in response to an unballoon request.
336 *
337 */
338
339struct dm_unballoon_response {
340	struct dm_header hdr;
341} __packed;
342
343
344/*
345 * Hot add request message. Message sent from the host to the guest.
346 *
347 * mem_range: Memory range to hot add.
348 *
349 * On Linux we currently don't support this since we cannot hot add
350 * arbitrary granularity of memory.
351 */
352
353struct dm_hot_add {
354	struct dm_header hdr;
355	union dm_mem_page_range range;
356} __packed;
357
358/*
359 * Hot add response message.
360 * This message is sent by the guest to report the status of a hot add request.
361 * If page_count is less than the requested page count, then the host should
362 * assume all further hot add requests will fail, since this indicates that
363 * the guest has hit an upper physical memory barrier.
364 *
365 * Hot adds may also fail due to low resources; in this case, the guest must
366 * not complete this message until the hot add can succeed, and the host must
367 * not send a new hot add request until the response is sent.
368 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369 * times it fails the request.
370 *
371 *
372 * page_count: number of pages that were successfully hot added.
373 *
374 * result: result of the operation 1: success, 0: failure.
375 *
376 */
377
378struct dm_hot_add_response {
379	struct dm_header hdr;
380	__u32 page_count;
381	__u32 result;
382} __packed;
383
384/*
385 * Types of information sent from host to the guest.
386 */
387
388enum dm_info_type {
389	INFO_TYPE_MAX_PAGE_CNT = 0,
390	MAX_INFO_TYPE
391};
392
393
394/*
395 * Header for the information message.
396 */
397
398struct dm_info_header {
399	enum dm_info_type type;
400	__u32 data_size;
401} __packed;
402
403/*
404 * This message is sent from the host to the guest to pass
405 * some relevant information (win8 addition).
406 *
407 * reserved: no used.
408 * info_size: size of the information blob.
409 * info: information blob.
410 */
411
412struct dm_info_msg {
413	struct dm_header hdr;
414	__u32 reserved;
415	__u32 info_size;
416	__u8  info[];
417};
418
419/*
420 * End protocol definitions.
421 */
422
423/*
424 * State to manage hot adding memory into the guest.
425 * The range start_pfn : end_pfn specifies the range
426 * that the host has asked us to hot add. The range
427 * start_pfn : ha_end_pfn specifies the range that we have
428 * currently hot added. We hot add in multiples of 128M
429 * chunks; it is possible that we may not be able to bring
430 * online all the pages in the region. The range
431 * covered_end_pfn defines the pages that can
432 * be brough online.
433 */
434
435struct hv_hotadd_state {
436	struct list_head list;
437	unsigned long start_pfn;
438	unsigned long covered_end_pfn;
439	unsigned long ha_end_pfn;
440	unsigned long end_pfn;
441};
442
443struct balloon_state {
444	__u32 num_pages;
445	struct work_struct wrk;
446};
447
448struct hot_add_wrk {
449	union dm_mem_page_range ha_page_range;
450	union dm_mem_page_range ha_region_range;
451	struct work_struct wrk;
452};
453
454static bool hot_add = true;
455static bool do_hot_add;
456/*
457 * Delay reporting memory pressure by
458 * the specified number of seconds.
459 */
460static uint pressure_report_delay = 45;
461
462/*
463 * The last time we posted a pressure report to host.
464 */
465static unsigned long last_post_time;
466
467module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
468MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
469
470module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
471MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
472static atomic_t trans_id = ATOMIC_INIT(0);
473
474static int dm_ring_size = (5 * PAGE_SIZE);
475
476/*
477 * Driver specific state.
478 */
479
480enum hv_dm_state {
481	DM_INITIALIZING = 0,
482	DM_INITIALIZED,
483	DM_BALLOON_UP,
484	DM_BALLOON_DOWN,
485	DM_HOT_ADD,
486	DM_INIT_ERROR
487};
488
489
490static __u8 recv_buffer[PAGE_SIZE];
491static __u8 *send_buffer;
492#define PAGES_IN_2M	512
493#define HA_CHUNK (32 * 1024)
494
495struct hv_dynmem_device {
496	struct hv_device *dev;
497	enum hv_dm_state state;
498	struct completion host_event;
499	struct completion config_event;
500
501	/*
502	 * Number of pages we have currently ballooned out.
503	 */
504	unsigned int num_pages_ballooned;
505	unsigned int num_pages_onlined;
506	unsigned int num_pages_added;
507
508	/*
509	 * State to manage the ballooning (up) operation.
510	 */
511	struct balloon_state balloon_wrk;
512
513	/*
514	 * State to execute the "hot-add" operation.
515	 */
516	struct hot_add_wrk ha_wrk;
517
518	/*
519	 * This state tracks if the host has specified a hot-add
520	 * region.
521	 */
522	bool host_specified_ha_region;
523
524	/*
525	 * State to synchronize hot-add.
