1/*
2 * drivers/gpu/drm/omapdrm/omap_gem.c
3 *
4 * Copyright (C) 2011 Texas Instruments
5 * Author: Rob Clark <rob.clark@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program.  If not, see <http://www.gnu.org/licenses/>.
18 */
19
20
21#include <linux/spinlock.h>
22#include <linux/shmem_fs.h>
23#include <drm/drm_vma_manager.h>
24
25#include "omap_drv.h"
26#include "omap_dmm_tiler.h"
27
28/* remove these once drm core helpers are merged */
29struct page **_drm_gem_get_pages(struct drm_gem_object *obj, gfp_t gfpmask);
30void _drm_gem_put_pages(struct drm_gem_object *obj, struct page **pages,
31		bool dirty, bool accessed);
32int _drm_gem_create_mmap_offset_size(struct drm_gem_object *obj, size_t size);
33
34/*
35 * GEM buffer object implementation.
36 */
37
38#define to_omap_bo(x) container_of(x, struct omap_gem_object, base)
39
40/* note: we use upper 8 bits of flags for driver-internal flags: */
41#define OMAP_BO_DMA			0x01000000	/* actually is physically contiguous */
42#define OMAP_BO_EXT_SYNC	0x02000000	/* externally allocated sync object */
43#define OMAP_BO_EXT_MEM		0x04000000	/* externally allocated memory */
44
45
46struct omap_gem_object {
47	struct drm_gem_object base;
48
49	struct list_head mm_list;
50
51	uint32_t flags;
52
53	/** width/height for tiled formats (rounded up to slot boundaries) */
54	uint16_t width, height;
55
56	/** roll applied when mapping to DMM */
57	uint32_t roll;
58
59	/**
60	 * If buffer is allocated physically contiguous, the OMAP_BO_DMA flag
61	 * is set and the paddr is valid.  Also if the buffer is remapped in
62	 * TILER and paddr_cnt > 0, then paddr is valid.  But if you are using
63	 * the physical address and OMAP_BO_DMA is not set, then you should
64	 * be going thru omap_gem_{get,put}_paddr() to ensure the mapping is
65	 * not removed from under your feet.
66	 *
67	 * Note that OMAP_BO_SCANOUT is a hint from userspace that DMA capable
68	 * buffer is requested, but doesn't mean that it is.  Use the
69	 * OMAP_BO_DMA flag to determine if the buffer has a DMA capable
70	 * physical address.
71	 */
72	dma_addr_t paddr;
73
74	/**
75	 * # of users of paddr
76	 */
77	uint32_t paddr_cnt;
78
79	/**
80	 * tiler block used when buffer is remapped in DMM/TILER.
81	 */
82	struct tiler_block *block;
83
84	/**
85	 * Array of backing pages, if allocated.  Note that pages are never
86	 * allocated for buffers originally allocated from contiguous memory
87	 */
88	struct page **pages;
89
90	/** addresses corresponding to pages in above array */
91	dma_addr_t *addrs;
92
93	/**
94	 * Virtual address, if mapped.
95	 */
96	void *vaddr;
97
98	/**
99	 * sync-object allocated on demand (if needed)
100	 *
101	 * Per-buffer sync-object for tracking pending and completed hw/dma
102	 * read and write operations.  The layout in memory is dictated by
103	 * the SGX firmware, which uses this information to stall the command
104	 * stream if a surface is not ready yet.
105	 *
106	 * Note that when buffer is used by SGX, the sync-object needs to be
107	 * allocated from a special heap of sync-objects.  This way many sync
108	 * objects can be packed in a page, and not waste GPU virtual address
109	 * space.  Because of this we have to have a omap_gem_set_sync_object()
110	 * API to allow replacement of the syncobj after it has (potentially)
111	 * already been allocated.  A bit ugly but I haven't thought of a
112	 * better alternative.
113	 */
114	struct {
115		uint32_t write_pending;
116		uint32_t write_complete;
117		uint32_t read_pending;
118		uint32_t read_complete;
119	} *sync;
120};
121
122static int get_pages(struct drm_gem_object *obj, struct page ***pages);
123static uint64_t mmap_offset(struct drm_gem_object *obj);
124
125/* To deal with userspace mmap'ings of 2d tiled buffers, which (a) are
126 * not necessarily pinned in TILER all the time, and (b) when they are
127 * they are not necessarily page aligned, we reserve one or more small
128 * regions in each of the 2d containers to use as a user-GART where we
129 * can create a second page-aligned mapping of parts of the buffer
130 * being accessed from userspace.
131 *
132 * Note that we could optimize slightly when we know that multiple
133 * tiler containers are backed by the same PAT.. but I'll leave that
134 * for later..
135 */
136#define NUM_USERGART_ENTRIES 2
137struct usergart_entry {
138	struct tiler_block *block;	/* the reserved tiler block */
139	dma_addr_t paddr;
140	struct drm_gem_object *obj;	/* the current pinned obj */
141	pgoff_t obj_pgoff;		/* page offset of obj currently
142					   mapped in */
143};
144static struct {
145	struct usergart_entry entry[NUM_USERGART_ENTRIES];
146	int height;				/* height in rows */
147	int height_shift;		/* ilog2(height in rows) */
148	int slot_shift;			/* ilog2(width per slot) */
149	int stride_pfn;			/* stride in pages */
150	int last;				/* index of last used entry */
151} *usergart;
152
153static void evict_entry(struct drm_gem_object *obj,
154		enum tiler_fmt fmt, struct usergart_entry *entry)
155{
156	struct omap_gem_object *omap_obj = to_omap_bo(obj);
157	int n = usergart[fmt].height;
158	size_t size = PAGE_SIZE * n;
159	loff_t off = mmap_offset(obj) +
160			(entry->obj_pgoff << PAGE_SHIFT);
161	const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE);
162
163	if (m > 1) {
164		int i;
165		/* if stride > than PAGE_SIZE then sparse mapping: */
166		for (i = n; i > 0; i--) {
167			unmap_mapping_range(obj->dev->anon_inode->i_mapping,
168					    off, PAGE_SIZE, 1);
169			off += PAGE_SIZE * m;
170		}
171	} else {
172		unmap_mapping_range(obj->dev->anon_inode->i_mapping,
173				    off, size, 1);
174	}
175
176	entry->obj = NULL;
177}
178
179/* Evict a buffer from usergart, if it is mapped there */
180static void evict(struct drm_gem_object *obj)
181{
182	struct omap_gem_object *omap_obj = to_omap_bo(obj);
183
184	if (omap_obj->flags & OMAP_BO_TILED) {
185		enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
186		int i;
187
188		if (!usergart)
189			return;
190
191		for (i = 0; i < NUM_USERGART_ENTRIES; i++) {
192			struct usergart_entry *entry = &usergart[fmt].entry[i];
193			if (entry->obj == obj)
194				evict_entry(obj, fmt, entry);
195		}
196	}
197}
198
199/* GEM objects can either be allocated from contiguous memory (in which
200 * case obj->filp==NULL), or w/ shmem backing (obj->filp!=NULL).  But non
201 * contiguous buffers can be remapped in TILER/DMM if they need to be
202 * contiguous... but we don't do this all the time to reduce pressure
203 * on TILER/DMM space when we know at allocation time that the buffer
204 * will need to be scanned out.
