1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 *    Jerome Glisse <glisse@freedesktop.org>
29 *    Dave Airlie
30 */
31#include <linux/seq_file.h>
32#include <linux/atomic.h>
33#include <linux/wait.h>
34#include <linux/kref.h>
35#include <linux/slab.h>
36#include <linux/firmware.h>
37#include <drm/drmP.h>
38#include "radeon_reg.h"
39#include "radeon.h"
40#include "radeon_trace.h"
41
42/*
43 * Fences
44 * Fences mark an event in the GPUs pipeline and are used
45 * for GPU/CPU synchronization.  When the fence is written,
46 * it is expected that all buffers associated with that fence
47 * are no longer in use by the associated ring on the GPU and
48 * that the the relevant GPU caches have been flushed.  Whether
49 * we use a scratch register or memory location depends on the asic
50 * and whether writeback is enabled.
51 */
52
53/**
54 * radeon_fence_write - write a fence value
55 *
56 * @rdev: radeon_device pointer
57 * @seq: sequence number to write
58 * @ring: ring index the fence is associated with
59 *
60 * Writes a fence value to memory or a scratch register (all asics).
61 */
62static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
63{
64	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
65	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
66		if (drv->cpu_addr) {
67			*drv->cpu_addr = cpu_to_le32(seq);
68		}
69	} else {
70		WREG32(drv->scratch_reg, seq);
71	}
72}
73
74/**
75 * radeon_fence_read - read a fence value
76 *
77 * @rdev: radeon_device pointer
78 * @ring: ring index the fence is associated with
79 *
80 * Reads a fence value from memory or a scratch register (all asics).
81 * Returns the value of the fence read from memory or register.
82 */
83static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
84{
85	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
86	u32 seq = 0;
87
88	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
89		if (drv->cpu_addr) {
90			seq = le32_to_cpu(*drv->cpu_addr);
91		} else {
92			seq = lower_32_bits(atomic64_read(&drv->last_seq));
93		}
94	} else {
95		seq = RREG32(drv->scratch_reg);
96	}
97	return seq;
98}
99
100/**
101 * radeon_fence_schedule_check - schedule lockup check
102 *
103 * @rdev: radeon_device pointer
104 * @ring: ring index we should work with
105 *
106 * Queues a delayed work item to check for lockups.
107 */
108static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
109{
110	/*
111	 * Do not reset the timer here with mod_delayed_work,
112	 * this can livelock in an interaction with TTM delayed destroy.
113	 */
114	queue_delayed_work(system_power_efficient_wq,
115			   &rdev->fence_drv[ring].lockup_work,
116			   RADEON_FENCE_JIFFIES_TIMEOUT);
117}
118
119/**
120 * radeon_fence_emit - emit a fence on the requested ring
121 *
122 * @rdev: radeon_device pointer
123 * @fence: radeon fence object
124 * @ring: ring index the fence is associated with
125 *
126 * Emits a fence command on the requested ring (all asics).
127 * Returns 0 on success, -ENOMEM on failure.
128 */
129int radeon_fence_emit(struct radeon_device *rdev,
130		      struct radeon_fence **fence,
131		      int ring)
132{
133	u64 seq = ++rdev->fence_drv[ring].sync_seq[ring];
134
135	/* we are protected by the ring emission mutex */
136	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
137	if ((*fence) == NULL) {
138		return -ENOMEM;
139	}
140	(*fence)->rdev = rdev;
141	(*fence)->seq = seq;
142	(*fence)->ring = ring;
143	(*fence)->is_vm_update = false;
144	fence_init(&(*fence)->base, &radeon_fence_ops,
145		   &rdev->fence_queue.lock, rdev->fence_context + ring, seq);
146	radeon_fence_ring_emit(rdev, ring, *fence);
147	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
148	radeon_fence_schedule_check(rdev, ring);
149	return 0;
150}
151
152/**
153 * radeon_fence_check_signaled - callback from fence_queue
154 *
155 * this function is called with fence_queue lock held, which is also used
156 * for the fence locking itself, so unlocked variants are used for
157 * fence_signal, and remove_wait_queue.
158 */
159static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
160{
161	struct radeon_fence *fence;
162	u64 seq;
163
164	fence = container_of(wait, struct radeon_fence, fence_wake);
165
166	/*
167	 * We cannot use radeon_fence_process here because we're already
168	 * in the waitqueue, in a call from wake_up_all.