526	 */
527	struct completion  ol_waitevent;
528	bool ha_waiting;
529	/*
530	 * This thread handles hot-add
531	 * requests from the host as well as notifying
532	 * the host with regards to memory pressure in
533	 * the guest.
534	 */
535	struct task_struct *thread;
536
537	struct mutex ha_region_mutex;
538
539	/*
540	 * A list of hot-add regions.
541	 */
542	struct list_head ha_region_list;
543
544	/*
545	 * We start with the highest version we can support
546	 * and downgrade based on the host; we save here the
547	 * next version to try.
548	 */
549	__u32 next_version;
550};
551
552static struct hv_dynmem_device dm_device;
553
554static void post_status(struct hv_dynmem_device *dm);
555
556#ifdef CONFIG_MEMORY_HOTPLUG
557static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
558			      void *v)
559{
560	struct memory_notify *mem = (struct memory_notify *)v;
561
562	switch (val) {
563	case MEM_GOING_ONLINE:
564		mutex_lock(&dm_device.ha_region_mutex);
565		break;
566
567	case MEM_ONLINE:
568		dm_device.num_pages_onlined += mem->nr_pages;
569	case MEM_CANCEL_ONLINE:
570		mutex_unlock(&dm_device.ha_region_mutex);
571		if (dm_device.ha_waiting) {
572			dm_device.ha_waiting = false;
573			complete(&dm_device.ol_waitevent);
574		}
575		break;
576
577	case MEM_OFFLINE:
578		mutex_lock(&dm_device.ha_region_mutex);
579		dm_device.num_pages_onlined -= mem->nr_pages;
580		mutex_unlock(&dm_device.ha_region_mutex);
581		break;
582	case MEM_GOING_OFFLINE:
583	case MEM_CANCEL_OFFLINE:
584		break;
585	}
586	return NOTIFY_OK;
587}
588
589static struct notifier_block hv_memory_nb = {
590	.notifier_call = hv_memory_notifier,
591	.priority = 0
592};
593
594
595static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
596{
597	int i;
598
599	for (i = 0; i < size; i++) {
600		struct page *pg;
601		pg = pfn_to_page(start_pfn + i);
602		__online_page_set_limits(pg);
603		__online_page_increment_counters(pg);
604		__online_page_free(pg);
605	}
606}
607
608static void hv_mem_hot_add(unsigned long start, unsigned long size,
609				unsigned long pfn_count,
610				struct hv_hotadd_state *has)
611{
612	int ret = 0;
613	int i, nid;
614	unsigned long start_pfn;
615	unsigned long processed_pfn;
616	unsigned long total_pfn = pfn_count;
617
618	for (i = 0; i < (size/HA_CHUNK); i++) {
619		start_pfn = start + (i * HA_CHUNK);
620		has->ha_end_pfn +=  HA_CHUNK;
621
622		if (total_pfn > HA_CHUNK) {
623			processed_pfn = HA_CHUNK;
624			total_pfn -= HA_CHUNK;
625		} else {
626			processed_pfn = total_pfn;
627			total_pfn = 0;
628		}
629
630		has->covered_end_pfn +=  processed_pfn;
631
632		init_completion(&dm_device.ol_waitevent);
633		dm_device.ha_waiting = true;
634
635		mutex_unlock(&dm_device.ha_region_mutex);
636		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
637		ret = add_memory(nid, PFN_PHYS((start_pfn)),
638				(HA_CHUNK << PAGE_SHIFT));
639
640		if (ret) {
641			pr_info("hot_add memory failed error is %d\n", ret);
642			if (ret == -EEXIST) {
643				/*
644				 * This error indicates that the error
645				 * is not a transient failure. This is the
646				 * case where the guest's physical address map
647				 * precludes hot adding memory. Stop all further
648				 * memory hot-add.
649				 */
650				do_hot_add = false;
651			}
652			has->ha_end_pfn -= HA_CHUNK;
653			has->covered_end_pfn -=  processed_pfn;
654			mutex_lock(&dm_device.ha_region_mutex);
655			break;
656		}
657
658		/*
659		 * Wait for the memory block to be onlined.
660		 * Since the hot add has succeeded, it is ok to
661		 * proceed even if the pages in the hot added region
662		 * have not been "onlined" within the allowed time.
663		 */
664		wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
665		mutex_lock(&dm_device.ha_region_mutex);
666		post_status(&dm_device);
667	}
668
669	return;
670}
671
672static void hv_online_page(struct page *pg)
673{
674	struct list_head *cur;
675	struct hv_hotadd_state *has;
676	unsigned long cur_start_pgp;
677	unsigned long cur_end_pgp;
678
679	list_for_each(cur, &dm_device.ha_region_list) {
680		has = list_entry(cur, struct hv_hotadd_state, list);
681		cur_start_pgp = (unsigned long)pfn_to_page(has->start_pfn);
682		cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
683
684		if (((unsigned long)pg >= cur_start_pgp) &&
685			((unsigned long)pg < cur_end_pgp)) {
686			/*
687			 * This frame is currently backed; online the
688			 * page.