205 */
206static inline bool is_shmem(struct drm_gem_object *obj)
207{
208	return obj->filp != NULL;
209}
210
211/**
212 * shmem buffers that are mapped cached can simulate coherency via using
213 * page faulting to keep track of dirty pages
214 */
215static inline bool is_cached_coherent(struct drm_gem_object *obj)
216{
217	struct omap_gem_object *omap_obj = to_omap_bo(obj);
218	return is_shmem(obj) &&
219		((omap_obj->flags & OMAP_BO_CACHE_MASK) == OMAP_BO_CACHED);
220}
221
222static DEFINE_SPINLOCK(sync_lock);
223
224/** ensure backing pages are allocated */
225static int omap_gem_attach_pages(struct drm_gem_object *obj)
226{
227	struct drm_device *dev = obj->dev;
228	struct omap_gem_object *omap_obj = to_omap_bo(obj);
229	struct page **pages;
230	int npages = obj->size >> PAGE_SHIFT;
231	int i, ret;
232	dma_addr_t *addrs;
233
234	WARN_ON(omap_obj->pages);
235
236	pages = drm_gem_get_pages(obj);
237	if (IS_ERR(pages)) {
238		dev_err(obj->dev->dev, "could not get pages: %ld\n", PTR_ERR(pages));
239		return PTR_ERR(pages);
240	}
241
242	/* for non-cached buffers, ensure the new pages are clean because
243	 * DSS, GPU, etc. are not cache coherent:
244	 */
245	if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) {
246		addrs = kmalloc(npages * sizeof(*addrs), GFP_KERNEL);
247		if (!addrs) {
248			ret = -ENOMEM;
249			goto free_pages;
250		}
251
252		for (i = 0; i < npages; i++) {
253			addrs[i] = dma_map_page(dev->dev, pages[i],
254					0, PAGE_SIZE, DMA_BIDIRECTIONAL);
255		}
256	} else {
257		addrs = kzalloc(npages * sizeof(*addrs), GFP_KERNEL);
258		if (!addrs) {
259			ret = -ENOMEM;
260			goto free_pages;
261		}
262	}
263
264	omap_obj->addrs = addrs;
265	omap_obj->pages = pages;
266
267	return 0;
268
269free_pages:
270	drm_gem_put_pages(obj, pages, true, false);
271
272	return ret;
273}
274
275/** release backing pages */
276static void omap_gem_detach_pages(struct drm_gem_object *obj)
277{
278	struct omap_gem_object *omap_obj = to_omap_bo(obj);
279
280	/* for non-cached buffers, ensure the new pages are clean because
281	 * DSS, GPU, etc. are not cache coherent:
282	 */
283	if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) {
284		int i, npages = obj->size >> PAGE_SHIFT;
285		for (i = 0; i < npages; i++) {
286			dma_unmap_page(obj->dev->dev, omap_obj->addrs[i],
287					PAGE_SIZE, DMA_BIDIRECTIONAL);
288		}
289	}
290
291	kfree(omap_obj->addrs);
292	omap_obj->addrs = NULL;
293
294	drm_gem_put_pages(obj, omap_obj->pages, true, false);
295	omap_obj->pages = NULL;
296}
297
298/* get buffer flags */
299uint32_t omap_gem_flags(struct drm_gem_object *obj)
300{
301	return to_omap_bo(obj)->flags;
302}
303
304/** get mmap offset */
305static uint64_t mmap_offset(struct drm_gem_object *obj)
306{
307	struct drm_device *dev = obj->dev;
308	int ret;
309	size_t size;
310
311	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
312
313	/* Make it mmapable */
314	size = omap_gem_mmap_size(obj);
315	ret = drm_gem_create_mmap_offset_size(obj, size);
316	if (ret) {
317		dev_err(dev->dev, "could not allocate mmap offset\n");
318		return 0;
319	}
320
321	return drm_vma_node_offset_addr(&obj->vma_node);
322}
323
324uint64_t omap_gem_mmap_offset(struct drm_gem_object *obj)
325{
326	uint64_t offset;
327	mutex_lock(&obj->dev->struct_mutex);
328	offset = mmap_offset(obj);
329	mutex_unlock(&obj->dev->struct_mutex);
330	return offset;
331}
332
333/** get mmap size */
334size_t omap_gem_mmap_size(struct drm_gem_object *obj)
335{
336	struct omap_gem_object *omap_obj = to_omap_bo(obj);
337	size_t size = obj->size;
338
339	if (omap_obj->flags & OMAP_BO_TILED) {
340		/* for tiled buffers, the virtual size has stride rounded up
341		 * to 4kb.. (to hide the fact that row n+1 might start 16kb or
342		 * 32kb later!).  But we don't back the entire buffer with
343		 * pages, only the valid picture part.. so need to adjust for
344		 * this in the size used to mmap and generate mmap offset
345		 */
346		size = tiler_vsize(gem2fmt(omap_obj->flags),
347				omap_obj->width, omap_obj->height);
348	}
349
350	return size;
351}
352
353/* get tiled size, returns -EINVAL if not tiled buffer */
354int omap_gem_tiled_size(struct drm_gem_object *obj, uint16_t *w, uint16_t *h)
355{
356	struct omap_gem_object *omap_obj = to_omap_bo(obj);
357	if (omap_obj->flags & OMAP_BO_TILED) {
358		*w = omap_obj->width;
359		*h = omap_obj->height;
360		return 0;
361	}
362	return -EINVAL;
363}
364
365/* Normal handling for the case of faulting in non-tiled buffers */
366static int fault_1d(struct drm_gem_object *obj,
367		struct vm_area_struct *vma, struct vm_fault *vmf)
368{
369	struct omap_gem_object *omap_obj = to_omap_bo(obj);
370	unsigned long pfn;
371	pgoff_t pgoff;
372
373	/* We don't use vmf->pgoff since that has the fake offset: */
374	pgoff = ((unsigned long)vmf->virtual_address -
375			vma->vm_start) >> PAGE_SHIFT;
376
377	if (omap_obj->pages) {
378		omap_gem_cpu_sync(obj, pgoff);
379		pfn = page_to_pfn(omap_obj->pages[pgoff]);
380	} else {
381		BUG_ON(!(omap_obj->flags & OMAP_BO_DMA));
382		pfn = (omap_obj->paddr >> PAGE_SHIFT) + pgoff;
383	}
384
385	VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
386			pfn, pfn << PAGE_SHIFT);
387
388	return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn);
389}
390
391/* Special handling for the case of faulting in 2d tiled buffers */
392static int fault_2d(struct drm_gem_object *obj,
393		struct vm_area_struct *vma, struct vm_fault *vmf)
394{
395	struct omap_gem_object *omap_obj = to_omap_bo(obj);
396	struct usergart_entry *entry;
397	enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
398	struct page *pages[64];  /* XXX is this too much to have on stack? */
399	unsigned long pfn;
400	pgoff_t pgoff, base_pgoff;
401	void __user *vaddr;
402	int i, ret, slots;
403
404	/*
405	 * Note the height of the slot is also equal to the number of pages
406	 * that need to be mapped in to fill 4kb wide CPU page.  If the slot
407	 * height is 64, then 64 pages fill a 4kb wide by 64 row region.
