1/*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10#include <linux/clk.h>
11#include <linux/debugfs.h>
12#include <linux/iommu.h>
13#include <linux/reset.h>
14
15#include <soc/tegra/pmc.h>
16
17#include "dc.h"
18#include "drm.h"
19#include "gem.h"
20
21#include <drm/drm_atomic.h>
22#include <drm/drm_atomic_helper.h>
23#include <drm/drm_plane_helper.h>
24
25struct tegra_dc_soc_info {
26	bool supports_border_color;
27	bool supports_interlacing;
28	bool supports_cursor;
29	bool supports_block_linear;
30	unsigned int pitch_align;
31	bool has_powergate;
32};
33
34struct tegra_plane {
35	struct drm_plane base;
36	unsigned int index;
37};
38
39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40{
41	return container_of(plane, struct tegra_plane, base);
42}
43
44struct tegra_dc_state {
45	struct drm_crtc_state base;
46
47	struct clk *clk;
48	unsigned long pclk;
49	unsigned int div;
50
51	u32 planes;
52};
53
54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55{
56	if (state)
57		return container_of(state, struct tegra_dc_state, base);
58
59	return NULL;
60}
61
62struct tegra_plane_state {
63	struct drm_plane_state base;
64
65	struct tegra_bo_tiling tiling;
66	u32 format;
67	u32 swap;
68};
69
70static inline struct tegra_plane_state *
71to_tegra_plane_state(struct drm_plane_state *state)
72{
73	if (state)
74		return container_of(state, struct tegra_plane_state, base);
75
76	return NULL;
77}
78
79/*
80 * Reads the active copy of a register. This takes the dc->lock spinlock to
81 * prevent races with the VBLANK processing which also needs access to the
82 * active copy of some registers.
83 */
84static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
85{
86	unsigned long flags;
87	u32 value;
88
89	spin_lock_irqsave(&dc->lock, flags);
90
91	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
92	value = tegra_dc_readl(dc, offset);
93	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
94
95	spin_unlock_irqrestore(&dc->lock, flags);
96	return value;
97}
98
99/*
100 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
101 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
102 * Latching happens mmediately if the display controller is in STOP mode or
103 * on the next frame boundary otherwise.
104 *
105 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
106 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
107 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
108 * into the ACTIVE copy, either immediately if the display controller is in
109 * STOP mode, or at the next frame boundary otherwise.
110 */
111void tegra_dc_commit(struct tegra_dc *dc)
112{
113	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
114	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
115}
116
117static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
118{
119	/* assume no swapping of fetched data */
120	if (swap)
121		*swap = BYTE_SWAP_NOSWAP;
122
123	switch (fourcc) {
124	case DRM_FORMAT_XBGR8888:
125		*format = WIN_COLOR_DEPTH_R8G8B8A8;
126		break;
127
128	case DRM_FORMAT_XRGB8888:
129		*format = WIN_COLOR_DEPTH_B8G8R8A8;
130		break;
131
132	case DRM_FORMAT_RGB565:
133		*format = WIN_COLOR_DEPTH_B5G6R5;
134		break;
135
136	case DRM_FORMAT_UYVY:
137		*format = WIN_COLOR_DEPTH_YCbCr422;
138		break;
139
140	case DRM_FORMAT_YUYV:
141		if (swap)
142			*swap = BYTE_SWAP_SWAP2;
143
144		*format = WIN_COLOR_DEPTH_YCbCr422;
145		break;
146
147	case DRM_FORMAT_YUV420:
148		*format = WIN_COLOR_DEPTH_YCbCr420P;
149		break;
150
151	case DRM_FORMAT_YUV422:
152		*format = WIN_COLOR_DEPTH_YCbCr422P;
153		break;
154
155	default:
156		return -EINVAL;
157	}
158
159	return 0;
160}
161
162static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
163{
164	switch (format) {
165	case WIN_COLOR_DEPTH_YCbCr422:
166	case WIN_COLOR_DEPTH_YUV422:
167		if (planar)
168			*planar = false;
169
170		return true;
171
172	case WIN_COLOR_DEPTH_YCbCr420P:
173	case WIN_COLOR_DEPTH_YUV420P:
174	case WIN_COLOR_DEPTH_YCbCr422P:
175	case WIN_COLOR_DEPTH_YUV422P:
176	case WIN_COLOR_DEPTH_YCbCr422R:
177	case WIN_COLOR_DEPTH_YUV422R:
178	case WIN_COLOR_DEPTH_YCbCr422RA:
179	case WIN_COLOR_DEPTH_YUV422RA:
180		if (planar)
181			*planar = true;
182
183		return true;
184	}
185
186	if (planar)
187		*planar = false;
188
189	return false;
190}
191
192static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
193				  unsigned int bpp)
194{
195	fixed20_12 outf = dfixed_init(out);
196	fixed20_12 inf = dfixed_init(in);
197	u32 dda_inc;
198	int max;
199
200	if (v)
201		max = 15;
202	else {
203		switch (bpp) {
204		case 2:
205			max = 8;
206			break;
207
208		default:
209			WARN_ON_ONCE(1);
210			/* fallthrough */
211		case 4:
212			max = 4;
213			break;
214		}
215	}
216
217	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
218	inf.full -= dfixed_const(1);
219
220	dda_inc = dfixed_div(inf, outf);
221	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
222
223	return dda_inc;
224}
225
226static inline u32 compute_initial_dda(unsigned int in)
227{
228	fixed20_12 inf = dfixed_init(in);
229	return dfixed_frac(inf);
230}
231
232static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
233				  const struct tegra_dc_window *window)
234{
235	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
236	unsigned long value, flags;
237	bool yuv, planar;
238
239	/*
240	 * For YUV planar modes, the number of bytes per pixel takes into
241	 * account only the luma component and therefore is 1.
242	 */
243	yuv = tegra_dc_format_is_yuv(window->format, &planar);
244	if (!yuv)
245		bpp = window->bits_per_pixel / 8;
246	else
247		bpp = planar ? 1 : 2;
248
249	spin_lock_irqsave(&dc->lock, flags);
250
251	value = WINDOW_A_SELECT << index;
252	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
253
254	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
255	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
256
257	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
258	tegra_dc_writel(dc, value, DC_WIN_POSITION);
259
260	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
261	tegra_dc_writel(dc, value, DC_WIN_SIZE);
262
263	h_offset = window->src.x * bpp;
264	v_offset = window->src.y;
265	h_size = window->src.w * bpp;
266	v_size = window->src.h;
267
268	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
269	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
270
271	/*
272	 * For DDA computations the number of bytes per pixel for YUV planar
273	 * modes needs to take into account all Y, U and V components.