169	 */
170	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
171	if (seq >= fence->seq) {
172		int ret = fence_signal_locked(&fence->base);
173
174		if (!ret)
175			FENCE_TRACE(&fence->base, "signaled from irq context\n");
176		else
177			FENCE_TRACE(&fence->base, "was already signaled\n");
178
179		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
180		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
181		fence_put(&fence->base);
182	} else
183		FENCE_TRACE(&fence->base, "pending\n");
184	return 0;
185}
186
187/**
188 * radeon_fence_activity - check for fence activity
189 *
190 * @rdev: radeon_device pointer
191 * @ring: ring index the fence is associated with
192 *
193 * Checks the current fence value and calculates the last
194 * signalled fence value. Returns true if activity occured
195 * on the ring, and the fence_queue should be waken up.
196 */
197static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
198{
199	uint64_t seq, last_seq, last_emitted;
200	unsigned count_loop = 0;
201	bool wake = false;
202
203	/* Note there is a scenario here for an infinite loop but it's
204	 * very unlikely to happen. For it to happen, the current polling
205	 * process need to be interrupted by another process and another
206	 * process needs to update the last_seq btw the atomic read and
207	 * xchg of the current process.
208	 *
209	 * More over for this to go in infinite loop there need to be
210	 * continuously new fence signaled ie radeon_fence_read needs
211	 * to return a different value each time for both the currently
212	 * polling process and the other process that xchg the last_seq
213	 * btw atomic read and xchg of the current process. And the
214	 * value the other process set as last seq must be higher than
215	 * the seq value we just read. Which means that current process
216	 * need to be interrupted after radeon_fence_read and before
217	 * atomic xchg.
218	 *
219	 * To be even more safe we count the number of time we loop and
220	 * we bail after 10 loop just accepting the fact that we might
221	 * have temporarly set the last_seq not to the true real last
222	 * seq but to an older one.
223	 */
224	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
225	do {
226		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227		seq = radeon_fence_read(rdev, ring);
228		seq |= last_seq & 0xffffffff00000000LL;
229		if (seq < last_seq) {
230			seq &= 0xffffffff;
231			seq |= last_emitted & 0xffffffff00000000LL;
232		}
233
234		if (seq <= last_seq || seq > last_emitted) {
235			break;
236		}
237		/* If we loop over we don't want to return without
238		 * checking if a fence is signaled as it means that the
239		 * seq we just read is different from the previous on.
240		 */
241		wake = true;
242		last_seq = seq;
243		if ((count_loop++) > 10) {
244			/* We looped over too many time leave with the
245			 * fact that we might have set an older fence
246			 * seq then the current real last seq as signaled
247			 * by the hw.
248			 */
249			break;
250		}
251	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
252
253	if (seq < last_emitted)
254		radeon_fence_schedule_check(rdev, ring);
255
256	return wake;
257}
258
259/**
260 * radeon_fence_check_lockup - check for hardware lockup
261 *
262 * @work: delayed work item
263 *
264 * Checks for fence activity and if there is none probe
265 * the hardware if a lockup occured.
266 */
267static void radeon_fence_check_lockup(struct work_struct *work)
268{
269	struct radeon_fence_driver *fence_drv;
270	struct radeon_device *rdev;
271	int ring;
272
273	fence_drv = container_of(work, struct radeon_fence_driver,
274				 lockup_work.work);
275	rdev = fence_drv->rdev;
276	ring = fence_drv - &rdev->fence_drv[0];
277
278	if (!down_read_trylock(&rdev->exclusive_lock)) {
279		/* just reschedule the check if a reset is going on */
280		radeon_fence_schedule_check(rdev, ring);
281		return;
282	}
283
284	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
285		unsigned long irqflags;
286
287		fence_drv->delayed_irq = false;
288		spin_lock_irqsave(&rdev->irq.lock, irqflags);
289		radeon_irq_set(rdev);
290		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
291	}
292
293	if (radeon_fence_activity(rdev, ring))
294		wake_up_all(&rdev->fence_queue);
295
296	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
297
298		/* good news we believe it's a lockup */
299		dev_warn(rdev->dev, "GPU lockup (current fence id "
300			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
301			 (uint64_t)atomic64_read(&fence_drv->last_seq),
302			 fence_drv->sync_seq[ring], ring);
303
304		/* remember that we need an reset */
305		rdev->needs_reset = true;
306		wake_up_all(&rdev->fence_queue);
307	}
308	up_read(&rdev->exclusive_lock);
309}
310
311/**
312 * radeon_fence_process - process a fence
313 *
314 * @rdev: radeon_device pointer
315 * @ring: ring index the fence is associated with
316 *
317 * Checks the current fence value and wakes the fence queue
318 * if the sequence number has increased (all asics).