408	 */
409	const int n = usergart[fmt].height;
410	const int n_shift = usergart[fmt].height_shift;
411
412	/*
413	 * If buffer width in bytes > PAGE_SIZE then the virtual stride is
414	 * rounded up to next multiple of PAGE_SIZE.. this need to be taken
415	 * into account in some of the math, so figure out virtual stride
416	 * in pages
417	 */
418	const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE);
419
420	/* We don't use vmf->pgoff since that has the fake offset: */
421	pgoff = ((unsigned long)vmf->virtual_address -
422			vma->vm_start) >> PAGE_SHIFT;
423
424	/*
425	 * Actual address we start mapping at is rounded down to previous slot
426	 * boundary in the y direction:
427	 */
428	base_pgoff = round_down(pgoff, m << n_shift);
429
430	/* figure out buffer width in slots */
431	slots = omap_obj->width >> usergart[fmt].slot_shift;
432
433	vaddr = vmf->virtual_address - ((pgoff - base_pgoff) << PAGE_SHIFT);
434
435	entry = &usergart[fmt].entry[usergart[fmt].last];
436
437	/* evict previous buffer using this usergart entry, if any: */
438	if (entry->obj)
439		evict_entry(entry->obj, fmt, entry);
440
441	entry->obj = obj;
442	entry->obj_pgoff = base_pgoff;
443
444	/* now convert base_pgoff to phys offset from virt offset: */
445	base_pgoff = (base_pgoff >> n_shift) * slots;
446
447	/* for wider-than 4k.. figure out which part of the slot-row we want: */
448	if (m > 1) {
449		int off = pgoff % m;
450		entry->obj_pgoff += off;
451		base_pgoff /= m;
452		slots = min(slots - (off << n_shift), n);
453		base_pgoff += off << n_shift;
454		vaddr += off << PAGE_SHIFT;
455	}
456
457	/*
458	 * Map in pages. Beyond the valid pixel part of the buffer, we set
459	 * pages[i] to NULL to get a dummy page mapped in.. if someone
460	 * reads/writes it they will get random/undefined content, but at
461	 * least it won't be corrupting whatever other random page used to
462	 * be mapped in, or other undefined behavior.
463	 */
464	memcpy(pages, &omap_obj->pages[base_pgoff],
465			sizeof(struct page *) * slots);
466	memset(pages + slots, 0,
467			sizeof(struct page *) * (n - slots));
468
469	ret = tiler_pin(entry->block, pages, ARRAY_SIZE(pages), 0, true);
470	if (ret) {
471		dev_err(obj->dev->dev, "failed to pin: %d\n", ret);
472		return ret;
473	}
474
475	pfn = entry->paddr >> PAGE_SHIFT;
476
477	VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
478			pfn, pfn << PAGE_SHIFT);
479
480	for (i = n; i > 0; i--) {
481		vm_insert_mixed(vma, (unsigned long)vaddr, pfn);
482		pfn += usergart[fmt].stride_pfn;
483		vaddr += PAGE_SIZE * m;
484	}
485
486	/* simple round-robin: */
487	usergart[fmt].last = (usergart[fmt].last + 1) % NUM_USERGART_ENTRIES;
488
489	return 0;
490}
491
492/**
493 * omap_gem_fault		-	pagefault handler for GEM objects
494 * @vma: the VMA of the GEM object
495 * @vmf: fault detail
496 *
497 * Invoked when a fault occurs on an mmap of a GEM managed area. GEM
498 * does most of the work for us including the actual map/unmap calls
499 * but we need to do the actual page work.
500 *
501 * The VMA was set up by GEM. In doing so it also ensured that the
502 * vma->vm_private_data points to the GEM object that is backing this
503 * mapping.
504 */
505int omap_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
506{
507	struct drm_gem_object *obj = vma->vm_private_data;
508	struct omap_gem_object *omap_obj = to_omap_bo(obj);
509	struct drm_device *dev = obj->dev;
510	struct page **pages;
511	int ret;
512
513	/* Make sure we don't parallel update on a fault, nor move or remove
514	 * something from beneath our feet
515	 */
516	mutex_lock(&dev->struct_mutex);
517
518	/* if a shmem backed object, make sure we have pages attached now */
519	ret = get_pages(obj, &pages);
520	if (ret)
521		goto fail;
522
523	/* where should we do corresponding put_pages().. we are mapping
524	 * the original page, rather than thru a GART, so we can't rely
525	 * on eviction to trigger this.  But munmap() or all mappings should
526	 * probably trigger put_pages()?