274	 */
275	if (yuv && planar)
276		bpp = 2;
277
278	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
279	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
280
281	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
282	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
283
284	h_dda = compute_initial_dda(window->src.x);
285	v_dda = compute_initial_dda(window->src.y);
286
287	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
288	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
289
290	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
291	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
292
293	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
294
295	if (yuv && planar) {
296		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
297		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
298		value = window->stride[1] << 16 | window->stride[0];
299		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
300	} else {
301		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
302	}
303
304	if (window->bottom_up)
305		v_offset += window->src.h - 1;
306
307	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
308	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
309
310	if (dc->soc->supports_block_linear) {
311		unsigned long height = window->tiling.value;
312
313		switch (window->tiling.mode) {
314		case TEGRA_BO_TILING_MODE_PITCH:
315			value = DC_WINBUF_SURFACE_KIND_PITCH;
316			break;
317
318		case TEGRA_BO_TILING_MODE_TILED:
319			value = DC_WINBUF_SURFACE_KIND_TILED;
320			break;
321
322		case TEGRA_BO_TILING_MODE_BLOCK:
323			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
324				DC_WINBUF_SURFACE_KIND_BLOCK;
325			break;
326		}
327
328		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
329	} else {
330		switch (window->tiling.mode) {
331		case TEGRA_BO_TILING_MODE_PITCH:
332			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
333				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
334			break;
335
336		case TEGRA_BO_TILING_MODE_TILED:
337			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
338				DC_WIN_BUFFER_ADDR_MODE_TILE;
339			break;
340
341		case TEGRA_BO_TILING_MODE_BLOCK:
342			/*
343			 * No need to handle this here because ->atomic_check
344			 * will already have filtered it out.
345			 */
346			break;
347		}
348
349		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
350	}
351
352	value = WIN_ENABLE;
353
354	if (yuv) {
355		/* setup default colorspace conversion coefficients */
356		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
357		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
358		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
359		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
360		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
361		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
362		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
363		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
364
365		value |= CSC_ENABLE;
366	} else if (window->bits_per_pixel < 24) {
367		value |= COLOR_EXPAND;
368	}
369
370	if (window->bottom_up)
371		value |= V_DIRECTION;
372
373	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
374
375	/*
376	 * Disable blending and assume Window A is the bottom-most window,
377	 * Window C is the top-most window and Window B is in the middle.
378	 */
379	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
380	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
381
382	switch (index) {
383	case 0:
384		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
385		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
386		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
387		break;
388
389	case 1:
390		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
391		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
392		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
393		break;
394
395	case 2:
396		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
397		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
398		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
399		break;
400	}
401
402	spin_unlock_irqrestore(&dc->lock, flags);
403}
404
405static void tegra_plane_destroy(struct drm_plane *plane)
406{
407	struct tegra_plane *p = to_tegra_plane(plane);
408
409	drm_plane_cleanup(plane);
410	kfree(p);
411}
412
413static const u32 tegra_primary_plane_formats[] = {
414	DRM_FORMAT_XBGR8888,
415	DRM_FORMAT_XRGB8888,
416	DRM_FORMAT_RGB565,
417};
418
419static void tegra_primary_plane_destroy(struct drm_plane *plane)
420{
421	tegra_plane_destroy(plane);
422}
423
424static void tegra_plane_reset(struct drm_plane *plane)
425{
426	struct tegra_plane_state *state;
427
428	if (plane->state)
429		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
430
431	kfree(plane->state);
432	plane->state = NULL;
433
434	state = kzalloc(sizeof(*state), GFP_KERNEL);
435	if (state) {
436		plane->state = &state->base;
437		plane->state->plane = plane;
438	}
439}
440
441static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
442{
443	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
444	struct tegra_plane_state *copy;
445
446	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
447	if (!copy)
448		return NULL;
449
450	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
451	copy->tiling = state->tiling;
452	copy->format = state->format;
453	copy->swap = state->swap;
454
455	return &copy->base;
456}
457
458static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
459					     struct drm_plane_state *state)
460{
461	__drm_atomic_helper_plane_destroy_state(plane, state);
462	kfree(state);
463}
464
465static const struct drm_plane_funcs tegra_primary_plane_funcs = {
466	.update_plane = drm_atomic_helper_update_plane,
467	.disable_plane = drm_atomic_helper_disable_plane,
468	.destroy = tegra_primary_plane_destroy,
469	.reset = tegra_plane_reset,
470	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
471	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
472};
473
474static int tegra_plane_prepare_fb(struct drm_plane *plane,
475				  struct drm_framebuffer *fb,
476				  const struct drm_plane_state *new_state)
477{
478	return 0;
479}
480
481static void tegra_plane_cleanup_fb(struct drm_plane *plane,
482				   struct drm_framebuffer *fb,
483				   const struct drm_plane_state *old_fb)
484{
485}
486
487static int tegra_plane_state_add(struct tegra_plane *plane,
488				 struct drm_plane_state *state)
489{
490	struct drm_crtc_state *crtc_state;
491	struct tegra_dc_state *tegra;
492
493	/* Propagate errors from allocation or locking failures. */
494	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
495	if (IS_ERR(crtc_state))
496		return PTR_ERR(crtc_state);
497
498	tegra = to_dc_state(crtc_state);
499
500	tegra->planes |= WIN_A_ACT_REQ << plane->index;
501
502	return 0;
503}
504
505static int tegra_plane_atomic_check(struct drm_plane *plane,
506				    struct drm_plane_state *state)
507{
508	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
509	struct tegra_bo_tiling *tiling = &plane_state->tiling;
510	struct tegra_plane *tegra = to_tegra_plane(plane);
511	struct tegra_dc *dc = to_tegra_dc(state->crtc);
512	int err;
513
514	/* no need for further checks if the plane is being disabled */
515	if (!state->crtc)
516		return 0;
517
518	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
519			      &plane_state->swap);
520	if (err < 0)
521		return err;
522
523	err = tegra_fb_get_tiling(state->fb, tiling);
524	if (err < 0)
525		return err;
526
527	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
528	    !dc->soc->supports_block_linear) {
529		DRM_ERROR("hardware doesn't support block linear mode\n");
530		return -EINVAL;
531	}
532
533	/*
534	 * Tegra doesn't support different strides for U and V planes so we
535	 * error out if the user tries to display a framebuffer with such a
536	 * configuration.
