1/************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28#define pr_fmt(fmt) "[TTM] " fmt 29 30#include <drm/ttm/ttm_memory.h> 31#include <drm/ttm/ttm_module.h> 32#include <drm/ttm/ttm_page_alloc.h> 33#include <linux/spinlock.h> 34#include <linux/sched.h> 35#include <linux/wait.h> 36#include <linux/mm.h> 37#include <linux/module.h> 38#include <linux/slab.h> 39 40#define TTM_MEMORY_ALLOC_RETRIES 4 41 42struct ttm_mem_zone { 43 struct kobject kobj; 44 struct ttm_mem_global *glob; 45 const char *name; 46 uint64_t zone_mem; 47 uint64_t emer_mem; 48 uint64_t max_mem; 49 uint64_t swap_limit; 50 uint64_t used_mem; 51}; 52 53static struct attribute ttm_mem_sys = { 54 .name = "zone_memory", 55 .mode = S_IRUGO 56}; 57static struct attribute ttm_mem_emer = { 58 .name = "emergency_memory", 59 .mode = S_IRUGO | S_IWUSR 60}; 61static struct attribute ttm_mem_max = { 62 .name = "available_memory", 63 .mode = S_IRUGO | S_IWUSR 64}; 65static struct attribute ttm_mem_swap = { 66 .name = "swap_limit", 67 .mode = S_IRUGO | S_IWUSR 68}; 69static struct attribute ttm_mem_used = { 70 .name = "used_memory", 71 .mode = S_IRUGO 72}; 73 74static void ttm_mem_zone_kobj_release(struct kobject *kobj) 75{ 76 struct ttm_mem_zone *zone = 77 container_of(kobj, struct ttm_mem_zone, kobj); 78 79 pr_info("Zone %7s: Used memory at exit: %llu kiB\n", 80 zone->name, (unsigned long long)zone->used_mem >> 10); 81 kfree(zone); 82} 83 84static ssize_t ttm_mem_zone_show(struct kobject *kobj, 85 struct attribute *attr, 86 char *buffer) 87{ 88 struct ttm_mem_zone *zone = 89 container_of(kobj, struct ttm_mem_zone, kobj); 90 uint64_t val = 0; 91 92 spin_lock(&zone->glob->lock); 93 if (attr == &ttm_mem_sys) 94 val = zone->zone_mem; 95 else if (attr == &ttm_mem_emer) 96 val = zone->emer_mem; 97 else if (attr == &ttm_mem_max) 98 val = zone->max_mem; 99 else if (attr == &ttm_mem_swap) 100 val = zone->swap_limit; 101 else if (attr == &ttm_mem_used) 102 val = zone->used_mem; 103 spin_unlock(&zone->glob->lock); 104 105 return snprintf(buffer, PAGE_SIZE, "%llu\n", 106 (unsigned long long) val >> 10); 107} 108 109static void ttm_check_swapping(struct ttm_mem_global *glob); 110 111static ssize_t ttm_mem_zone_store(struct kobject *kobj, 112 struct attribute *attr, 113 const char *buffer, 114 size_t size) 115{ 116 struct ttm_mem_zone *zone = 117 container_of(kobj, struct ttm_mem_zone, kobj); 118 int chars; 119 unsigned long val; 120 uint64_t val64; 121 122 chars = sscanf(buffer, "%lu", &val); 123 if (chars == 0) 124 return size; 125 126 val64 = val; 127 val64 <<= 10; 128 129 spin_lock(&zone->glob->lock); 130 if (val64 > zone->zone_mem) 131 val64 = zone->zone_mem; 132 if (attr == &ttm_mem_emer) { 133 zone->emer_mem = val64; 134 if (zone->max_mem > val64) 135 zone->max_mem = val64; 136 } else if (attr == &ttm_mem_max) { 137 zone->max_mem = val64; 138 if (zone->emer_mem < val64) 139 zone->emer_mem = val64; 140 } else if (attr == &ttm_mem_swap) 141 zone->swap_limit = val64; 142 spin_unlock(&zone->glob->lock); 143 144 ttm_check_swapping(zone->glob); 145 146 return size; 147} 148 149static struct attribute *ttm_mem_zone_attrs[] = { 150 &ttm_mem_sys, 151 &ttm_mem_emer, 152 &ttm_mem_max, 153 &ttm_mem_swap, 154 &ttm_mem_used, 155 NULL 156}; 157 158static const struct sysfs_ops ttm_mem_zone_ops = { 159 .show = &ttm_mem_zone_show, 160 .store = &ttm_mem_zone_store 161}; 162 163static struct kobj_type ttm_mem_zone_kobj_type = { 164 .release = &ttm_mem_zone_kobj_release, 165 .sysfs_ops = &ttm_mem_zone_ops, 166 .default_attrs = ttm_mem_zone_attrs, 