527	 */
528
529	if (omap_obj->flags & OMAP_BO_TILED)
530		ret = fault_2d(obj, vma, vmf);
531	else
532		ret = fault_1d(obj, vma, vmf);
533
534
535fail:
536	mutex_unlock(&dev->struct_mutex);
537	switch (ret) {
538	case 0:
539	case -ERESTARTSYS:
540	case -EINTR:
541		return VM_FAULT_NOPAGE;
542	case -ENOMEM:
543		return VM_FAULT_OOM;
544	default:
545		return VM_FAULT_SIGBUS;
546	}
547}
548
549/** We override mainly to fix up some of the vm mapping flags.. */
550int omap_gem_mmap(struct file *filp, struct vm_area_struct *vma)
551{
552	int ret;
553
554	ret = drm_gem_mmap(filp, vma);
555	if (ret) {
556		DBG("mmap failed: %d", ret);
557		return ret;
558	}
559
560	return omap_gem_mmap_obj(vma->vm_private_data, vma);
561}
562
563int omap_gem_mmap_obj(struct drm_gem_object *obj,
564		struct vm_area_struct *vma)
565{
566	struct omap_gem_object *omap_obj = to_omap_bo(obj);
567
568	vma->vm_flags &= ~VM_PFNMAP;
569	vma->vm_flags |= VM_MIXEDMAP;
570
571	if (omap_obj->flags & OMAP_BO_WC) {
572		vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
573	} else if (omap_obj->flags & OMAP_BO_UNCACHED) {
574		vma->vm_page_prot = pgprot_noncached(vm_get_page_prot(vma->vm_flags));
575	} else {
576		/*
577		 * We do have some private objects, at least for scanout buffers
578		 * on hardware without DMM/TILER.  But these are allocated write-
579		 * combine
580		 */
581		if (WARN_ON(!obj->filp))
582			return -EINVAL;
583
584		/*
585		 * Shunt off cached objs to shmem file so they have their own
586		 * address_space (so unmap_mapping_range does what we want,
587		 * in particular in the case of mmap'd dmabufs)
588		 */
589		fput(vma->vm_file);
590		vma->vm_pgoff = 0;
591		vma->vm_file  = get_file(obj->filp);
592
593		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
594	}
595
596	return 0;
597}
598
599
600/**
601 * omap_gem_dumb_create	-	create a dumb buffer
602 * @drm_file: our client file
603 * @dev: our device
604 * @args: the requested arguments copied from userspace
605 *
606 * Allocate a buffer suitable for use for a frame buffer of the
607 * form described by user space. Give userspace a handle by which
608 * to reference it.
609 */
610int omap_gem_dumb_create(struct drm_file *file, struct drm_device *dev,
611		struct drm_mode_create_dumb *args)
612{
613	union omap_gem_size gsize;
614
615	args->pitch = align_pitch(0, args->width, args->bpp);
616	args->size = PAGE_ALIGN(args->pitch * args->height);
617
618	gsize = (union omap_gem_size){
619		.bytes = args->size,
620	};
621
622	return omap_gem_new_handle(dev, file, gsize,
623			OMAP_BO_SCANOUT | OMAP_BO_WC, &args->handle);
624}
625
626/**
627 * omap_gem_dumb_map	-	buffer mapping for dumb interface
628 * @file: our drm client file
629 * @dev: drm device
630 * @handle: GEM handle to the object (from dumb_create)
631 *
632 * Do the necessary setup to allow the mapping of the frame buffer
633 * into user memory. We don't have to do much here at the moment.
634 */
635int omap_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev,
636		uint32_t handle, uint64_t *offset)
637{
638	struct drm_gem_object *obj;
639	int ret = 0;
640
641	/* GEM does all our handle to object mapping */
642	obj = drm_gem_object_lookup(dev, file, handle);
643	if (obj == NULL) {
644		ret = -ENOENT;
645		goto fail;
646	}
647
648	*offset = omap_gem_mmap_offset(obj);
649
650	drm_gem_object_unreference_unlocked(obj);
651
652fail:
653	return ret;
654}
655
656/* Set scrolling position.  This allows us to implement fast scrolling
657 * for console.
658 *
659 * Call only from non-atomic contexts.
660 */
661int omap_gem_roll(struct drm_gem_object *obj, uint32_t roll)
662{
663	struct omap_gem_object *omap_obj = to_omap_bo(obj);
664	uint32_t npages = obj->size >> PAGE_SHIFT;
665	int ret = 0;
666
667	if (roll > npages) {
668		dev_err(obj->dev->dev, "invalid roll: %d\n", roll);
669		return -EINVAL;
670	}
671
672	omap_obj->roll = roll;
673
674	mutex_lock(&obj->dev->struct_mutex);
675
676	/* if we aren't mapped yet, we don't need to do anything */
677	if (omap_obj->block) {
678		struct page **pages;
679		ret = get_pages(obj, &pages);
680		if (ret)
681			goto fail;
682		ret = tiler_pin(omap_obj->block, pages, npages, roll, true);
683		if (ret)
684			dev_err(obj->dev->dev, "could not repin: %d\n", ret);
685	}
686
687fail:
688	mutex_unlock(&obj->dev->struct_mutex);
689
690	return ret;
691}
692
693/* Sync the buffer for CPU access.. note pages should already be
694 * attached, ie. omap_gem_get_pages()
695 */
696void omap_gem_cpu_sync(struct drm_gem_object *obj, int pgoff)
697{
698	struct drm_device *dev = obj->dev;
699	struct omap_gem_object *omap_obj = to_omap_bo(obj);
700
701	if (is_cached_coherent(obj) && omap_obj->addrs[pgoff]) {
702		dma_unmap_page(dev->dev, omap_obj->addrs[pgoff],
703				PAGE_SIZE, DMA_BIDIRECTIONAL);
704		omap_obj->addrs[pgoff] = 0;
705	}
706}
707
708/* sync the buffer for DMA access */
709void omap_gem_dma_sync(struct drm_gem_object *obj,
710		enum dma_data_direction dir)
711{
712	struct drm_device *dev = obj->dev;
713	struct omap_gem_object *omap_obj = to_omap_bo(obj);
714
715	if (is_cached_coherent(obj)) {
716		int i, npages = obj->size >> PAGE_SHIFT;
717		struct page **pages = omap_obj->pages;
718		bool dirty = false;
719
720		for (i = 0; i < npages; i++) {
721			if (!omap_obj->addrs[i]) {
722				omap_obj->addrs[i] = dma_map_page(dev->dev, pages[i], 0,
723						PAGE_SIZE, DMA_BIDIRECTIONAL);
724				dirty = true;
725			}
726		}
727
728		if (dirty) {
729			unmap_mapping_range(obj->filp->f_mapping, 0,
730					omap_gem_mmap_size(obj), 1);
731		}
732	}
733}
734
735/* Get physical address for DMA.. if 'remap' is true, and the buffer is not
736 * already contiguous, remap it to pin in physically contiguous memory.. (ie.