537	 */
538	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
539		if (state->fb->pitches[2] != state->fb->pitches[1]) {
540			DRM_ERROR("unsupported UV-plane configuration\n");
541			return -EINVAL;
542		}
543	}
544
545	err = tegra_plane_state_add(tegra, state);
546	if (err < 0)
547		return err;
548
549	return 0;
550}
551
552static void tegra_plane_atomic_update(struct drm_plane *plane,
553				      struct drm_plane_state *old_state)
554{
555	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
556	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
557	struct drm_framebuffer *fb = plane->state->fb;
558	struct tegra_plane *p = to_tegra_plane(plane);
559	struct tegra_dc_window window;
560	unsigned int i;
561
562	/* rien ne va plus */
563	if (!plane->state->crtc || !plane->state->fb)
564		return;
565
566	memset(&window, 0, sizeof(window));
567	window.src.x = plane->state->src_x >> 16;
568	window.src.y = plane->state->src_y >> 16;
569	window.src.w = plane->state->src_w >> 16;
570	window.src.h = plane->state->src_h >> 16;
571	window.dst.x = plane->state->crtc_x;
572	window.dst.y = plane->state->crtc_y;
573	window.dst.w = plane->state->crtc_w;
574	window.dst.h = plane->state->crtc_h;
575	window.bits_per_pixel = fb->bits_per_pixel;
576	window.bottom_up = tegra_fb_is_bottom_up(fb);
577
578	/* copy from state */
579	window.tiling = state->tiling;
580	window.format = state->format;
581	window.swap = state->swap;
582
583	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
584		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
585
586		window.base[i] = bo->paddr + fb->offsets[i];
587		window.stride[i] = fb->pitches[i];
588	}
589
590	tegra_dc_setup_window(dc, p->index, &window);
591}
592
593static void tegra_plane_atomic_disable(struct drm_plane *plane,
594				       struct drm_plane_state *old_state)
595{
596	struct tegra_plane *p = to_tegra_plane(plane);
597	struct tegra_dc *dc;
598	unsigned long flags;
599	u32 value;
600
601	/* rien ne va plus */
602	if (!old_state || !old_state->crtc)
603		return;
604
605	dc = to_tegra_dc(old_state->crtc);
606
607	spin_lock_irqsave(&dc->lock, flags);
608
609	value = WINDOW_A_SELECT << p->index;
610	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
611
612	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
613	value &= ~WIN_ENABLE;
614	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
615
616	spin_unlock_irqrestore(&dc->lock, flags);
617}
618
619static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
620	.prepare_fb = tegra_plane_prepare_fb,
621	.cleanup_fb = tegra_plane_cleanup_fb,
622	.atomic_check = tegra_plane_atomic_check,
623	.atomic_update = tegra_plane_atomic_update,
624	.atomic_disable = tegra_plane_atomic_disable,
625};
626
627static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
628						       struct tegra_dc *dc)
629{
630	/*
631	 * Ideally this would use drm_crtc_mask(), but that would require the
632	 * CRTC to already be in the mode_config's list of CRTCs. However, it
633	 * will only be added to that list in the drm_crtc_init_with_planes()
634	 * (in tegra_dc_init()), which in turn requires registration of these
635	 * planes. So we have ourselves a nice little chicken and egg problem
636	 * here.
637	 *
638	 * We work around this by manually creating the mask from the number
639	 * of CRTCs that have been registered, and should therefore always be
640	 * the same as drm_crtc_index() after registration.
641	 */
642	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
643	struct tegra_plane *plane;
644	unsigned int num_formats;
645	const u32 *formats;
646	int err;
647
648	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
649	if (!plane)
650		return ERR_PTR(-ENOMEM);
651
652	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
653	formats = tegra_primary_plane_formats;
654
655	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
656				       &tegra_primary_plane_funcs, formats,
657				       num_formats, DRM_PLANE_TYPE_PRIMARY);
658	if (err < 0) {
659		kfree(plane);
660		return ERR_PTR(err);
661	}
662
663	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
664
665	return &plane->base;
666}
667
668static const u32 tegra_cursor_plane_formats[] = {
669	DRM_FORMAT_RGBA8888,
670};
671
672static int tegra_cursor_atomic_check(struct drm_plane *plane,
673				     struct drm_plane_state *state)
674{
675	struct tegra_plane *tegra = to_tegra_plane(plane);
676	int err;
677
678	/* no need for further checks if the plane is being disabled */
679	if (!state->crtc)
680		return 0;
681
682	/* scaling not supported for cursor */
683	if ((state->src_w >> 16 != state->crtc_w) ||
684	    (state->src_h >> 16 != state->crtc_h))
685		return -EINVAL;
686
687	/* only square cursors supported */
688	if (state->src_w != state->src_h)
689		return -EINVAL;
690
691	if (state->crtc_w != 32 && state->crtc_w != 64 &&
692	    state->crtc_w != 128 && state->crtc_w != 256)
693		return -EINVAL;
694
695	err = tegra_plane_state_add(tegra, state);
696	if (err < 0)
697		return err;
698
699	return 0;
700}
701
702static void tegra_cursor_atomic_update(struct drm_plane *plane,
703				       struct drm_plane_state *old_state)
704{
705	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
706	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
707	struct drm_plane_state *state = plane->state;
708	u32 value = CURSOR_CLIP_DISPLAY;
709
710	/* rien ne va plus */
711	if (!plane->state->crtc || !plane->state->fb)
712		return;
713
714	switch (state->crtc_w) {
715	case 32:
716		value |= CURSOR_SIZE_32x32;
717		break;
718
719	case 64:
720		value |= CURSOR_SIZE_64x64;
721		break;
722
723	case 128:
724		value |= CURSOR_SIZE_128x128;
725		break;
726
727	case 256:
728		value |= CURSOR_SIZE_256x256;
729		break;
730
731	default:
732		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
733		     state->crtc_h);
734		return;
735	}
736
737	value |= (bo->paddr >> 10) & 0x3fffff;
738	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
739
740#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
741	value = (bo->paddr >> 32) & 0x3;
742	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
743#endif
744
745	/* enable cursor and set blend mode */
746	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
747	value |= CURSOR_ENABLE;
748	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
749
750	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
751	value &= ~CURSOR_DST_BLEND_MASK;
752	value &= ~CURSOR_SRC_BLEND_MASK;
753	value |= CURSOR_MODE_NORMAL;
754	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
755	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
756	value |= CURSOR_ALPHA;
757	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
758
759	/* position the cursor */
760	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
761	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
762
763}
764
765static void tegra_cursor_atomic_disable(struct drm_plane *plane,
766					struct drm_plane_state *old_state)
767{
768	struct tegra_dc *dc;
769	u32 value;
770
771	/* rien ne va plus */
772	if (!old_state || !old_state->crtc)
773		return;
774
775	dc = to_tegra_dc(old_state->crtc);
776
777	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
778	value &= ~CURSOR_ENABLE;
779	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
780}
781
782static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
783	.update_plane = drm_atomic_helper_update_plane,
784	.disable_plane = drm_atomic_helper_disable_plane,
785	.destroy = tegra_plane_destroy,
786	.reset = tegra_plane_reset,
787	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
788	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
789};
790
791static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
792	.prepare_fb = tegra_plane_prepare_fb,
793	.cleanup_fb = tegra_plane_cleanup_fb,
794	.atomic_check = tegra_cursor_atomic_check,
795	.atomic_update = tegra_cursor_atomic_update,
796	.atomic_disable = tegra_cursor_atomic_disable,
797};
798
799static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
800						      struct tegra_dc *dc)
801{
802	struct tegra_plane *plane;
803	unsigned int num_formats;
804	const u32 *formats;
805	int err;
806
807	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
808	if (!plane)
809		return ERR_PTR(-ENOMEM);
810
811	/*
812	 * We'll treat the cursor as an overlay plane with index 6 here so
813	 * that the update and activation request bits in DC_CMD_STATE_CONTROL
814	 * match up.