167}; 168 169static void ttm_mem_global_kobj_release(struct kobject *kobj) 170{ 171 struct ttm_mem_global *glob = 172 container_of(kobj, struct ttm_mem_global, kobj); 173 174 kfree(glob); 175} 176 177static struct kobj_type ttm_mem_glob_kobj_type = { 178 .release = &ttm_mem_global_kobj_release, 179}; 180 181static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob, 182 bool from_wq, uint64_t extra) 183{ 184 unsigned int i; 185 struct ttm_mem_zone *zone; 186 uint64_t target; 187 188 for (i = 0; i < glob->num_zones; ++i) { 189 zone = glob->zones[i]; 190 191 if (from_wq) 192 target = zone->swap_limit; 193 else if (capable(CAP_SYS_ADMIN)) 194 target = zone->emer_mem; 195 else 196 target = zone->max_mem; 197 198 target = (extra > target) ? 0ULL : target; 199 200 if (zone->used_mem > target) 201 return true; 202 } 203 return false; 204} 205 206/** 207 * At this point we only support a single shrink callback. 208 * Extend this if needed, perhaps using a linked list of callbacks. 209 * Note that this function is reentrant: 210 * many threads may try to swap out at any given time. 211 */ 212 213static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq, 214 uint64_t extra) 215{ 216 int ret; 217 struct ttm_mem_shrink *shrink; 218 219 spin_lock(&glob->lock); 220 if (glob->shrink == NULL) 221 goto out; 222 223 while (ttm_zones_above_swap_target(glob, from_wq, extra)) { 224 shrink = glob->shrink; 225 spin_unlock(&glob->lock); 226 ret = shrink->do_shrink(shrink); 227 spin_lock(&glob->lock); 228 if (unlikely(ret != 0)) 229 goto out; 230 } 231out: 232 spin_unlock(&glob->lock); 233} 234 235 236 237static void ttm_shrink_work(struct work_struct *work) 238{ 239 struct ttm_mem_global *glob = 240 container_of(work, struct ttm_mem_global, work); 241 242 ttm_shrink(glob, true, 0ULL); 243} 244 245static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob, 246 const struct sysinfo *si) 247{ 248 struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL); 249 uint64_t mem; 250 int ret; 251 252 if (unlikely(!zone)) 253 return -ENOMEM; 254 255 mem = si->totalram - si->totalhigh; 256 mem *= si->mem_unit; 257 258 zone->name = "kernel"; 259 zone->zone_mem = mem; 260 zone->max_mem = mem >> 1; 261 zone->emer_mem = (mem >> 1) + (mem >> 2); 262 zone->swap_limit = zone->max_mem - (mem >> 3); 263 zone->used_mem = 0; 264 zone->glob = glob; 265 glob->zone_kernel = zone; 266 ret = kobject_init_and_add( 267 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); 268 if (unlikely(ret != 0)) { 269 kobject_put(&zone->kobj); 270 return ret; 271 } 272 glob->zones[glob->num_zones++] = zone; 273 return 0; 274} 275 276#ifdef CONFIG_HIGHMEM 277static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob, 278 const struct sysinfo *si) 279{ 280 struct ttm_mem_zone *zone; 281 uint64_t mem; 282 int ret; 283 284 if (si->totalhigh == 0) 285 return 0; 286 287 zone = kzalloc(sizeof(*zone), GFP_KERNEL); 288 if (unlikely(!zone)) 289 return -ENOMEM; 290 291 mem = si->totalram; 292 mem *= si->mem_unit; 293 294 zone->name = "highmem"; 295 zone->zone_mem = mem; 296 zone->max_mem = mem >> 1; 297 zone->emer_mem = (mem >> 1) + (mem >> 2); 298 zone->swap_limit = zone->max_mem - (mem >> 3); 299 zone->used_mem = 0; 300 zone->glob = glob; 301 glob->zone_highmem = zone; 302 ret = kobject_init_and_add( 303 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, "%s", 304 zone->name); 305 if (unlikely(ret != 0)) { 306 kobject_put(&zone->kobj); 307 return ret; 308 } 309 glob->zones[glob->num_zones++] = zone; 310 return 0; 311} 312#else 313static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob, 314 const struct sysinfo *si) 315{ 316 struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL); 317 uint64_t mem; 318 int ret; 319 320 if (unlikely(!zone)) 321 return -ENOMEM; 322 323 mem = si->totalram; 324 mem *= si->mem_unit; 325 326 /** 327 * No special dma32 zone needed. 