689			 */
690			__online_page_set_limits(pg);
691			__online_page_increment_counters(pg);
692			__online_page_free(pg);
693		}
694	}
695}
696
697static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
698{
699	struct list_head *cur;
700	struct hv_hotadd_state *has;
701	unsigned long residual, new_inc;
702
703	if (list_empty(&dm_device.ha_region_list))
704		return false;
705
706	list_for_each(cur, &dm_device.ha_region_list) {
707		has = list_entry(cur, struct hv_hotadd_state, list);
708
709		/*
710		 * If the pfn range we are dealing with is not in the current
711		 * "hot add block", move on.
712		 */
713		if ((start_pfn >= has->end_pfn))
714			continue;
715		/*
716		 * If the current hot add-request extends beyond
717		 * our current limit; extend it.
718		 */
719		if ((start_pfn + pfn_cnt) > has->end_pfn) {
720			residual = (start_pfn + pfn_cnt - has->end_pfn);
721			/*
722			 * Extend the region by multiples of HA_CHUNK.
723			 */
724			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
725			if (residual % HA_CHUNK)
726				new_inc += HA_CHUNK;
727
728			has->end_pfn += new_inc;
729		}
730
731		/*
732		 * If the current start pfn is not where the covered_end
733		 * is, update it.
734		 */
735
736		if (has->covered_end_pfn != start_pfn)
737			has->covered_end_pfn = start_pfn;
738
739		return true;
740
741	}
742
743	return false;
744}
745
746static unsigned long handle_pg_range(unsigned long pg_start,
747					unsigned long pg_count)
748{
749	unsigned long start_pfn = pg_start;
750	unsigned long pfn_cnt = pg_count;
751	unsigned long size;
752	struct list_head *cur;
753	struct hv_hotadd_state *has;
754	unsigned long pgs_ol = 0;
755	unsigned long old_covered_state;
756
757	if (list_empty(&dm_device.ha_region_list))
758		return 0;
759
760	list_for_each(cur, &dm_device.ha_region_list) {
761		has = list_entry(cur, struct hv_hotadd_state, list);
762
763		/*
764		 * If the pfn range we are dealing with is not in the current
765		 * "hot add block", move on.
766		 */
767		if ((start_pfn >= has->end_pfn))
768			continue;
769
770		old_covered_state = has->covered_end_pfn;
771
772		if (start_pfn < has->ha_end_pfn) {
773			/*
774			 * This is the case where we are backing pages
775			 * in an already hot added region. Bring
776			 * these pages online first.
777			 */
778			pgs_ol = has->ha_end_pfn - start_pfn;
779			if (pgs_ol > pfn_cnt)
780				pgs_ol = pfn_cnt;
781
782			/*
783			 * Check if the corresponding memory block is already
784			 * online by checking its last previously backed page.
785			 * In case it is we need to bring rest (which was not
786			 * backed previously) online too.
787			 */
788			if (start_pfn > has->start_pfn &&
789			    !PageReserved(pfn_to_page(start_pfn - 1)))
790				hv_bring_pgs_online(start_pfn, pgs_ol);
791
792			has->covered_end_pfn +=  pgs_ol;
793			pfn_cnt -= pgs_ol;
794		}
795
796		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
797			/*
798			 * We have some residual hot add range
799			 * that needs to be hot added; hot add
800			 * it now. Hot add a multiple of
801			 * of HA_CHUNK that fully covers the pages
802			 * we have.
803			 */
804			size = (has->end_pfn - has->ha_end_pfn);
805			if (pfn_cnt <= size) {
806				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
807				if (pfn_cnt % HA_CHUNK)
808					size += HA_CHUNK;
809			} else {
810				pfn_cnt = size;
811			}
812			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
813		}
814		/*
815		 * If we managed to online any pages that were given to us,
816		 * we declare success.
817		 */
818		return has->covered_end_pfn - old_covered_state;
819
820	}
821
822	return 0;
823}
824
825static unsigned long process_hot_add(unsigned long pg_start,
826					unsigned long pfn_cnt,
827					unsigned long rg_start,
828					unsigned long rg_size)
829{
830	struct hv_hotadd_state *ha_region = NULL;
831
832	if (pfn_cnt == 0)
833		return 0;
834
835	if (!dm_device.host_specified_ha_region)
836		if (pfn_covered(pg_start, pfn_cnt))
837			goto do_pg_range;
838
839	/*
840	 * If the host has specified a hot-add range; deal with it first.