815	 */
816	plane->index = 6;
817
818	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
819	formats = tegra_cursor_plane_formats;
820
821	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
822				       &tegra_cursor_plane_funcs, formats,
823				       num_formats, DRM_PLANE_TYPE_CURSOR);
824	if (err < 0) {
825		kfree(plane);
826		return ERR_PTR(err);
827	}
828
829	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
830
831	return &plane->base;
832}
833
834static void tegra_overlay_plane_destroy(struct drm_plane *plane)
835{
836	tegra_plane_destroy(plane);
837}
838
839static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
840	.update_plane = drm_atomic_helper_update_plane,
841	.disable_plane = drm_atomic_helper_disable_plane,
842	.destroy = tegra_overlay_plane_destroy,
843	.reset = tegra_plane_reset,
844	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
845	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
846};
847
848static const uint32_t tegra_overlay_plane_formats[] = {
849	DRM_FORMAT_XBGR8888,
850	DRM_FORMAT_XRGB8888,
851	DRM_FORMAT_RGB565,
852	DRM_FORMAT_UYVY,
853	DRM_FORMAT_YUYV,
854	DRM_FORMAT_YUV420,
855	DRM_FORMAT_YUV422,
856};
857
858static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
859	.prepare_fb = tegra_plane_prepare_fb,
860	.cleanup_fb = tegra_plane_cleanup_fb,
861	.atomic_check = tegra_plane_atomic_check,
862	.atomic_update = tegra_plane_atomic_update,
863	.atomic_disable = tegra_plane_atomic_disable,
864};
865
866static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867						       struct tegra_dc *dc,
868						       unsigned int index)
869{
870	struct tegra_plane *plane;
871	unsigned int num_formats;
872	const u32 *formats;
873	int err;
874
875	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876	if (!plane)
877		return ERR_PTR(-ENOMEM);
878
879	plane->index = index;
880
881	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882	formats = tegra_overlay_plane_formats;
883
884	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885				       &tegra_overlay_plane_funcs, formats,
886				       num_formats, DRM_PLANE_TYPE_OVERLAY);
887	if (err < 0) {
888		kfree(plane);
889		return ERR_PTR(err);
890	}
891
892	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
893
894	return &plane->base;
895}
896
897static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
898{
899	struct drm_plane *plane;
900	unsigned int i;
901
902	for (i = 0; i < 2; i++) {
903		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
904		if (IS_ERR(plane))
905			return PTR_ERR(plane);
906	}
907
908	return 0;
909}
910
911u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
912{
913	if (dc->syncpt)
914		return host1x_syncpt_read(dc->syncpt);
915
916	/* fallback to software emulated VBLANK counter */
917	return drm_crtc_vblank_count(&dc->base);
918}
919
920void tegra_dc_enable_vblank(struct tegra_dc *dc)
921{
922	unsigned long value, flags;
923
924	spin_lock_irqsave(&dc->lock, flags);
925
926	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
927	value |= VBLANK_INT;
928	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
929
930	spin_unlock_irqrestore(&dc->lock, flags);
931}
932
933void tegra_dc_disable_vblank(struct tegra_dc *dc)
934{
935	unsigned long value, flags;
936
937	spin_lock_irqsave(&dc->lock, flags);
938
939	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
940	value &= ~VBLANK_INT;
941	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
942
943	spin_unlock_irqrestore(&dc->lock, flags);
944}
945
946static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
947{
948	struct drm_device *drm = dc->base.dev;
949	struct drm_crtc *crtc = &dc->base;
950	unsigned long flags, base;
951	struct tegra_bo *bo;
952
953	spin_lock_irqsave(&drm->event_lock, flags);
954
955	if (!dc->event) {
956		spin_unlock_irqrestore(&drm->event_lock, flags);
957		return;
958	}
959
960	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
961
962	spin_lock(&dc->lock);
963
964	/* check if new start address has been latched */
965	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
966	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
967	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
968	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
969
970	spin_unlock(&dc->lock);
971
972	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
973		drm_crtc_send_vblank_event(crtc, dc->event);
974		drm_crtc_vblank_put(crtc);
975		dc->event = NULL;
976	}
977
978	spin_unlock_irqrestore(&drm->event_lock, flags);
979}
980
981void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
982{
983	struct tegra_dc *dc = to_tegra_dc(crtc);
984	struct drm_device *drm = crtc->dev;
985	unsigned long flags;
986
987	spin_lock_irqsave(&drm->event_lock, flags);
988
989	if (dc->event && dc->event->base.file_priv == file) {
990		dc->event->base.destroy(&dc->event->base);
991		drm_crtc_vblank_put(crtc);
992		dc->event = NULL;
993	}
994
995	spin_unlock_irqrestore(&drm->event_lock, flags);
996}
997
998static void tegra_dc_destroy(struct drm_crtc *crtc)
999{
1000	drm_crtc_cleanup(crtc);
1001}
1002
1003static void tegra_crtc_reset(struct drm_crtc *crtc)
1004{
1005	struct tegra_dc_state *state;
1006
1007	if (crtc->state)
1008		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1009
1010	kfree(crtc->state);
1011	crtc->state = NULL;
1012
1013	state = kzalloc(sizeof(*state), GFP_KERNEL);
1014	if (state) {
1015		crtc->state = &state->base;
1016		crtc->state->crtc = crtc;
1017	}
1018}
1019
1020static struct drm_crtc_state *
1021tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1022{
1023	struct tegra_dc_state *state = to_dc_state(crtc->state);
1024	struct tegra_dc_state *copy;
1025
1026	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027	if (!copy)
1028		return NULL;
1029
1030	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1031	copy->clk = state->clk;
1032	copy->pclk = state->pclk;
1033	copy->div = state->div;
1034	copy->planes = state->planes;
1035
1036	return &copy->base;
1037}
1038
1039static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040					    struct drm_crtc_state *state)
1041{
1042	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1043	kfree(state);
1044}
1045
1046static const struct drm_crtc_funcs tegra_crtc_funcs = {
1047	.page_flip = drm_atomic_helper_page_flip,
1048	.set_config = drm_atomic_helper_set_config,
1049	.destroy = tegra_dc_destroy,
1050	.reset = tegra_crtc_reset,
1051	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1052	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1053};
1054
1055static void tegra_dc_stop(struct tegra_dc *dc)
1056{
1057	u32 value;
1058
1059	/* stop the display controller */
1060	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1061	value &= ~DISP_CTRL_MODE_MASK;
1062	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1063
1064	tegra_dc_commit(dc);
1065}
1066
1067static bool tegra_dc_idle(struct tegra_dc *dc)
1068{
1069	u32 value;
1070
1071	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1072
1073	return (value & DISP_CTRL_MODE_MASK) == 0;
1074}
1075
1076static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1077{
1078	timeout = jiffies + msecs_to_jiffies(timeout);
1079
1080	while (time_before(jiffies, timeout)) {
1081		if (tegra_dc_idle(dc))
1082			return 0;
1083
1084		usleep_range(1000, 2000);
1085	}
1086
1087	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1088	return -ETIMEDOUT;
1089}
1090
1091static void tegra_crtc_disable(struct drm_crtc *crtc)
1092{
1093	struct tegra_dc *dc = to_tegra_dc(crtc);
1094	u32 value;
1095
1096	if (!tegra_dc_idle(dc)) {
1097		tegra_dc_stop(dc);
1098
1099		/*
1100		 * Ignore the return value, there isn't anything useful to do
1101		 * in case this fails.