319 */
320void radeon_fence_process(struct radeon_device *rdev, int ring)
321{
322	if (radeon_fence_activity(rdev, ring))
323		wake_up_all(&rdev->fence_queue);
324}
325
326/**
327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
328 *
329 * @rdev: radeon device pointer
330 * @seq: sequence number
331 * @ring: ring index the fence is associated with
332 *
333 * Check if the last signaled fence sequnce number is >= the requested
334 * sequence number (all asics).
335 * Returns true if the fence has signaled (current fence value
336 * is >= requested value) or false if it has not (current fence
337 * value is < the requested value.  Helper function for
338 * radeon_fence_signaled().
339 */
340static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
341				      u64 seq, unsigned ring)
342{
343	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
344		return true;
345	}
346	/* poll new last sequence at least once */
347	radeon_fence_process(rdev, ring);
348	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
349		return true;
350	}
351	return false;
352}
353
354static bool radeon_fence_is_signaled(struct fence *f)
355{
356	struct radeon_fence *fence = to_radeon_fence(f);
357	struct radeon_device *rdev = fence->rdev;
358	unsigned ring = fence->ring;
359	u64 seq = fence->seq;
360
361	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
362		return true;
363	}
364
365	if (down_read_trylock(&rdev->exclusive_lock)) {
366		radeon_fence_process(rdev, ring);
367		up_read(&rdev->exclusive_lock);
368
369		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
370			return true;
371		}
372	}
373	return false;
374}
375
376/**
377 * radeon_fence_enable_signaling - enable signalling on fence
378 * @fence: fence
379 *
380 * This function is called with fence_queue lock held, and adds a callback
381 * to fence_queue that checks if this fence is signaled, and if so it
382 * signals the fence and removes itself.
383 */
384static bool radeon_fence_enable_signaling(struct fence *f)
385{
386	struct radeon_fence *fence = to_radeon_fence(f);
387	struct radeon_device *rdev = fence->rdev;
388
389	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
390		return false;
391
392	if (down_read_trylock(&rdev->exclusive_lock)) {
393		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
394
395		if (radeon_fence_activity(rdev, fence->ring))
396			wake_up_all_locked(&rdev->fence_queue);
397
398		/* did fence get signaled after we enabled the sw irq? */
399		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
400			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
401			up_read(&rdev->exclusive_lock);
402			return false;
403		}
404
405		up_read(&rdev->exclusive_lock);
406	} else {
407		/* we're probably in a lockup, lets not fiddle too much */
408		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
409			rdev->fence_drv[fence->ring].delayed_irq = true;
410		radeon_fence_schedule_check(rdev, fence->ring);
411	}
412
413	fence->fence_wake.flags = 0;
414	fence->fence_wake.private = NULL;
415	fence->fence_wake.func = radeon_fence_check_signaled;
416	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
417	fence_get(f);
418
419	FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
420	return true;
421}
422
423/**
424 * radeon_fence_signaled - check if a fence has signaled
425 *
426 * @fence: radeon fence object
427 *
428 * Check if the requested fence has signaled (all asics).
429 * Returns true if the fence has signaled or false if it has not.
430 */
431bool radeon_fence_signaled(struct radeon_fence *fence)
432{
433	if (!fence)
434		return true;
435
436	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
437		int ret;
438
439		ret = fence_signal(&fence->base);
440		if (!ret)
441			FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
442		return true;
443	}
444	return false;
445}
446
447/**
448 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
449 *
450 * @rdev: radeon device pointer
451 * @seq: sequence numbers
452 *
453 * Check if the last signaled fence sequnce number is >= the requested
454 * sequence number (all asics).
455 * Returns true if any has signaled (current value is >= requested value)
456 * or false if it has not. Helper function for radeon_fence_wait_seq.