737 * map in TILER)
738 */
739int omap_gem_get_paddr(struct drm_gem_object *obj,
740		dma_addr_t *paddr, bool remap)
741{
742	struct omap_drm_private *priv = obj->dev->dev_private;
743	struct omap_gem_object *omap_obj = to_omap_bo(obj);
744	int ret = 0;
745
746	mutex_lock(&obj->dev->struct_mutex);
747
748	if (remap && is_shmem(obj) && priv->has_dmm) {
749		if (omap_obj->paddr_cnt == 0) {
750			struct page **pages;
751			uint32_t npages = obj->size >> PAGE_SHIFT;
752			enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
753			struct tiler_block *block;
754
755			BUG_ON(omap_obj->block);
756
757			ret = get_pages(obj, &pages);
758			if (ret)
759				goto fail;
760
761			if (omap_obj->flags & OMAP_BO_TILED) {
762				block = tiler_reserve_2d(fmt,
763						omap_obj->width,
764						omap_obj->height, 0);
765			} else {
766				block = tiler_reserve_1d(obj->size);
767			}
768
769			if (IS_ERR(block)) {
770				ret = PTR_ERR(block);
771				dev_err(obj->dev->dev,
772					"could not remap: %d (%d)\n", ret, fmt);
773				goto fail;
774			}
775
776			/* TODO: enable async refill.. */
777			ret = tiler_pin(block, pages, npages,
778					omap_obj->roll, true);
779			if (ret) {
780				tiler_release(block);
781				dev_err(obj->dev->dev,
782						"could not pin: %d\n", ret);
783				goto fail;
784			}
785
786			omap_obj->paddr = tiler_ssptr(block);
787			omap_obj->block = block;
788
789			DBG("got paddr: %pad", &omap_obj->paddr);
790		}
791
792		omap_obj->paddr_cnt++;
793
794		*paddr = omap_obj->paddr;
795	} else if (omap_obj->flags & OMAP_BO_DMA) {
796		*paddr = omap_obj->paddr;
797	} else {
798		ret = -EINVAL;
799		goto fail;
800	}
801
802fail:
803	mutex_unlock(&obj->dev->struct_mutex);
804
805	return ret;
806}
807
808/* Release physical address, when DMA is no longer being performed.. this
809 * could potentially unpin and unmap buffers from TILER
810 */
811int omap_gem_put_paddr(struct drm_gem_object *obj)
812{
813	struct omap_gem_object *omap_obj = to_omap_bo(obj);
814	int ret = 0;
815
816	mutex_lock(&obj->dev->struct_mutex);
817	if (omap_obj->paddr_cnt > 0) {
818		omap_obj->paddr_cnt--;
819		if (omap_obj->paddr_cnt == 0) {
820			ret = tiler_unpin(omap_obj->block);
821			if (ret) {
822				dev_err(obj->dev->dev,
823					"could not unpin pages: %d\n", ret);
824				goto fail;
825			}
826			ret = tiler_release(omap_obj->block);
827			if (ret) {
828				dev_err(obj->dev->dev,
829					"could not release unmap: %d\n", ret);
830			}
831			omap_obj->paddr = 0;
832			omap_obj->block = NULL;
833		}
834	}
835fail:
836	mutex_unlock(&obj->dev->struct_mutex);
837	return ret;
838}
839
840/* Get rotated scanout address (only valid if already pinned), at the
841 * specified orientation and x,y offset from top-left corner of buffer
842 * (only valid for tiled 2d buffers)
843 */
844int omap_gem_rotated_paddr(struct drm_gem_object *obj, uint32_t orient,
845		int x, int y, dma_addr_t *paddr)
846{
847	struct omap_gem_object *omap_obj = to_omap_bo(obj);
848	int ret = -EINVAL;
849
850	mutex_lock(&obj->dev->struct_mutex);
851	if ((omap_obj->paddr_cnt > 0) && omap_obj->block &&
852			(omap_obj->flags & OMAP_BO_TILED)) {
853		*paddr = tiler_tsptr(omap_obj->block, orient, x, y);
854		ret = 0;
855	}
856	mutex_unlock(&obj->dev->struct_mutex);
857	return ret;
858}
859
860/* Get tiler stride for the buffer (only valid for 2d tiled buffers) */
861int omap_gem_tiled_stride(struct drm_gem_object *obj, uint32_t orient)
862{
863	struct omap_gem_object *omap_obj = to_omap_bo(obj);
864	int ret = -EINVAL;
865	if (omap_obj->flags & OMAP_BO_TILED)
866		ret = tiler_stride(gem2fmt(omap_obj->flags), orient);
867	return ret;
868}
869
870/* acquire pages when needed (for example, for DMA where physically
871 * contiguous buffer is not required
872 */
873static int get_pages(struct drm_gem_object *obj, struct page ***pages)
874{
875	struct omap_gem_object *omap_obj = to_omap_bo(obj);
876	int ret = 0;
877
878	if (is_shmem(obj) && !omap_obj->pages) {
879		ret = omap_gem_attach_pages(obj);
880		if (ret) {
881			dev_err(obj->dev->dev, "could not attach pages\n");
882			return ret;
883		}
884	}
885
886	/* TODO: even phys-contig.. we should have a list of pages? */
887	*pages = omap_obj->pages;
888
889	return 0;
890}
891
892/* if !remap, and we don't have pages backing, then fail, rather than
893 * increasing the pin count (which we don't really do yet anyways,
894 * because we don't support swapping pages back out).  And 'remap'
895 * might not be quite the right name, but I wanted to keep it working
896 * similarly to omap_gem_get_paddr().  Note though that mutex is not
897 * aquired if !remap (because this can be called in atomic ctxt),
898 * but probably omap_gem_get_paddr() should be changed to work in the
899 * same way.  If !remap, a matching omap_gem_put_pages() call is not
900 * required (and should not be made).