328 */ 329 330 if (mem <= ((uint64_t) 1ULL << 32)) { 331 kfree(zone); 332 return 0; 333 } 334 335 /* 336 * Limit max dma32 memory to 4GB for now 337 * until we can figure out how big this 338 * zone really is. 339 */ 340 341 mem = ((uint64_t) 1ULL << 32); 342 zone->name = "dma32"; 343 zone->zone_mem = mem; 344 zone->max_mem = mem >> 1; 345 zone->emer_mem = (mem >> 1) + (mem >> 2); 346 zone->swap_limit = zone->max_mem - (mem >> 3); 347 zone->used_mem = 0; 348 zone->glob = glob; 349 glob->zone_dma32 = zone; 350 ret = kobject_init_and_add( 351 &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); 352 if (unlikely(ret != 0)) { 353 kobject_put(&zone->kobj); 354 return ret; 355 } 356 glob->zones[glob->num_zones++] = zone; 357 return 0; 358} 359#endif 360 361int ttm_mem_global_init(struct ttm_mem_global *glob) 362{ 363 struct sysinfo si; 364 int ret; 365 int i; 366 struct ttm_mem_zone *zone; 367 368 spin_lock_init(&glob->lock); 369 glob->swap_queue = create_singlethread_workqueue("ttm_swap"); 370 INIT_WORK(&glob->work, ttm_shrink_work); 371 ret = kobject_init_and_add( 372 &glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting"); 373 if (unlikely(ret != 0)) { 374 kobject_put(&glob->kobj); 375 return ret; 376 } 377 378 si_meminfo(&si); 379 380 ret = ttm_mem_init_kernel_zone(glob, &si); 381 if (unlikely(ret != 0)) 382 goto out_no_zone; 383#ifdef CONFIG_HIGHMEM 384 ret = ttm_mem_init_highmem_zone(glob, &si); 385 if (unlikely(ret != 0)) 386 goto out_no_zone; 387#else 388 ret = ttm_mem_init_dma32_zone(glob, &si); 389 if (unlikely(ret != 0)) 390 goto out_no_zone; 391#endif 392 for (i = 0; i < glob->num_zones; ++i) { 393 zone = glob->zones[i]; 394 pr_info("Zone %7s: Available graphics memory: %llu kiB\n", 395 zone->name, (unsigned long long)zone->max_mem >> 10); 396 } 397 ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE)); 398 ttm_dma_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE)); 399 return 0; 400out_no_zone: 401 ttm_mem_global_release(glob); 402 return ret; 403} 404EXPORT_SYMBOL(ttm_mem_global_init); 405 406void ttm_mem_global_release(struct ttm_mem_global *glob) 407{ 408 unsigned int i; 409 struct ttm_mem_zone *zone; 410 411 /* let the page allocator first stop the shrink work. */ 412 ttm_page_alloc_fini(); 413 ttm_dma_page_alloc_fini(); 414 415 flush_workqueue(glob->swap_queue); 416 destroy_workqueue(glob->swap_queue); 417 glob->swap_queue = NULL; 418 for (i = 0; i < glob->num_zones; ++i) { 419 zone = glob->zones[i]; 420 kobject_del(&zone->kobj); 421 kobject_put(&zone->kobj); 422 } 423 kobject_del(&glob->kobj); 424 kobject_put(&glob->kobj); 425} 426EXPORT_SYMBOL(ttm_mem_global_release); 427 428static void ttm_check_swapping(struct ttm_mem_global *glob) 429{ 430 bool needs_swapping = false; 431 unsigned int i; 432 struct ttm_mem_zone *zone; 433 434 spin_lock(&glob->lock); 435 for (i = 0; i < glob->num_zones; ++i) { 436 zone = glob->zones[i]; 437 if (zone->used_mem > zone->swap_limit) { 438 needs_swapping = true; 439 break; 440 } 441 } 442 443 spin_unlock(&glob->lock); 444 445 if (unlikely(needs_swapping)) 446 (void)queue_work(glob->swap_queue, &glob->work); 447 448} 449 450static void ttm_mem_global_free_zone(struct ttm_mem_global *glob, 451 struct