457 */
458static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
459{
460	unsigned i;
461
462	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
463		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
464			return true;
465	}
466	return false;
467}
468
469/**
470 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
471 *
472 * @rdev: radeon device pointer
473 * @target_seq: sequence number(s) we want to wait for
474 * @intr: use interruptable sleep
475 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
476 *
477 * Wait for the requested sequence number(s) to be written by any ring
478 * (all asics).  Sequnce number array is indexed by ring id.
479 * @intr selects whether to use interruptable (true) or non-interruptable
480 * (false) sleep when waiting for the sequence number.  Helper function
481 * for radeon_fence_wait_*().
482 * Returns remaining time if the sequence number has passed, 0 when
483 * the wait timeout, or an error for all other cases.
484 * -EDEADLK is returned when a GPU lockup has been detected.
485 */
486static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
487					  u64 *target_seq, bool intr,
488					  long timeout)
489{
490	long r;
491	int i;
492
493	if (radeon_fence_any_seq_signaled(rdev, target_seq))
494		return timeout;
495
496	/* enable IRQs and tracing */
497	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
498		if (!target_seq[i])
499			continue;
500
501		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
502		radeon_irq_kms_sw_irq_get(rdev, i);
503	}
504
505	if (intr) {
506		r = wait_event_interruptible_timeout(rdev->fence_queue, (
507			radeon_fence_any_seq_signaled(rdev, target_seq)
508			 || rdev->needs_reset), timeout);
509	} else {
510		r = wait_event_timeout(rdev->fence_queue, (
511			radeon_fence_any_seq_signaled(rdev, target_seq)
512			 || rdev->needs_reset), timeout);
513	}
514
515	if (rdev->needs_reset)
516		r = -EDEADLK;
517
518	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
519		if (!target_seq[i])
520			continue;
521
522		radeon_irq_kms_sw_irq_put(rdev, i);
523		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
524	}
525
526	return r;
527}
528
529/**
530 * radeon_fence_wait - wait for a fence to signal
531 *
532 * @fence: radeon fence object
533 * @intr: use interruptible sleep
534 *
535 * Wait for the requested fence to signal (all asics).
536 * @intr selects whether to use interruptable (true) or non-interruptable
537 * (false) sleep when waiting for the fence.
538 * Returns 0 if the fence has passed, error for all other cases.
539 */
540int radeon_fence_wait(struct radeon_fence *fence, bool intr)
541{
542	uint64_t seq[RADEON_NUM_RINGS] = {};
543	long r;
544
545	/*
546	 * This function should not be called on !radeon fences.
547	 * If this is the case, it would mean this function can
548	 * also be called on radeon fences belonging to another card.
549	 * exclusive_lock is not held in that case.
550	 */
551	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
552		return fence_wait(&fence->base, intr);
553
554	seq[fence->ring] = fence->seq;
555	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
556	if (r < 0) {
557		return r;
558	}
559
560	r = fence_signal(&fence->base);
561	if (!r)
562		FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
563	return 0;
564}
565
566/**
567 * radeon_fence_wait_any - wait for a fence to signal on any ring
568 *
569 * @rdev: radeon device pointer
570 * @fences: radeon fence object(s)
571 * @intr: use interruptable sleep
572 *
573 * Wait for any requested fence to signal (all asics).  Fence
574 * array is indexed by ring id.  @intr selects whether to use
575 * interruptable (true) or non-interruptable (false) sleep when
576 * waiting for the fences. Used by the suballocator.
577 * Returns 0 if any fence has passed, error for all other cases.
578 */
579int radeon_fence_wait_any(struct radeon_device *rdev,
580			  struct radeon_fence **fences,
581			  bool intr)
582{
583	uint64_t seq[RADEON_NUM_RINGS];
584	unsigned i, num_rings = 0;
585	long r;
586
587	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
588		seq[i] = 0;
589
590		if (!fences[i]) {
591			continue;
592		}
593
594		seq[i] = fences[i]->seq;
595		++num_rings;
596	}
597
598	/* nothing to wait for ? */
599	if (num_rings == 0)
600		return -ENOENT;
601
602	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
603	if (r < 0) {
604		return r;
605	}
606	return 0;
607}
608
609/**
610 * radeon_fence_wait_next - wait for the next fence to signal
611 *
612 * @rdev: radeon device pointer
613 * @ring: ring index the fence is associated with
614 *
615 * Wait for the next fence on the requested ring to signal (all asics).