901 */
902int omap_gem_get_pages(struct drm_gem_object *obj, struct page ***pages,
903		bool remap)
904{
905	int ret;
906	if (!remap) {
907		struct omap_gem_object *omap_obj = to_omap_bo(obj);
908		if (!omap_obj->pages)
909			return -ENOMEM;
910		*pages = omap_obj->pages;
911		return 0;
912	}
913	mutex_lock(&obj->dev->struct_mutex);
914	ret = get_pages(obj, pages);
915	mutex_unlock(&obj->dev->struct_mutex);
916	return ret;
917}
918
919/* release pages when DMA no longer being performed */
920int omap_gem_put_pages(struct drm_gem_object *obj)
921{
922	/* do something here if we dynamically attach/detach pages.. at
923	 * least they would no longer need to be pinned if everyone has
924	 * released the pages..
925	 */
926	return 0;
927}
928
929/* Get kernel virtual address for CPU access.. this more or less only
930 * exists for omap_fbdev.  This should be called with struct_mutex
931 * held.
932 */
933void *omap_gem_vaddr(struct drm_gem_object *obj)
934{
935	struct omap_gem_object *omap_obj = to_omap_bo(obj);
936	WARN_ON(!mutex_is_locked(&obj->dev->struct_mutex));
937	if (!omap_obj->vaddr) {
938		struct page **pages;
939		int ret = get_pages(obj, &pages);
940		if (ret)
941			return ERR_PTR(ret);
942		omap_obj->vaddr = vmap(pages, obj->size >> PAGE_SHIFT,
943				VM_MAP, pgprot_writecombine(PAGE_KERNEL));
944	}
945	return omap_obj->vaddr;
946}
947
948#ifdef CONFIG_PM
949/* re-pin objects in DMM in resume path: */
950int omap_gem_resume(struct device *dev)
951{
952	struct drm_device *drm_dev = dev_get_drvdata(dev);
953	struct omap_drm_private *priv = drm_dev->dev_private;
954	struct omap_gem_object *omap_obj;
955	int ret = 0;
956
957	list_for_each_entry(omap_obj, &priv->obj_list, mm_list) {
958		if (omap_obj->block) {
959			struct drm_gem_object *obj = &omap_obj->base;
960			uint32_t npages = obj->size >> PAGE_SHIFT;
961			WARN_ON(!omap_obj->pages);  /* this can't happen */
962			ret = tiler_pin(omap_obj->block,
963					omap_obj->pages, npages,
964					omap_obj->roll, true);
965			if (ret) {
966				dev_err(dev, "could not repin: %d\n", ret);
967				return ret;
968			}
969		}
970	}
971
972	return 0;
973}
974#endif
975
976#ifdef CONFIG_DEBUG_FS
977void omap_gem_describe(struct drm_gem_object *obj, struct seq_file *m)
978{
979	struct omap_gem_object *omap_obj = to_omap_bo(obj);
980	uint64_t off;
981
982	off = drm_vma_node_start(&obj->vma_node);
983
984	seq_printf(m, "%08x: %2d (%2d) %08llx %pad (%2d) %p %4d",
985			omap_obj->flags, obj->name, obj->refcount.refcount.counter,
986			off, &omap_obj->paddr, omap_obj->paddr_cnt,
987			omap_obj->vaddr, omap_obj->roll);
988
989	if (omap_obj->flags & OMAP_BO_TILED) {
990		seq_printf(m, " %dx%d", omap_obj->width, omap_obj->height);
991		if (omap_obj->block) {
992			struct tcm_area *area = &omap_obj->block->area;
993			seq_printf(m, " (%dx%d, %dx%d)",
994					area->p0.x, area->p0.y,
995					area->p1.x, area->p1.y);
996		}
997	} else {
998		seq_printf(m, " %d", obj->size);
999	}
1000
1001	seq_printf(m, "\n");
1002}
1003
1004void omap_gem_describe_objects(struct list_head *list, struct seq_file *m)
1005{
1006	struct omap_gem_object *omap_obj;
1007	int count = 0;
1008	size_t size = 0;
1009
1010	list_for_each_entry(omap_obj, list, mm_list) {
1011		struct drm_gem_object *obj = &omap_obj->base;
1012		seq_printf(m, "   ");
1013		omap_gem_describe(obj, m);
1014		count++;
1015		size += obj->size;
1016	}
1017
1018	seq_printf(m, "Total %d objects, %zu bytes\n", count, size);
1019}
1020#endif
1021
1022/* Buffer Synchronization:
1023 */
1024
1025struct omap_gem_sync_waiter {
1026	struct list_head list;
1027	struct omap_gem_object *omap_obj;
1028	enum omap_gem_op op;
1029	uint32_t read_target, write_target;
1030	/* notify called w/ sync_lock held */
1031	void (*notify)(void *arg);
1032	void *arg;
1033};
1034
1035/* list of omap_gem_sync_waiter.. the notify fxn gets called back when
1036 * the read and/or write target count is achieved which can call a user
1037 * callback (ex. to kick 3d and/or 2d), wakeup blocked task (prep for
1038 * cpu access), etc.