1102		 */
1103		tegra_dc_wait_idle(dc, 100);
1104	}
1105
1106	/*
1107	 * This should really be part of the RGB encoder driver, but clearing
1108	 * these bits has the side-effect of stopping the display controller.
1109	 * When that happens no VBLANK interrupts will be raised. At the same
1110	 * time the encoder is disabled before the display controller, so the
1111	 * above code is always going to timeout waiting for the controller
1112	 * to go idle.
1113	 *
1114	 * Given the close coupling between the RGB encoder and the display
1115	 * controller doing it here is still kind of okay. None of the other
1116	 * encoder drivers require these bits to be cleared.
1117	 *
1118	 * XXX: Perhaps given that the display controller is switched off at
1119	 * this point anyway maybe clearing these bits isn't even useful for
1120	 * the RGB encoder?
1121	 */
1122	if (dc->rgb) {
1123		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1124		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1125			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1126		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1127	}
1128
1129	drm_crtc_vblank_off(crtc);
1130}
1131
1132static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1133				  const struct drm_display_mode *mode,
1134				  struct drm_display_mode *adjusted)
1135{
1136	return true;
1137}
1138
1139static int tegra_dc_set_timings(struct tegra_dc *dc,
1140				struct drm_display_mode *mode)
1141{
1142	unsigned int h_ref_to_sync = 1;
1143	unsigned int v_ref_to_sync = 1;
1144	unsigned long value;
1145
1146	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1147
1148	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1149	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1150
1151	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1152		((mode->hsync_end - mode->hsync_start) <<  0);
1153	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1154
1155	value = ((mode->vtotal - mode->vsync_end) << 16) |
1156		((mode->htotal - mode->hsync_end) <<  0);
1157	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1158
1159	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1160		((mode->hsync_start - mode->hdisplay) <<  0);
1161	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1162
1163	value = (mode->vdisplay << 16) | mode->hdisplay;
1164	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1165
1166	return 0;
1167}
1168
1169/**
1170 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1171 *     state
1172 * @dc: display controller
1173 * @crtc_state: CRTC atomic state
1174 * @clk: parent clock for display controller
1175 * @pclk: pixel clock
1176 * @div: shift clock divider
1177 *
1178 * Returns:
1179 * 0 on success or a negative error-code on failure.
1180 */
1181int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1182			       struct drm_crtc_state *crtc_state,
1183			       struct clk *clk, unsigned long pclk,
1184			       unsigned int div)
1185{
1186	struct tegra_dc_state *state = to_dc_state(crtc_state);
1187
1188	if (!clk_has_parent(dc->clk, clk))
1189		return -EINVAL;
1190
1191	state->clk = clk;
1192	state->pclk = pclk;
1193	state->div = div;
1194
1195	return 0;
1196}
1197
1198static void tegra_dc_commit_state(struct tegra_dc *dc,
1199				  struct tegra_dc_state *state)
1200{
1201	u32 value;
1202	int err;
1203
1204	err = clk_set_parent(dc->clk, state->clk);
1205	if (err < 0)
1206		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1207
1208	/*
1209	 * Outputs may not want to change the parent clock rate. This is only
1210	 * relevant to Tegra20 where only a single display PLL is available.
1211	 * Since that PLL would typically be used for HDMI, an internal LVDS
1212	 * panel would need to be driven by some other clock such as PLL_P
1213	 * which is shared with other peripherals. Changing the clock rate
1214	 * should therefore be avoided.