616 * Returns 0 if the next fence has passed, error for all other cases.
617 * Caller must hold ring lock.
618 */
619int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
620{
621	uint64_t seq[RADEON_NUM_RINGS] = {};
622	long r;
623
624	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
625	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
626		/* nothing to wait for, last_seq is
627		   already the last emited fence */
628		return -ENOENT;
629	}
630	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
631	if (r < 0)
632		return r;
633	return 0;
634}
635
636/**
637 * radeon_fence_wait_empty - wait for all fences to signal
638 *
639 * @rdev: radeon device pointer
640 * @ring: ring index the fence is associated with
641 *
642 * Wait for all fences on the requested ring to signal (all asics).
643 * Returns 0 if the fences have passed, error for all other cases.
644 * Caller must hold ring lock.
645 */
646int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
647{
648	uint64_t seq[RADEON_NUM_RINGS] = {};
649	long r;
650
651	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
652	if (!seq[ring])
653		return 0;
654
655	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
656	if (r < 0) {
657		if (r == -EDEADLK)
658			return -EDEADLK;
659
660		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
661			ring, r);
662	}
663	return 0;
664}
665
666/**
667 * radeon_fence_ref - take a ref on a fence
668 *
669 * @fence: radeon fence object
670 *
671 * Take a reference on a fence (all asics).
672 * Returns the fence.
673 */
674struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
675{
676	fence_get(&fence->base);
677	return fence;
678}
679
680/**
681 * radeon_fence_unref - remove a ref on a fence
682 *
683 * @fence: radeon fence object
684 *
685 * Remove a reference on a fence (all asics).
686 */
687void radeon_fence_unref(struct radeon_fence **fence)
688{
689	struct radeon_fence *tmp = *fence;
690
691	*fence = NULL;
692	if (tmp) {
693		fence_put(&tmp->base);
694	}
695}
696
697/**
698 * radeon_fence_count_emitted - get the count of emitted fences
699 *
700 * @rdev: radeon device pointer
701 * @ring: ring index the fence is associated with
702 *
703 * Get the number of fences emitted on the requested ring (all asics).
704 * Returns the number of emitted fences on the ring.  Used by the
705 * dynpm code to ring track activity.
706 */
707unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
708{
709	uint64_t emitted;
710
711	/* We are not protected by ring lock when reading the last sequence
712	 * but it's ok to report slightly wrong fence count here.
713	 */
714	radeon_fence_process(rdev, ring);
715	emitted = rdev->fence_drv[ring].sync_seq[ring]
716		- atomic64_read(&rdev->fence_drv[ring].last_seq);
717	/* to avoid 32bits warp around */
718	if (emitted > 0x10000000) {
719		emitted = 0x10000000;
720	}
721	return (unsigned)emitted;
722}
723
724/**
725 * radeon_fence_need_sync - do we need a semaphore
726 *
727 * @fence: radeon fence object
728 * @dst_ring: which ring to check against
729 *
730 * Check if the fence needs to be synced against another ring
731 * (all asics).  If so, we need to emit a semaphore.
732 * Returns true if we need to sync with another ring, false if
733 * not.
734 */
735bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
736{
737	struct radeon_fence_driver *fdrv;
738
739	if (!fence) {
740		return false;
741	}
742
743	if (fence->ring == dst_ring) {
744		return false;
745	}
746
747	/* we are protected by the ring mutex */
748	fdrv = &fence->rdev->fence_drv[dst_ring];
749	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
750		return false;
751	}
752
753	return true;
754}
755
756/**
757 * radeon_fence_note_sync - record the sync point
758 *
759 * @fence: radeon fence object
760 * @dst_ring: which ring to check against
761 *
762 * Note the sequence number at which point the fence will
763 * be synced with the requested ring (all asics).
764 */
765void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
766{
767	struct radeon_fence_driver *dst, *src;
768	unsigned i;
769
770	if (!fence) {
771		return;
772	}
773
774	if (fence->ring == dst_ring) {
775		return;
776	}
777
778	/* we are protected by the ring mutex */
779	src = &fence->rdev->fence_drv[fence->ring];
780	dst = &fence->rdev->fence_drv[dst_ring];
781	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
782		if (i == dst_ring) {
783			continue;
784		}
785		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
786	}
787}
788
789/**
790 * radeon_fence_driver_start_ring - make the fence driver
791 * ready for use on the requested ring.