ttm_mem_zone *single_zone, 452 uint64_t amount) 453{ 454 unsigned int i; 455 struct ttm_mem_zone *zone; 456 457 spin_lock(&glob->lock); 458 for (i = 0; i < glob->num_zones; ++i) { 459 zone = glob->zones[i]; 460 if (single_zone && zone != single_zone) 461 continue; 462 zone->used_mem -= amount; 463 } 464 spin_unlock(&glob->lock); 465} 466 467void ttm_mem_global_free(struct ttm_mem_global *glob, 468 uint64_t amount) 469{ 470 return ttm_mem_global_free_zone(glob, NULL, amount); 471} 472EXPORT_SYMBOL(ttm_mem_global_free); 473 474static int ttm_mem_global_reserve(struct ttm_mem_global *glob, 475 struct ttm_mem_zone *single_zone, 476 uint64_t amount, bool reserve) 477{ 478 uint64_t limit; 479 int ret = -ENOMEM; 480 unsigned int i; 481 struct ttm_mem_zone *zone; 482 483 spin_lock(&glob->lock); 484 for (i = 0; i < glob->num_zones; ++i) { 485 zone = glob->zones[i]; 486 if (single_zone && zone != single_zone) 487 continue; 488 489 limit = (capable(CAP_SYS_ADMIN)) ? 490 zone->emer_mem : zone->max_mem; 491 492 if (zone->used_mem > limit) 493 goto out_unlock; 494 } 495 496 if (reserve) { 497 for (i = 0; i < glob->num_zones; ++i) { 498 zone = glob->zones[i]; 499 if (single_zone && zone != single_zone) 500 continue; 501 zone->used_mem += amount; 502 } 503 } 504 505 ret = 0; 506out_unlock: 507 spin_unlock(&glob->lock); 508 ttm_check_swapping(glob); 509 510 return ret; 511} 512 513 514static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob, 515 struct ttm_mem_zone *single_zone, 516 uint64_t memory, 517 bool no_wait, bool interruptible) 518{ 519 int count = TTM_MEMORY_ALLOC_RETRIES; 520 521 while (unlikely(ttm_mem_global_reserve(glob, 522 single_zone, 523 memory, true) 524 != 0)) { 525 if (no_wait) 526 return -ENOMEM; 527 if (unlikely(count-- == 0)) 528 return -ENOMEM; 529 ttm_shrink(glob, false, memory + (memory >> 2) + 16); 530 } 531 532 return 0; 533} 534 535int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory, 536 bool no_wait, bool interruptible) 537{ 538 /** 539 * Normal allocations of kernel memory are registered in 540 * all zones. 541 */ 542 543 return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait, 544 interruptible); 545} 546EXPORT_SYMBOL(ttm_mem_global_alloc); 547 548int ttm_mem_global_alloc_page(struct ttm_mem_global *glob, 549 struct page *page, 550 bool no_wait, bool interruptible) 551{ 552 553 struct ttm_mem_zone *zone = NULL; 554 555 /** 556 * Page allocations may be registed in a single zone 557 * only if highmem or !dma32. 558 */ 559 560#ifdef CONFIG_HIGHMEM 561 if (PageHighMem(page) && glob->zone_highmem != NULL) 562 zone = glob->zone_highmem; 563#else 564 if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) 565 zone = glob->zone_kernel; 566#endif 567 return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait, 568 interruptible); 569} 570 571void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page) 572{ 573 struct ttm_mem_zone *zone = NULL; 574 575#ifdef CONFIG_HIGHMEM 576 if (PageHighMem(page) && glob->zone_highmem != NULL) 577 zone = glob->zone_highmem; 578#else 579 if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) 580 zone = glob->zone_kernel; 581#endif 582 ttm_mem_global_free_zone(glob, zone, PAGE_SIZE); 583} 584 585 586size_t ttm_round_pot(size_t size) 587{ 588 if ((size & (size - 1)) == 0) 589 return size; 590 else if (size > PAGE_SIZE) 591 return PAGE_ALIGN(size); 592 else { 593 size_t tmp_size = 4; 594 595 while (tmp_size < size) 596 tmp_size <<= 1; 597 598 return tmp_size; 599 } 600 return 0; 601} 602EXPORT_SYMBOL(ttm_round_pot); 603