1215	 */
1216	if (state->pclk > 0) {
1217		err = clk_set_rate(state->clk, state->pclk);
1218		if (err < 0)
1219			dev_err(dc->dev,
1220				"failed to set clock rate to %lu Hz\n",
1221				state->pclk);
1222	}
1223
1224	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1225		      state->div);
1226	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1227
1228	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1229	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1230}
1231
1232static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
1233{
1234	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1235	struct tegra_dc_state *state = to_dc_state(crtc->state);
1236	struct tegra_dc *dc = to_tegra_dc(crtc);
1237	u32 value;
1238
1239	tegra_dc_commit_state(dc, state);
1240
1241	/* program display mode */
1242	tegra_dc_set_timings(dc, mode);
1243
1244	/* interlacing isn't supported yet, so disable it */
1245	if (dc->soc->supports_interlacing) {
1246		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1247		value &= ~INTERLACE_ENABLE;
1248		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1249	}
1250
1251	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1252	value &= ~DISP_CTRL_MODE_MASK;
1253	value |= DISP_CTRL_MODE_C_DISPLAY;
1254	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1255
1256	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1257	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1258		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1259	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1260
1261	tegra_dc_commit(dc);
1262}
1263
1264static void tegra_crtc_prepare(struct drm_crtc *crtc)
1265{
1266	drm_crtc_vblank_off(crtc);
1267}
1268
1269static void tegra_crtc_commit(struct drm_crtc *crtc)
1270{
1271	drm_crtc_vblank_on(crtc);
1272}
1273
1274static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1275				   struct drm_crtc_state *state)
1276{
1277	return 0;
1278}
1279
1280static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
1281{
1282	struct tegra_dc *dc = to_tegra_dc(crtc);
1283
1284	if (crtc->state->event) {
1285		crtc->state->event->pipe = drm_crtc_index(crtc);
1286
1287		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1288
1289		dc->event = crtc->state->event;
1290		crtc->state->event = NULL;
1291	}
1292}
1293
1294static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
1295{
1296	struct tegra_dc_state *state = to_dc_state(crtc->state);
1297	struct tegra_dc *dc = to_tegra_dc(crtc);
1298
1299	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1300	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1301}
1302
1303static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1304	.disable = tegra_crtc_disable,
1305	.mode_fixup = tegra_crtc_mode_fixup,
1306	.mode_set_nofb = tegra_crtc_mode_set_nofb,
1307	.prepare = tegra_crtc_prepare,
1308	.commit = tegra_crtc_commit,
1309	.atomic_check = tegra_crtc_atomic_check,
1310	.atomic_begin = tegra_crtc_atomic_begin,
1311	.atomic_flush = tegra_crtc_atomic_flush,
1312};
1313
1314static irqreturn_t tegra_dc_irq(int irq, void *data)
1315{
1316	struct tegra_dc *dc = data;
1317	unsigned long status;
1318
1319	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1320	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1321
1322	if (status & FRAME_END_INT) {
1323		/*
1324		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1325		*/
1326	}
1327
1328	if (status & VBLANK_INT) {
1329		/*
1330		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1331		*/
1332		drm_crtc_handle_vblank(&dc->base);
1333		tegra_dc_finish_page_flip(dc);
1334	}
1335
1336	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1337		/*
1338		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1339		*/
1340	}
1341
1342	return IRQ_HANDLED;
1343}
1344
1345static int tegra_dc_show_regs(struct seq_file *s, void *data)
1346{
1347	struct drm_info_node *node = s->private;
1348	struct tegra_dc *dc = node->info_ent->data;
1349
1350#define DUMP_REG(name)						\
1351	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1352		   tegra_dc_readl(dc, name))
1353
1354	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1355	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1356	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1357	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1358	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1359	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1360	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1361	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1362	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1363	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1364	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1365	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1366	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1367	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1368	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1369	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1370	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1371	DUMP_REG(DC_CMD_INT_STATUS);
1372	DUMP_REG(DC_CMD_INT_MASK);
1373	DUMP_REG(DC_CMD_INT_ENABLE);
1374	DUMP_REG(DC_CMD_INT_TYPE);
1375	DUMP_REG(DC_CMD_INT_POLARITY);
1376	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1377	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1378	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1379	DUMP_REG(DC_CMD_STATE_ACCESS);
1380	DUMP_REG(DC_CMD_STATE_CONTROL);
1381	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1382	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1383	DUMP_REG(DC_COM_CRC_CONTROL);
1384	DUMP_REG(DC_COM_CRC_CHECKSUM);
1385	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1386	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1387	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1388	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1389	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1390	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1391	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1392	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1393	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1394	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1395	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1396	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1397	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1398	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1399	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1400	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1401	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1402	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1403	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1404	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1405	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1406	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1407	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1408	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1409	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1410	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1411	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1412	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1413	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1414	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1415	DUMP_REG(DC_COM_SPI_CONTROL);
1416	DUMP_REG(DC_COM_SPI_START_BYTE);
1417	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1418	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1419	DUMP_REG(DC_COM_HSPI_CS_DC);
1420	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1421	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1422	DUMP_REG(DC_COM_GPIO_CTRL);
1423	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1424	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1425	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1426	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1427	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1428	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1429	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1430	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1431	DUMP_REG(DC_DISP_REF_TO_SYNC);
1432	DUMP_REG(DC_DISP_SYNC_WIDTH);
1433	DUMP_REG(DC_DISP_BACK_PORCH);
1434	DUMP_REG(DC_DISP_ACTIVE);
1435	DUMP_REG(DC_DISP_FRONT_PORCH);