841	 */
842
843	if (rg_size != 0) {
844		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
845		if (!ha_region)
846			return 0;
847
848		INIT_LIST_HEAD(&ha_region->list);
849
850		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
851		ha_region->start_pfn = rg_start;
852		ha_region->ha_end_pfn = rg_start;
853		ha_region->covered_end_pfn = pg_start;
854		ha_region->end_pfn = rg_start + rg_size;
855	}
856
857do_pg_range:
858	/*
859	 * Process the page range specified; bringing them
860	 * online if possible.
861	 */
862	return handle_pg_range(pg_start, pfn_cnt);
863}
864
865#endif
866
867static void hot_add_req(struct work_struct *dummy)
868{
869	struct dm_hot_add_response resp;
870#ifdef CONFIG_MEMORY_HOTPLUG
871	unsigned long pg_start, pfn_cnt;
872	unsigned long rg_start, rg_sz;
873#endif
874	struct hv_dynmem_device *dm = &dm_device;
875
876	memset(&resp, 0, sizeof(struct dm_hot_add_response));
877	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
878	resp.hdr.size = sizeof(struct dm_hot_add_response);
879
880#ifdef CONFIG_MEMORY_HOTPLUG
881	mutex_lock(&dm_device.ha_region_mutex);
882	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
883	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
884
885	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
886	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
887
888	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
889		unsigned long region_size;
890		unsigned long region_start;
891
892		/*
893		 * The host has not specified the hot-add region.
894		 * Based on the hot-add page range being specified,
895		 * compute a hot-add region that can cover the pages
896		 * that need to be hot-added while ensuring the alignment
897		 * and size requirements of Linux as it relates to hot-add.
898		 */
899		region_start = pg_start;
900		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
901		if (pfn_cnt % HA_CHUNK)
902			region_size += HA_CHUNK;
903
904		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
905
906		rg_start = region_start;
907		rg_sz = region_size;
908	}
909
910	if (do_hot_add)
911		resp.page_count = process_hot_add(pg_start, pfn_cnt,
912						rg_start, rg_sz);
913
914	dm->num_pages_added += resp.page_count;
915	mutex_unlock(&dm_device.ha_region_mutex);
916#endif
917	/*
918	 * The result field of the response structure has the
919	 * following semantics:
920	 *
921	 * 1. If all or some pages hot-added: Guest should return success.
922	 *
923	 * 2. If no pages could be hot-added:
924	 *
925	 * If the guest returns success, then the host
926	 * will not attempt any further hot-add operations. This
927	 * signifies a permanent failure.
928	 *
929	 * If the guest returns failure, then this failure will be
930	 * treated as a transient failure and the host may retry the
931	 * hot-add operation after some delay.
932	 */
933	if (resp.page_count > 0)
934		resp.result = 1;
935	else if (!do_hot_add)
936		resp.result = 1;
937	else
938		resp.result = 0;
939
940	if (!do_hot_add || (resp.page_count == 0))
941		pr_info("Memory hot add failed\n");
942
943	dm->state = DM_INITIALIZED;
944	resp.hdr.trans_id = atomic_inc_return(&trans_id);
945	vmbus_sendpacket(dm->dev->channel, &resp,
946			sizeof(struct dm_hot_add_response),
947			(unsigned long)NULL,
948			VM_PKT_DATA_INBAND, 0);
949}
950
951static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
952{
953	struct dm_info_header *info_hdr;
954
955	info_hdr = (struct dm_info_header *)msg->info;
956
957	switch (info_hdr->type) {
958	case INFO_TYPE_MAX_PAGE_CNT:
959		pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
960		pr_info("Data Size is %d\n", info_hdr->data_size);
961		break;
962	default:
963		pr_info("Received Unknown type: %d\n", info_hdr->type);
964	}
965}
966
967static unsigned long compute_balloon_floor(void)
968{
969	unsigned long min_pages;
970#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
971	/* Simple continuous piecewiese linear function:
972	 *  max MiB -> min MiB  gradient
973	 *       0         0
974	 *      16        16
975	 *      32        24
976	 *     128        72    (1/2)
977	 *     512       168    (1/4)
978	 *    2048       360    (1/8)
979	 *    8192       744    (1/16)
980	 *   32768      1512	(1/32)
981	 */
982	if (totalram_pages < MB2PAGES(128))
983		min_pages = MB2PAGES(8) + (totalram_pages >> 1);
984	else if (totalram_pages < MB2PAGES(512))
985		min_pages = MB2PAGES(40) + (totalram_pages >> 2);
986	else if (totalram_pages < MB2PAGES(2048))
987		min_pages = MB2PAGES(104) + (totalram_pages >> 3);
988	else if (totalram_pages < MB2PAGES(8192))
989		min_pages = MB2PAGES(232) + (totalram_pages >> 4);
990	else
991		min_pages = MB2PAGES(488) + (totalram_pages >> 5);
992#undef MB2PAGES
993	return min_pages;
994}
995
996/*
997 * Post our status as it relates memory pressure to the
998 * host. Host expects the guests to post this status
999 * periodically at 1 second intervals.