1039 */
1040static LIST_HEAD(waiters);
1041
1042static inline bool is_waiting(struct omap_gem_sync_waiter *waiter)
1043{
1044	struct omap_gem_object *omap_obj = waiter->omap_obj;
1045	if ((waiter->op & OMAP_GEM_READ) &&
1046			(omap_obj->sync->write_complete < waiter->write_target))
1047		return true;
1048	if ((waiter->op & OMAP_GEM_WRITE) &&
1049			(omap_obj->sync->read_complete < waiter->read_target))
1050		return true;
1051	return false;
1052}
1053
1054/* macro for sync debug.. */
1055#define SYNCDBG 0
1056#define SYNC(fmt, ...) do { if (SYNCDBG) \
1057		printk(KERN_ERR "%s:%d: "fmt"\n", \
1058				__func__, __LINE__, ##__VA_ARGS__); \
1059	} while (0)
1060
1061
1062static void sync_op_update(void)
1063{
1064	struct omap_gem_sync_waiter *waiter, *n;
1065	list_for_each_entry_safe(waiter, n, &waiters, list) {
1066		if (!is_waiting(waiter)) {
1067			list_del(&waiter->list);
1068			SYNC("notify: %p", waiter);
1069			waiter->notify(waiter->arg);
1070			kfree(waiter);
1071		}
1072	}
1073}
1074
1075static inline int sync_op(struct drm_gem_object *obj,
1076		enum omap_gem_op op, bool start)
1077{
1078	struct omap_gem_object *omap_obj = to_omap_bo(obj);
1079	int ret = 0;
1080
1081	spin_lock(&sync_lock);
1082
1083	if (!omap_obj->sync) {
1084		omap_obj->sync = kzalloc(sizeof(*omap_obj->sync), GFP_ATOMIC);
1085		if (!omap_obj->sync) {
1086			ret = -ENOMEM;
1087			goto unlock;
1088		}
1089	}
1090
1091	if (start) {
1092		if (op & OMAP_GEM_READ)
1093			omap_obj->sync->read_pending++;
1094		if (op & OMAP_GEM_WRITE)
1095			omap_obj->sync->write_pending++;
1096	} else {
1097		if (op & OMAP_GEM_READ)
1098			omap_obj->sync->read_complete++;
1099		if (op & OMAP_GEM_WRITE)
1100			omap_obj->sync->write_complete++;
1101		sync_op_update();
1102	}
1103
1104unlock:
1105	spin_unlock(&sync_lock);
1106
1107	return ret;
1108}
1109
1110/* it is a bit lame to handle updates in this sort of polling way, but
1111 * in case of PVR, the GPU can directly update read/write complete
1112 * values, and not really tell us which ones it updated.. this also
1113 * means that sync_lock is not quite sufficient.  So we'll need to
1114 * do something a bit better when it comes time to add support for
1115 * separate 2d hw..
1116 */
1117void omap_gem_op_update(void)
1118{
1119	spin_lock(&sync_lock);
1120	sync_op_update();
1121	spin_unlock(&sync_lock);
1122}
1123
1124/* mark the start of read and/or write operation */
1125int omap_gem_op_start(struct drm_gem_object *obj, enum omap_gem_op op)
1126{
1127	return sync_op(obj, op, true);
1128}
1129
1130int omap_gem_op_finish(struct drm_gem_object *obj, enum omap_gem_op op)
1131{
1132	return sync_op(obj, op, false);
1133}
1134
1135static DECLARE_WAIT_QUEUE_HEAD(sync_event);
1136
1137static void sync_notify(void *arg)
1138{
1139	struct task_struct **waiter_task = arg;
1140	*waiter_task = NULL;
1141	wake_up_all(&sync_event);
1142}
1143
1144int omap_gem_op_sync(struct drm_gem_object *obj, enum omap_gem_op op)
1145{
1146	struct omap_gem_object *omap_obj = to_omap_bo(obj);
1147	int ret = 0;
1148	if (omap_obj->sync) {
1149		struct task_struct *waiter_task = current;
1150		struct omap_gem_sync_waiter *waiter =
1151				kzalloc(sizeof(*waiter), GFP_KERNEL);
1152
1153		if (!waiter)
1154			return -ENOMEM;
1155
1156		waiter->omap_obj = omap_obj;
1157		waiter->op = op;
1158		waiter->read_target = omap_obj->sync->read_pending;
1159		waiter->write_target = omap_obj->sync->write_pending;
1160		waiter->notify = sync_notify;
1161		waiter->arg = &waiter_task;
1162
1163		spin_lock(&sync_lock);
1164		if (is_waiting(waiter)) {
1165			SYNC("waited: %p", waiter);
1166			list_add_tail(&waiter->list, &waiters);
1167			spin_unlock(&sync_lock);
1168			ret = wait_event_interruptible(sync_event,
1169					(waiter_task == NULL));
1170			spin_lock(&sync_lock);
1171			if (waiter_task) {
1172				SYNC("interrupted: %p", waiter);
1173				/* we were interrupted */
1174				list_del(&waiter->list);
1175				waiter_task = NULL;
1176			} else {
1177				/* freed in sync_op_update() */
1178				waiter = NULL;
1179			}
1180		}
1181		spin_unlock(&sync_lock);
1182		kfree(waiter);
1183	}
1184	return ret;
1185}
1186
1187/* call fxn(arg), either synchronously or asynchronously if the op
1188 * is currently blocked..  fxn() can be called from any context
1189 *
1190 * (TODO for now fxn is called back from whichever context calls
1191 * omap_gem_op_update().. but this could be better defined later
1192 * if needed)
1193 *
1194 * TODO more code in common w/ _sync()..
1195 */
1196int omap_gem_op_async(struct drm_gem_object *obj, enum omap_gem_op op,
1197		void (*fxn)(void *arg), void *arg)
1198{
1199	struct omap_gem_object *omap_obj = to_omap_bo(obj);
1200	if (omap_obj->sync) {
1201		struct omap_gem_sync_waiter *waiter =
1202				kzalloc(sizeof(*waiter), GFP_ATOMIC);
1203
1204		if (!waiter)
1205			return -ENOMEM;
1206
1207		waiter->omap_obj = omap_obj;
1208		waiter->op = op;
1209		waiter->read_target = omap_obj->sync->read_pending;
1210		waiter->write_target = omap_obj->sync->write_pending;
1211		waiter->notify = fxn;
1212		waiter->arg = arg;
1213
1214		spin_lock(&sync_lock);
1215		if (is_waiting(waiter)) {
1216			SYNC("waited: %p", waiter);
1217			list_add_tail(&waiter->list, &waiters);
1218			spin_unlock(&sync_lock);
1219			return 0;
1220		}
1221
1222		spin_unlock(&sync_lock);
1223
1224		kfree(waiter);
1225	}
1226
1227	/* no waiting.. */
1228	fxn(arg);
1229
1230	return 0;
1231}
1232
1233/* special API so PVR can update the buffer to use a sync-object allocated
1234 * from it's sync-obj heap.  Only used for a newly allocated (from PVR's
1235 * perspective) sync-object, so we overwrite the new syncobj w/ values
1236 * from the already allocated syncobj (if there is one)
1237 */
1238int omap_gem_set_sync_object(struct drm_gem_object *obj, void *syncobj)
1239{
1240	struct omap_gem_object *omap_obj = to_omap_bo(obj);
1241	int ret = 0;
1242
1243	spin_lock(&sync_lock);
1244
1245	if ((omap_obj->flags & OMAP_BO_EXT_SYNC) && !syncobj) {
1246		/* clearing a previously set syncobj */
1247		syncobj = kmemdup(omap_obj->sync, sizeof(*omap_obj->sync),
1248				  GFP_ATOMIC);
1249		if (!syncobj) {
1250			ret = -ENOMEM;
1251			goto unlock;
1252		}
1253		omap_obj->flags &= ~OMAP_BO_EXT_SYNC;
1254		omap_obj->sync = syncobj;
1255	} else if (syncobj && !(omap_obj->flags & OMAP_BO_EXT_SYNC)) {
1256		/* replacing an existing syncobj */
1257		if (omap_obj->sync) {
1258			memcpy(syncobj, omap_obj->sync, sizeof(*omap_obj->sync));
1259			kfree(omap_obj->sync);
1260		}
1261		omap_obj->flags |= OMAP_BO_EXT_SYNC;
1262		omap_obj->sync = syncobj;
1263	}
1264
1265unlock:
1266	spin_unlock(&sync_lock);
1267	return ret;
1268}
1269
1270/* don't call directly.. called from GEM core when it is time to actually
1271 * free the object..