1436	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1437	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1438	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1439	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1440	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1441	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1442	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1443	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1444	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1445	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1446	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1447	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1448	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1449	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1450	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1451	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1452	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1453	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1454	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1455	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1456	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1457	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1458	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1459	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1460	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1461	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1462	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1463	DUMP_REG(DC_DISP_M0_CONTROL);
1464	DUMP_REG(DC_DISP_M1_CONTROL);
1465	DUMP_REG(DC_DISP_DI_CONTROL);
1466	DUMP_REG(DC_DISP_PP_CONTROL);
1467	DUMP_REG(DC_DISP_PP_SELECT_A);
1468	DUMP_REG(DC_DISP_PP_SELECT_B);
1469	DUMP_REG(DC_DISP_PP_SELECT_C);
1470	DUMP_REG(DC_DISP_PP_SELECT_D);
1471	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1472	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1473	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1474	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1475	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1476	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1477	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1478	DUMP_REG(DC_DISP_BORDER_COLOR);
1479	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1480	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1481	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1482	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1483	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1484	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1485	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1486	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1487	DUMP_REG(DC_DISP_CURSOR_POSITION);
1488	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1489	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1490	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1491	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1492	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1493	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1494	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1495	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1496	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1497	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1498	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1499	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1500	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1501	DUMP_REG(DC_DISP_SD_CONTROL);
1502	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1503	DUMP_REG(DC_DISP_SD_LUT(0));
1504	DUMP_REG(DC_DISP_SD_LUT(1));
1505	DUMP_REG(DC_DISP_SD_LUT(2));
1506	DUMP_REG(DC_DISP_SD_LUT(3));
1507	DUMP_REG(DC_DISP_SD_LUT(4));
1508	DUMP_REG(DC_DISP_SD_LUT(5));
1509	DUMP_REG(DC_DISP_SD_LUT(6));
1510	DUMP_REG(DC_DISP_SD_LUT(7));
1511	DUMP_REG(DC_DISP_SD_LUT(8));
1512	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1513	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1514	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1515	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1516	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1517	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1518	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1519	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1520	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1521	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1522	DUMP_REG(DC_DISP_SD_BL_TF(0));
1523	DUMP_REG(DC_DISP_SD_BL_TF(1));
1524	DUMP_REG(DC_DISP_SD_BL_TF(2));
1525	DUMP_REG(DC_DISP_SD_BL_TF(3));
1526	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1527	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1528	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1529	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1530	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1531	DUMP_REG(DC_WIN_WIN_OPTIONS);
1532	DUMP_REG(DC_WIN_BYTE_SWAP);
1533	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1534	DUMP_REG(DC_WIN_COLOR_DEPTH);
1535	DUMP_REG(DC_WIN_POSITION);
1536	DUMP_REG(DC_WIN_SIZE);
1537	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1538	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1539	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1540	DUMP_REG(DC_WIN_DDA_INC);
1541	DUMP_REG(DC_WIN_LINE_STRIDE);
1542	DUMP_REG(DC_WIN_BUF_STRIDE);
1543	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1544	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1545	DUMP_REG(DC_WIN_DV_CONTROL);
1546	DUMP_REG(DC_WIN_BLEND_NOKEY);
1547	DUMP_REG(DC_WIN_BLEND_1WIN);
1548	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1549	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1550	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1551	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1552	DUMP_REG(DC_WINBUF_START_ADDR);
1553	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1554	DUMP_REG(DC_WINBUF_START_ADDR_U);
1555	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1556	DUMP_REG(DC_WINBUF_START_ADDR_V);
1557	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1558	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1559	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1560	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1561	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1562	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1563	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1564	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1565	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1566
1567#undef DUMP_REG
1568
1569	return 0;
1570}
1571
1572static struct drm_info_list debugfs_files[] = {
1573	{ "regs", tegra_dc_show_regs, 0, NULL },
1574};
1575
1576static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1577{
1578	unsigned int i;
1579	char *name;
1580	int err;
1581
1582	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1583	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1584	kfree(name);
1585
1586	if (!dc->debugfs)
1587		return -ENOMEM;
1588
1589	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1590				    GFP_KERNEL);
1591	if (!dc->debugfs_files) {
1592		err = -ENOMEM;
1593		goto remove;
1594	}
1595
1596	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1597		dc->debugfs_files[i].data = dc;
1598
1599	err = drm_debugfs_create_files(dc->debugfs_files,
1600				       ARRAY_SIZE(debugfs_files),
1601				       dc->debugfs, minor);
1602	if (err < 0)
1603		goto free;
1604
1605	dc->minor = minor;
1606
1607	return 0;
1608
1609free:
1610	kfree(dc->debugfs_files);
1611	dc->debugfs_files = NULL;
1612remove:
1613	debugfs_remove(dc->debugfs);
1614	dc->debugfs = NULL;
1615
1616	return err;
1617}
1618
1619static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1620{
1621	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1622				 dc->minor);
1623	dc->minor = NULL;
1624
1625	kfree(dc->debugfs_files);
1626	dc->debugfs_files = NULL;
1627
1628	debugfs_remove(dc->debugfs);
1629	dc->debugfs = NULL;
1630
1631	return 0;
1632}
1633
1634static int tegra_dc_init(struct host1x_client *client)
1635{
1636	struct drm_device *drm = dev_get_drvdata(client->parent);
1637	struct tegra_dc *dc = host1x_client_to_dc(client);
1638	struct tegra_drm *tegra = drm->dev_private;
1639	struct drm_plane *primary = NULL;
1640	struct drm_plane *cursor = NULL;
1641	u32 value;
1642	int err;
1643
1644	if (tegra->domain) {
1645		err = iommu_attach_device(tegra->domain, dc->dev);
1646		if (err < 0) {
1647			dev_err(dc->dev, "failed to attach to domain: %d\n",
1648				err);
1649			return err;
1650		}
1651
1652		dc->domain = tegra->domain;
1653	}
1654
1655	primary = tegra_dc_primary_plane_create(drm, dc);
1656	if (IS_ERR(primary)) {
1657		err = PTR_ERR(primary);
1658		goto cleanup;
1659	}
1660
1661	if (dc->soc->supports_cursor) {
1662		cursor = tegra_dc_cursor_plane_create(drm, dc);
1663		if (IS_ERR(cursor)) {
1664			err = PTR_ERR(cursor);
1665			goto cleanup;
1666		}
1667	}
1668
1669	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1670					&tegra_crtc_funcs);
1671	if (err < 0)
1672		goto cleanup;
1673
1674	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1675	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1676
1677	/*
1678	 * Keep track of the minimum pitch alignment across all display
1679	 * controllers.
1680	 */
1681	if (dc->soc->pitch_align > tegra->pitch_align)
1682		tegra->pitch_align = dc->soc->pitch_align;
1683
1684	err = tegra_dc_rgb_init(drm, dc);
1685	if (err < 0 && err != -ENODEV) {
1686		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1687		goto cleanup;
1688	}
1689
1690	err = tegra_dc_add_planes(drm, dc);
1691	if (err < 0)
1692		goto cleanup;
1693