792 *
793 * @rdev: radeon device pointer
794 * @ring: ring index to start the fence driver on
795 *
796 * Make the fence driver ready for processing (all asics).
797 * Not all asics have all rings, so each asic will only
798 * start the fence driver on the rings it has.
799 * Returns 0 for success, errors for failure.
800 */
801int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
802{
803	uint64_t index;
804	int r;
805
806	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
807	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
808		rdev->fence_drv[ring].scratch_reg = 0;
809		if (ring != R600_RING_TYPE_UVD_INDEX) {
810			index = R600_WB_EVENT_OFFSET + ring * 4;
811			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
812			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
813							 index;
814
815		} else {
816			/* put fence directly behind firmware */
817			index = ALIGN(rdev->uvd_fw->size, 8);
818			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
819			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
820		}
821
822	} else {
823		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
824		if (r) {
825			dev_err(rdev->dev, "fence failed to get scratch register\n");
826			return r;
827		}
828		index = RADEON_WB_SCRATCH_OFFSET +
829			rdev->fence_drv[ring].scratch_reg -
830			rdev->scratch.reg_base;
831		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
832		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
833	}
834	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
835	rdev->fence_drv[ring].initialized = true;
836	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
837		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
838	return 0;
839}
840
841/**
842 * radeon_fence_driver_init_ring - init the fence driver
843 * for the requested ring.
844 *
845 * @rdev: radeon device pointer
846 * @ring: ring index to start the fence driver on
847 *
848 * Init the fence driver for the requested ring (all asics).
849 * Helper function for radeon_fence_driver_init().
850 */
851static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
852{
853	int i;
854
855	rdev->fence_drv[ring].scratch_reg = -1;
856	rdev->fence_drv[ring].cpu_addr = NULL;
857	rdev->fence_drv[ring].gpu_addr = 0;
858	for (i = 0; i < RADEON_NUM_RINGS; ++i)
859		rdev->fence_drv[ring].sync_seq[i] = 0;
860	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
861	rdev->fence_drv[ring].initialized = false;
862	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
863			  radeon_fence_check_lockup);
864	rdev->fence_drv[ring].rdev = rdev;
865}
866
867/**
868 * radeon_fence_driver_init - init the fence driver
869 * for all possible rings.
870 *
871 * @rdev: radeon device pointer
872 *
873 * Init the fence driver for all possible rings (all asics).
874 * Not all asics have all rings, so each asic will only
875 * start the fence driver on the rings it has using
876 * radeon_fence_driver_start_ring().
877 * Returns 0 for success.
878 */
879int radeon_fence_driver_init(struct radeon_device *rdev)
880{
881	int ring;
882
883	init_waitqueue_head(&rdev->fence_queue);
884	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
885		radeon_fence_driver_init_ring(rdev, ring);
886	}
887	if (radeon_debugfs_fence_init(rdev)) {
888		dev_err(rdev->dev, "fence debugfs file creation failed\n");
889	}
890	return 0;
891}
892
893/**
894 * radeon_fence_driver_fini - tear down the fence driver
895 * for all possible rings.
896 *
897 * @rdev: radeon device pointer
898 *
899 * Tear down the fence driver for all possible rings (all asics).
900 */
901void radeon_fence_driver_fini(struct radeon_device *rdev)
902{
903	int ring, r;
904
905	mutex_lock(&rdev->ring_lock);
906	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
907		if (!rdev->fence_drv[ring].initialized)
908			continue;
909		r = radeon_fence_wait_empty(rdev, ring);
910		if (r) {
911			/* no need to trigger GPU reset as we are unloading */
912			radeon_fence_driver_force_completion(rdev, ring);
913		}
914		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
915		wake_up_all(&rdev->fence_queue);
916		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
917		rdev->fence_drv[ring].initialized = false;
918	}
919	mutex_unlock(&rdev->ring_lock);
920}
921
922/**
923 * radeon_fence_driver_force_completion - force all fence waiter to complete
924 *
925 * @rdev: radeon device pointer
926 * @ring: the ring to complete
927 *
928 * In case of GPU reset failure make sure no process keep waiting on fence
929 * that will never complete.