1000 *
1001 * The metrics specified in this protocol are very Windows
1002 * specific and so we cook up numbers here to convey our memory
1003 * pressure.
1004 */
1005
1006static void post_status(struct hv_dynmem_device *dm)
1007{
1008	struct dm_status status;
1009	struct sysinfo val;
1010	unsigned long now = jiffies;
1011	unsigned long last_post = last_post_time;
1012
1013	if (pressure_report_delay > 0) {
1014		--pressure_report_delay;
1015		return;
1016	}
1017
1018	if (!time_after(now, (last_post_time + HZ)))
1019		return;
1020
1021	si_meminfo(&val);
1022	memset(&status, 0, sizeof(struct dm_status));
1023	status.hdr.type = DM_STATUS_REPORT;
1024	status.hdr.size = sizeof(struct dm_status);
1025	status.hdr.trans_id = atomic_inc_return(&trans_id);
1026
1027	/*
1028	 * The host expects the guest to report free and committed memory.
1029	 * Furthermore, the host expects the pressure information to include
1030	 * the ballooned out pages. For a given amount of memory that we are
1031	 * managing we need to compute a floor below which we should not
1032	 * balloon. Compute this and add it to the pressure report.
1033	 * We also need to report all offline pages (num_pages_added -
1034	 * num_pages_onlined) as committed to the host, otherwise it can try
1035	 * asking us to balloon them out.
1036	 */
1037	status.num_avail = val.freeram;
1038	status.num_committed = vm_memory_committed() +
1039		dm->num_pages_ballooned +
1040		(dm->num_pages_added > dm->num_pages_onlined ?
1041		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1042		compute_balloon_floor();
1043
1044	/*
1045	 * If our transaction ID is no longer current, just don't
1046	 * send the status. This can happen if we were interrupted
1047	 * after we picked our transaction ID.
1048	 */
1049	if (status.hdr.trans_id != atomic_read(&trans_id))
1050		return;
1051
1052	/*
1053	 * If the last post time that we sampled has changed,
1054	 * we have raced, don't post the status.
1055	 */
1056	if (last_post != last_post_time)
1057		return;
1058
1059	last_post_time = jiffies;
1060	vmbus_sendpacket(dm->dev->channel, &status,
1061				sizeof(struct dm_status),
1062				(unsigned long)NULL,
1063				VM_PKT_DATA_INBAND, 0);
1064
1065}
1066
1067static void free_balloon_pages(struct hv_dynmem_device *dm,
1068			 union dm_mem_page_range *range_array)
1069{
1070	int num_pages = range_array->finfo.page_cnt;
1071	__u64 start_frame = range_array->finfo.start_page;
1072	struct page *pg;
1073	int i;
1074
1075	for (i = 0; i < num_pages; i++) {
1076		pg = pfn_to_page(i + start_frame);
1077		__free_page(pg);
1078		dm->num_pages_ballooned--;
1079	}
1080}
1081
1082
1083
1084static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1085					unsigned int num_pages,
1086					struct dm_balloon_response *bl_resp,
1087					int alloc_unit)
1088{
1089	unsigned int i = 0;
1090	struct page *pg;
1091
1092	if (num_pages < alloc_unit)
1093		return 0;
1094
1095	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1096		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1097			PAGE_SIZE)
1098			return i * alloc_unit;
1099
1100		/*
1101		 * We execute this code in a thread context. Furthermore,
1102		 * we don't want the kernel to try too hard.
1103		 */
1104		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1105				__GFP_NOMEMALLOC | __GFP_NOWARN,
1106				get_order(alloc_unit << PAGE_SHIFT));
1107
1108		if (!pg)
1109			return i * alloc_unit;
1110
1111		dm->num_pages_ballooned += alloc_unit;
1112
1113		/*
1114		 * If we allocatted 2M pages; split them so we
1115		 * can free them in any order we get.
1116		 */
1117
1118		if (alloc_unit != 1)
1119			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1120
1121		bl_resp->range_count++;
1122		bl_resp->range_array[i].finfo.start_page =
1123			page_to_pfn(pg);
1124		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1125		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1126
1127	}
1128
1129	return num_pages;
1130}
1131
1132
1133
1134static void balloon_up(struct work_struct *dummy)
1135{
1136	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1137	unsigned int num_ballooned = 0;
1138	struct dm_balloon_response *bl_resp;
1139	int alloc_unit;
1140	int ret;
1141	bool done = false;
1142	int i;
1143	struct sysinfo val;
1144	unsigned long floor;
1145
1146	/* The host balloons pages in 2M granularity. */
1147	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1148
1149	/*
1150	 * We will attempt 2M allocations. However, if we fail to
1151	 * allocate 2M chunks, we will go back to 4k allocations.