1694	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1695		err = tegra_dc_debugfs_init(dc, drm->primary);
1696		if (err < 0)
1697			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1698	}
1699
1700	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1701			       dev_name(dc->dev), dc);
1702	if (err < 0) {
1703		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1704			err);
1705		goto cleanup;
1706	}
1707
1708	/* initialize display controller */
1709	if (dc->syncpt) {
1710		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1711
1712		value = SYNCPT_CNTRL_NO_STALL;
1713		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1714
1715		value = SYNCPT_VSYNC_ENABLE | syncpt;
1716		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1717	}
1718
1719	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1720	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1721
1722	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1723		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1724	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1725
1726	/* initialize timer */
1727	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1728		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1729	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1730
1731	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1732		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1733	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1734
1735	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1736	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1737
1738	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1739	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1740
1741	if (dc->soc->supports_border_color)
1742		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1743
1744	return 0;
1745
1746cleanup:
1747	if (cursor)
1748		drm_plane_cleanup(cursor);
1749
1750	if (primary)
1751		drm_plane_cleanup(primary);
1752
1753	if (tegra->domain) {
1754		iommu_detach_device(tegra->domain, dc->dev);
1755		dc->domain = NULL;
1756	}
1757
1758	return err;
1759}
1760
1761static int tegra_dc_exit(struct host1x_client *client)
1762{
1763	struct tegra_dc *dc = host1x_client_to_dc(client);
1764	int err;
1765
1766	devm_free_irq(dc->dev, dc->irq, dc);
1767
1768	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1769		err = tegra_dc_debugfs_exit(dc);
1770		if (err < 0)
1771			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1772	}
1773
1774	err = tegra_dc_rgb_exit(dc);
1775	if (err) {
1776		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1777		return err;
1778	}
1779
1780	if (dc->domain) {
1781		iommu_detach_device(dc->domain, dc->dev);
1782		dc->domain = NULL;
1783	}
1784
1785	return 0;
1786}
1787
1788static const struct host1x_client_ops dc_client_ops = {
1789	.init = tegra_dc_init,
1790	.exit = tegra_dc_exit,
1791};
1792
1793static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1794	.supports_border_color = true,
1795	.supports_interlacing = false,
1796	.supports_cursor = false,
1797	.supports_block_linear = false,
1798	.pitch_align = 8,
1799	.has_powergate = false,
1800};
1801
1802static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1803	.supports_border_color = true,
1804	.supports_interlacing = false,
1805	.supports_cursor = false,
1806	.supports_block_linear = false,
1807	.pitch_align = 8,
1808	.has_powergate = false,
1809};
1810
1811static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1812	.supports_border_color = true,
1813	.supports_interlacing = false,
1814	.supports_cursor = false,
1815	.supports_block_linear = false,
1816	.pitch_align = 64,
1817	.has_powergate = true,
1818};
1819
1820static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1821	.supports_border_color = false,
1822	.supports_interlacing = true,
1823	.supports_cursor = true,
1824	.supports_block_linear = true,
1825	.pitch_align = 64,
1826	.has_powergate = true,
1827};
1828
1829static const struct of_device_id tegra_dc_of_match[] = {
1830	{
1831		.compatible = "nvidia,tegra124-dc",
1832		.data = &tegra124_dc_soc_info,
1833	}, {
1834		.compatible = "nvidia,tegra114-dc",
1835		.data = &tegra114_dc_soc_info,
1836	}, {
1837		.compatible = "nvidia,tegra30-dc",
1838		.data = &tegra30_dc_soc_info,
1839	}, {
1840		.compatible = "nvidia,tegra20-dc",
1841		.data = &tegra20_dc_soc_info,
1842	}, {
1843		/* sentinel */
1844	}
1845};
1846MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1847
1848static int tegra_dc_parse_dt(struct tegra_dc *dc)
1849{
1850	struct device_node *np;
1851	u32 value = 0;
1852	int err;
1853
1854	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1855	if (err < 0) {
1856		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1857
1858		/*
1859		 * If the nvidia,head property isn't present, try to find the
1860		 * correct head number by looking up the position of this
1861		 * display controller's node within the device tree. Assuming
1862		 * that the nodes are ordered properly in the DTS file and
1863		 * that the translation into a flattened device tree blob
1864		 * preserves that ordering this will actually yield the right
1865		 * head number.
1866		 *
1867		 * If those assumptions don't hold, this will still work for
1868		 * cases where only a single display controller is used.
1869		 */
1870		for_each_matching_node(np, tegra_dc_of_match) {
1871			if (np == dc->dev->of_node)
1872				break;
1873
1874			value++;
1875		}
1876	}
1877
1878	dc->pipe = value;
1879
1880	return 0;
1881}
1882
1883static int tegra_dc_probe(struct platform_device *pdev)
1884{
1885	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1886	const struct of_device_id *id;
1887	struct resource *regs;
1888	struct tegra_dc *dc;
1889	int err;
1890
1891	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1892	if (!dc)
1893		return -ENOMEM;
1894
1895	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1896	if (!id)
1897		return -ENODEV;
1898
1899	spin_lock_init(&dc->lock);
1900	INIT_LIST_HEAD(&dc->list);
1901	dc->dev = &pdev->dev;
1902	dc->soc = id->data;
1903
1904	err = tegra_dc_parse_dt(dc);
1905	if (err < 0)
1906		return err;
1907
1908	dc->clk = devm_clk_get(&pdev->dev, NULL);
1909	if (IS_ERR(dc->clk)) {
1910		dev_err(&pdev->dev, "failed to get clock\n");
1911		return PTR_ERR(dc->clk);
1912	}
1913
1914	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1915	if (IS_ERR(dc->rst)) {
1916		dev_err(&pdev->dev, "failed to get reset\n");
1917		return PTR_ERR(dc->rst);
1918	}
1919
1920	if (dc->soc->has_powergate) {
1921		if (dc->pipe == 0)
1922			dc->powergate = TEGRA_POWERGATE_DIS;
1923		else
1924			dc->powergate = TEGRA_POWERGATE_DISB;
1925
1926		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1927							dc->rst);
1928		if (err < 0) {
1929			dev_err(&pdev->dev, "failed to power partition: %d\n",
1930				err);
1931			return err;
1932		}
1933	} else {
1934		err = clk_prepare_enable(dc->clk);
1935		if (err < 0) {
1936			dev_err(&pdev->dev, "failed to enable clock: %d\n",
1937				err);
1938			return err;
1939		}
1940
1941		err = reset_control_deassert(dc->rst);
1942		if (err < 0) {
1943			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1944				err);
1945			return err;
1946		}
1947	}
1948
1949	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1950	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1951	if (IS_ERR(dc->regs))
1952		return PTR_ERR(dc->regs);
1953
1954	dc->irq = platform_get_irq(pdev, 0);
1955	if (dc->irq < 0) {
1956		dev_err(&pdev->dev, "failed to get IRQ\n");
1957		return -ENXIO;
1958	}
1959
1960	INIT_LIST_HEAD(&dc->client.list);
1961	dc->client.ops = &dc_client_ops;
1962	dc->client.dev = &pdev->dev;
1963
1964	err = tegra_dc_rgb_probe(dc);
1965	if (err < 0 && err != -ENODEV) {
1966		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1967		return err;
1968	}
1969
1970	err = host1x_client_register(&dc->client);
1971	if (err < 0) {
1972		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1973			err);
1974		return err;
1975	}
1976
1977	dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
1978	if (!dc->syncpt)
1979		dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
1980
1981	platform_set_drvdata(pdev, dc);
1982
1983	return 0;
1984}
1985
1986static int tegra_dc_remove(struct platform_device *pdev)
1987{
1988	struct tegra_dc *dc = platform_get_drvdata(pdev);
1989	int err;
1990
1991	host1x_syncpt_free(dc->syncpt);
1992
1993	err = host1x_client_unregister(&dc->client);
1994	if (err < 0) {
1995		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1996			err);
1997		return err;
1998	}
1999
2000	err = tegra_dc_rgb_remove(dc);
2001	if (err < 0) {
2002		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2003		return err;
2004	}
2005
2006	reset_control_assert(dc->rst);
2007
2008	if (dc->soc->has_powergate)
2009		tegra_powergate_power_off(dc->powergate);
2010
2011	clk_disable_unprepare(dc->clk);
2012
2013	return 0;
2014}
2015
2016struct platform_driver tegra_dc_driver = {
2017	.driver = {
2018		.name = "tegra-dc",
2019		.owner = THIS_MODULE,
2020		.of_match_table = tegra_dc_of_match,
2021	},
2022	.probe = tegra_dc_probe,
2023	.remove = tegra_dc_remove,
2024};
2025