930 */
931void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
932{
933	if (rdev->fence_drv[ring].initialized) {
934		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
935		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
936	}
937}
938
939
940/*
941 * Fence debugfs
942 */
943#if defined(CONFIG_DEBUG_FS)
944static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
945{
946	struct drm_info_node *node = (struct drm_info_node *)m->private;
947	struct drm_device *dev = node->minor->dev;
948	struct radeon_device *rdev = dev->dev_private;
949	int i, j;
950
951	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
952		if (!rdev->fence_drv[i].initialized)
953			continue;
954
955		radeon_fence_process(rdev, i);
956
957		seq_printf(m, "--- ring %d ---\n", i);
958		seq_printf(m, "Last signaled fence 0x%016llx\n",
959			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
960		seq_printf(m, "Last emitted        0x%016llx\n",
961			   rdev->fence_drv[i].sync_seq[i]);
962
963		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
964			if (i != j && rdev->fence_drv[j].initialized)
965				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
966					   j, rdev->fence_drv[i].sync_seq[j]);
967		}
968	}
969	return 0;
970}
971
972/**
973 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
974 *
975 * Manually trigger a gpu reset at the next fence wait.
976 */
977static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
978{
979	struct drm_info_node *node = (struct drm_info_node *) m->private;
980	struct drm_device *dev = node->minor->dev;
981	struct radeon_device *rdev = dev->dev_private;
982
983	down_read(&rdev->exclusive_lock);
984	seq_printf(m, "%d\n", rdev->needs_reset);
985	rdev->needs_reset = true;
986	wake_up_all(&rdev->fence_queue);
987	up_read(&rdev->exclusive_lock);
988
989	return 0;
990}
991
992static struct drm_info_list radeon_debugfs_fence_list[] = {
993	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
994	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
995};
996#endif
997
998int radeon_debugfs_fence_init(struct radeon_device *rdev)
999{
1000#if defined(CONFIG_DEBUG_FS)
1001	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1002#else
1003	return 0;
1004#endif
1005}
1006
1007static const char *radeon_fence_get_driver_name(struct fence *fence)
1008{
1009	return "radeon";
1010}
1011
1012static const char *radeon_fence_get_timeline_name(struct fence *f)
1013{
1014	struct radeon_fence *fence = to_radeon_fence(f);
1015	switch (fence->ring) {
1016	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1017	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1018	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1019	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1020	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1021	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1022	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1023	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1024	default: WARN_ON_ONCE(1); return "radeon.unk";
1025	}
1026}
1027
1028static inline bool radeon_test_signaled(struct radeon_fence *fence)
1029{
1030	return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1031}
1032
1033struct radeon_wait_cb {
1034	struct fence_cb base;
1035	struct task_struct *task;
1036};
1037
1038static void
1039radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1040{
1041	struct radeon_wait_cb *wait =
1042		container_of(cb, struct radeon_wait_cb, base);
1043
1044	wake_up_process(wait->task);
1045}
1046
1047static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1048					     signed long t)
1049{
1050	struct radeon_fence *fence = to_radeon_fence(f);
1051	struct radeon_device *rdev = fence->rdev;
1052	struct radeon_wait_cb cb;
1053
1054	cb.task = current;
1055
1056	if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1057		return t;
1058
1059	while (t > 0) {
1060		if (intr)
1061			set_current_state(TASK_INTERRUPTIBLE);
1062		else
1063			set_current_state(TASK_UNINTERRUPTIBLE);
1064
1065		/*
1066		 * radeon_test_signaled must be called after
1067		 * set_current_state to prevent a race with wake_up_process
1068		 */
1069		if (radeon_test_signaled(fence))
1070			break;
1071
1072		if (rdev->needs_reset) {
1073			t = -EDEADLK;
1074			break;
1075		}
1076
1077		t = schedule_timeout(t);
1078
1079		if (t > 0 && intr && signal_pending(current))
1080			t = -ERESTARTSYS;
1081	}
1082
1083	__set_current_state(TASK_RUNNING);
1084	fence_remove_callback(f, &cb.base);
1085
1086	return t;
1087}
1088
1089const struct fence_ops radeon_fence_ops = {
1090	.get_driver_name = radeon_fence_get_driver_name,
1091	.get_timeline_name = radeon_fence_get_timeline_name,
1092	.enable_signaling = radeon_fence_enable_signaling,
1093	.signaled = radeon_fence_is_signaled,
1094	.wait = radeon_fence_default_wait,
1095	.release = NULL,
1096};
1097