1152	 */
1153	alloc_unit = 512;
1154
1155	si_meminfo(&val);
1156	floor = compute_balloon_floor();
1157
1158	/* Refuse to balloon below the floor, keep the 2M granularity. */
1159	if (val.freeram < num_pages || val.freeram - num_pages < floor) {
1160		num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1161		num_pages -= num_pages % PAGES_IN_2M;
1162	}
1163
1164	while (!done) {
1165		bl_resp = (struct dm_balloon_response *)send_buffer;
1166		memset(send_buffer, 0, PAGE_SIZE);
1167		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1168		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1169		bl_resp->more_pages = 1;
1170
1171
1172		num_pages -= num_ballooned;
1173		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1174						    bl_resp, alloc_unit);
1175
1176		if (alloc_unit != 1 && num_ballooned == 0) {
1177			alloc_unit = 1;
1178			continue;
1179		}
1180
1181		if (num_ballooned == 0 || num_ballooned == num_pages) {
1182			bl_resp->more_pages = 0;
1183			done = true;
1184			dm_device.state = DM_INITIALIZED;
1185		}
1186
1187		/*
1188		 * We are pushing a lot of data through the channel;
1189		 * deal with transient failures caused because of the
1190		 * lack of space in the ring buffer.
1191		 */
1192
1193		do {
1194			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1195			ret = vmbus_sendpacket(dm_device.dev->channel,
1196						bl_resp,
1197						bl_resp->hdr.size,
1198						(unsigned long)NULL,
1199						VM_PKT_DATA_INBAND, 0);
1200
1201			if (ret == -EAGAIN)
1202				msleep(20);
1203			post_status(&dm_device);
1204		} while (ret == -EAGAIN);
1205
1206		if (ret) {
1207			/*
1208			 * Free up the memory we allocatted.
1209			 */
1210			pr_info("Balloon response failed\n");
1211
1212			for (i = 0; i < bl_resp->range_count; i++)
1213				free_balloon_pages(&dm_device,
1214						 &bl_resp->range_array[i]);
1215
1216			done = true;
1217		}
1218	}
1219
1220}
1221
1222static void balloon_down(struct hv_dynmem_device *dm,
1223			struct dm_unballoon_request *req)
1224{
1225	union dm_mem_page_range *range_array = req->range_array;
1226	int range_count = req->range_count;
1227	struct dm_unballoon_response resp;
1228	int i;
1229
1230	for (i = 0; i < range_count; i++) {
1231		free_balloon_pages(dm, &range_array[i]);
1232		complete(&dm_device.config_event);
1233	}
1234
1235	if (req->more_pages == 1)
1236		return;
1237
1238	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1239	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1240	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1241	resp.hdr.size = sizeof(struct dm_unballoon_response);
1242
1243	vmbus_sendpacket(dm_device.dev->channel, &resp,
1244				sizeof(struct dm_unballoon_response),
1245				(unsigned long)NULL,
1246				VM_PKT_DATA_INBAND, 0);
1247
1248	dm->state = DM_INITIALIZED;
1249}
1250
1251static void balloon_onchannelcallback(void *context);
1252
1253static int dm_thread_func(void *dm_dev)
1254{
1255	struct hv_dynmem_device *dm = dm_dev;
1256
1257	while (!kthread_should_stop()) {
1258		wait_for_completion_interruptible_timeout(
1259						&dm_device.config_event, 1*HZ);
1260		/*
1261		 * The host expects us to post information on the memory
1262		 * pressure every second.
1263		 */
1264		reinit_completion(&dm_device.config_event);
1265		post_status(dm);
1266	}
1267
1268	return 0;
1269}
1270
1271
1272static void version_resp(struct hv_dynmem_device *dm,
1273			struct dm_version_response *vresp)
1274{
1275	struct dm_version_request version_req;
1276	int ret;
1277
1278	if (vresp->is_accepted) {
1279		/*
1280		 * We are done; wakeup the
1281		 * context waiting for version
1282		 * negotiation.
1283		 */
1284		complete(&dm->host_event);
1285		return;
1286	}
1287	/*
1288	 * If there are more versions to try, continue
1289	 * with negotiations; if not
1290	 * shutdown the service since we are not able
1291	 * to negotiate a suitable version number
1292	 * with the host.
1293	 */
1294	if (dm->next_version == 0)
1295		goto version_error;
1296
1297	dm->next_version = 0;
1298	memset(&version_req, 0, sizeof(struct dm_version_request));
1299	version_req.hdr.type = DM_VERSION_REQUEST;
1300	version_req.hdr.size = sizeof(struct dm_version_request);
1301	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1302	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
1303	version_req.is_last_attempt = 1;
1304
1305	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1306				sizeof(struct dm_version_request),
1307				(unsigned long)NULL,
1308				VM_PKT_DATA_INBAND, 0);
1309
1310	if (ret)
1311		goto version_error;
1312
1313	return;
1314
1315version_error:
1316	dm->state = DM_INIT_ERROR;
1317	complete(&dm->host_event);
1318}
1319
1320static void cap_resp(struct hv_dynmem_device *dm,
1321			struct dm_capabilities_resp_msg *cap_resp)
1322{
1323	if (!cap_resp->is_accepted) {
1324		pr_info("Capabilities not accepted by host\n");
1325		dm->state = DM_INIT_ERROR;
1326	}
1327	complete(&dm->host_event);
1328}
1329
1330static void balloon_onchannelcallback(void *context)
1331{
1332	struct hv_device *dev = context;
1333	u32 recvlen;
1334	u64 requestid;
1335	struct dm_message *dm_msg;
1336	struct dm_header *dm_hdr;
1337	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1338	struct dm_balloon *bal_msg;
1339	struct dm_hot_add *ha_msg;
1340	union dm_mem_page_range *ha_pg_range;
1341	union dm_mem_page_range *ha_region;
1342
1343	memset(recv_buffer, 0, sizeof(recv_buffer));
1344	vmbus_recvpacket(dev->channel, recv_buffer,
1345			 PAGE_SIZE, &recvlen, &requestid);
1346
1347	if (recvlen > 0) {
1348		dm_msg = (struct dm_message *)recv_buffer;
1349		dm_hdr = &dm_msg->hdr;
1350
1351		switch (dm_hdr->type) {
1352		case DM_VERSION_RESPONSE:
1353			version_resp(dm,
1354				 (struct dm_version_response *)dm_msg);
1355			break;
1356
1357		case DM_CAPABILITIES_RESPONSE:
1358			cap_resp(dm,
1359				 (struct dm_capabilities_resp_msg *)dm_msg);
1360			break;
1361
1362		case DM_BALLOON_REQUEST:
1363			if (dm->state == DM_BALLOON_UP)
1364				pr_warn("Currently ballooning\n");
1365			bal_msg = (struct dm_balloon *)recv_buffer;
1366			dm->state = DM_BALLOON_UP;
1367			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1368			schedule_work(&dm_device.balloon_wrk.wrk);
1369			break;
1370
1371		case DM_UNBALLOON_REQUEST:
1372			dm->state = DM_BALLOON_DOWN;
1373			balloon_down(dm,
1374				 (struct dm_unballoon_request *)recv_buffer);
1375			break;
1376
1377		case DM_MEM_HOT_ADD_REQUEST:
1378			if (dm->state == DM_HOT_ADD)
1379				pr_warn("Currently hot-adding\n");
1380			dm->state = DM_HOT_ADD;
1381			ha_msg = (struct dm_hot_add *)recv_buffer;
1382			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1383				/*
1384				 * This is a normal hot-add request specifying
1385				 * hot-add memory.
1386				 */
1387				ha_pg_range = &ha_msg->range;
1388				dm->ha_wrk.ha_page_range = *ha_pg_range;
1389				dm->ha_wrk.ha_region_range.page_range = 0;
1390			} else {
1391				/*
1392				 * Host is specifying that we first hot-add
1393				 * a region and then partially populate this
1394				 * region.
1395				 */
1396				dm->host_specified_ha_region = true;
1397				ha_pg_range = &ha_msg->range;
1398				ha_region = &ha_pg_range[1];
1399				dm->ha_wrk.ha_page_range = *ha_pg_range;
1400				dm->ha_wrk.ha_region_range = *ha_region;
1401			}
1402			schedule_work(&dm_device.ha_wrk.wrk);
1403			break;
1404
1405		case DM_INFO_MESSAGE:
1406			process_info(dm, (struct dm_info_msg *)dm_msg);
1407			break;
1408
1409		default:
1410			pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1411
1412		}
1413	}
1414
1415}
1416
1417static int balloon_probe(struct hv_device *dev,
1418			const struct hv_vmbus_device_id *dev_id)
1419{
1420	int ret;
1421	unsigned long t;
1422	struct dm_version_request version_req;
1423	struct dm_capabilities cap_msg;
1424
1425	do_hot_add = hot_add;
1426
1427	/*
1428	 * First allocate a send buffer.
1429	 */
1430
1431	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1432	if (!send_buffer)
1433		return -ENOMEM;
1434
1435	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1436			balloon_onchannelcallback, dev);
1437
1438	if (ret)
1439		goto probe_error0;
1440
1441	dm_device.dev = dev;
1442	dm_device.state = DM_INITIALIZING;
1443	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1444	init_completion(&dm_device.host_event);
1445	init_completion(&dm_device.config_event);
1446	INIT_LIST_HEAD(&dm_device.ha_region_list);
1447	mutex_init(&dm_device.ha_region_mutex);
1448	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1449	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1450	dm_device.host_specified_ha_region = false;
1451
1452	dm_device.thread =
1453		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1454	if (IS_ERR(dm_device.thread)) {
1455		ret = PTR_ERR(dm_device.thread);
1456		goto probe_error1;
1457	}
1458
1459#ifdef CONFIG_MEMORY_HOTPLUG
1460	set_online_page_callback(&hv_online_page);
1461	register_memory_notifier(&hv_memory_nb);
1462#endif
1463
1464	hv_set_drvdata(dev, &dm_device);
1465	/*
1466	 * Initiate the hand shake with the host and negotiate
1467	 * a version that the host can support. We start with the
1468	 * highest version number and go down if the host cannot
1469	 * support it.
1470	 */
1471	memset(&version_req, 0, sizeof(struct dm_version_request));
1472	version_req.hdr.type = DM_VERSION_REQUEST;
1473	version_req.hdr.size = sizeof(struct dm_version_request);
1474	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1475	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
1476	version_req.is_last_attempt = 0;
1477
1478	ret = vmbus_sendpacket(dev->channel, &version_req,
1479				sizeof(struct dm_version_request),
1480				(unsigned long)NULL,
1481				VM_PKT_DATA_INBAND, 0);
1482	if (ret)
1483		goto probe_error2;
1484
1485	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1486	if (t == 0) {
1487		ret = -ETIMEDOUT;
1488		goto probe_error2;
1489	}
1490
1491	/*
1492	 * If we could not negotiate a compatible version with the host
1493	 * fail the probe function.
1494	 */
1495	if (dm_device.state == DM_INIT_ERROR) {
1496		ret = -ETIMEDOUT;
1497		goto probe_error2;
1498	}
1499	/*
1500	 * Now submit our capabilities to the host.
1501	 */
1502	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1503	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1504	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1505	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1506
1507	cap_msg.caps.cap_bits.balloon = 1;
1508	cap_msg.caps.cap_bits.hot_add = 1;
1509
1510	/*
1511	 * Specify our alignment requirements as it relates
1512	 * memory hot-add. Specify 128MB alignment.
1513	 */
1514	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1515
1516	/*
1517	 * Currently the host does not use these
1518	 * values and we set them to what is done in the
1519	 * Windows driver.
1520	 */
1521	cap_msg.min_page_cnt = 0;
1522	cap_msg.max_page_number = -1;
1523
1524	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1525				sizeof(struct dm_capabilities),
1526				(unsigned long)NULL,
1527				VM_PKT_DATA_INBAND, 0);
1528	if (ret)
1529		goto probe_error2;
1530
1531	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1532	if (t == 0) {
1533		ret = -ETIMEDOUT;
1534		goto probe_error2;
1535	}
1536
1537	/*
1538	 * If the host does not like our capabilities,
1539	 * fail the probe function.
1540	 */
1541	if (dm_device.state == DM_INIT_ERROR) {
1542		ret = -ETIMEDOUT;
1543		goto probe_error2;
1544	}
1545
1546	dm_device.state = DM_INITIALIZED;
1547
1548	return 0;
1549
1550probe_error2:
1551#ifdef CONFIG_MEMORY_HOTPLUG
1552	restore_online_page_callback(&hv_online_page);
1553#endif
1554	kthread_stop(dm_device.thread);
1555
1556probe_error1:
1557	vmbus_close(dev->channel);
1558probe_error0:
1559	kfree(send_buffer);
1560	return ret;
1561}
1562
1563static int balloon_remove(struct hv_device *dev)
1564{
1565	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1566	struct list_head *cur, *tmp;
1567	struct hv_hotadd_state *has;
1568
1569	if (dm->num_pages_ballooned != 0)
1570		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1571
1572	cancel_work_sync(&dm->balloon_wrk.wrk);
1573	cancel_work_sync(&dm->ha_wrk.wrk);
1574
1575	vmbus_close(dev->channel);
1576	kthread_stop(dm->thread);
1577	kfree(send_buffer);
1578#ifdef CONFIG_MEMORY_HOTPLUG
1579	restore_online_page_callback(&hv_online_page);
1580	unregister_memory_notifier(&hv_memory_nb);
1581#endif
1582	list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1583		has = list_entry(cur, struct hv_hotadd_state, list);
1584		list_del(&has->list);
1585		kfree(has);
1586	}
1587
1588	return 0;
1589}
1590
1591static const struct hv_vmbus_device_id id_table[] = {
1592	/* Dynamic Memory Class ID */
1593	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1594	{ HV_DM_GUID, },
1595	{ },
1596};
1597
1598MODULE_DEVICE_TABLE(vmbus, id_table);
1599
1600static  struct hv_driver balloon_drv = {
1601	.name = "hv_balloon",
1602	.id_table = id_table,
1603	.probe =  balloon_probe,
1604	.remove =  balloon_remove,
1605};
1606
1607static int __init init_balloon_drv(void)
1608{
1609
1610	return vmbus_driver_register(&balloon_drv);
1611}
1612
1613module_init(init_balloon_drv);
1614
1615MODULE_DESCRIPTION("Hyper-V Balloon");
1616MODULE_LICENSE("GPL");
1617