1272 */
1273void omap_gem_free_object(struct drm_gem_object *obj)
1274{
1275	struct drm_device *dev = obj->dev;
1276	struct omap_drm_private *priv = dev->dev_private;
1277	struct omap_gem_object *omap_obj = to_omap_bo(obj);
1278
1279	evict(obj);
1280
1281	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
1282
1283	spin_lock(&priv->list_lock);
1284	list_del(&omap_obj->mm_list);
1285	spin_unlock(&priv->list_lock);
1286
1287	drm_gem_free_mmap_offset(obj);
1288
1289	/* this means the object is still pinned.. which really should
1290	 * not happen.  I think..
1291	 */
1292	WARN_ON(omap_obj->paddr_cnt > 0);
1293
1294	/* don't free externally allocated backing memory */
1295	if (!(omap_obj->flags & OMAP_BO_EXT_MEM)) {
1296		if (omap_obj->pages)
1297			omap_gem_detach_pages(obj);
1298
1299		if (!is_shmem(obj)) {
1300			dma_free_writecombine(dev->dev, obj->size,
1301					omap_obj->vaddr, omap_obj->paddr);
1302		} else if (omap_obj->vaddr) {
1303			vunmap(omap_obj->vaddr);
1304		}
1305	}
1306
1307	/* don't free externally allocated syncobj */
1308	if (!(omap_obj->flags & OMAP_BO_EXT_SYNC))
1309		kfree(omap_obj->sync);
1310
1311	drm_gem_object_release(obj);
1312
1313	kfree(obj);
1314}
1315
1316/* convenience method to construct a GEM buffer object, and userspace handle */
1317int omap_gem_new_handle(struct drm_device *dev, struct drm_file *file,
1318		union omap_gem_size gsize, uint32_t flags, uint32_t *handle)
1319{
1320	struct drm_gem_object *obj;
1321	int ret;
1322
1323	obj = omap_gem_new(dev, gsize, flags);
1324	if (!obj)
1325		return -ENOMEM;
1326
1327	ret = drm_gem_handle_create(file, obj, handle);
1328	if (ret) {
1329		drm_gem_object_release(obj);
1330		kfree(obj); /* TODO isn't there a dtor to call? just copying i915 */
1331		return ret;
1332	}
1333
1334	/* drop reference from allocate - handle holds it now */
1335	drm_gem_object_unreference_unlocked(obj);
1336
1337	return 0;
1338}
1339
1340/* GEM buffer object constructor */
1341struct drm_gem_object *omap_gem_new(struct drm_device *dev,
1342		union omap_gem_size gsize, uint32_t flags)
1343{
1344	struct omap_drm_private *priv = dev->dev_private;
1345	struct omap_gem_object *omap_obj;
1346	struct drm_gem_object *obj = NULL;
1347	struct address_space *mapping;
1348	size_t size;
1349	int ret;
1350
1351	if (flags & OMAP_BO_TILED) {
1352		if (!usergart) {
1353			dev_err(dev->dev, "Tiled buffers require DMM\n");
1354			goto fail;
1355		}
1356
1357		/* tiled buffers are always shmem paged backed.. when they are
1358		 * scanned out, they are remapped into DMM/TILER
1359		 */
1360		flags &= ~OMAP_BO_SCANOUT;
1361
1362		/* currently don't allow cached buffers.. there is some caching
1363		 * stuff that needs to be handled better
1364		 */
1365		flags &= ~(OMAP_BO_CACHED|OMAP_BO_WC|OMAP_BO_UNCACHED);
1366		flags |= tiler_get_cpu_cache_flags();
1367
1368		/* align dimensions to slot boundaries... */
1369		tiler_align(gem2fmt(flags),
1370				&gsize.tiled.width, &gsize.tiled.height);
1371
1372		/* ...and calculate size based on aligned dimensions */
1373		size = tiler_size(gem2fmt(flags),
1374				gsize.tiled.width, gsize.tiled.height);
1375	} else {
1376		size = PAGE_ALIGN(gsize.bytes);
1377	}
1378
1379	omap_obj = kzalloc(sizeof(*omap_obj), GFP_KERNEL);
1380	if (!omap_obj)
1381		goto fail;
1382
1383	spin_lock(&priv->list_lock);
1384	list_add(&omap_obj->mm_list, &priv->obj_list);
1385	spin_unlock(&priv->list_lock);
1386
1387	obj = &omap_obj->base;
1388
1389	if ((flags & OMAP_BO_SCANOUT) && !priv->has_dmm) {
1390		/* attempt to allocate contiguous memory if we don't
1391		 * have DMM for remappign discontiguous buffers
1392		 */
1393		omap_obj->vaddr =  dma_alloc_writecombine(dev->dev, size,
1394				&omap_obj->paddr, GFP_KERNEL);
1395		if (omap_obj->vaddr)
1396			flags |= OMAP_BO_DMA;
1397
1398	}
1399
1400	omap_obj->flags = flags;
1401
1402	if (flags & OMAP_BO_TILED) {
1403		omap_obj->width = gsize.tiled.width;
1404		omap_obj->height = gsize.tiled.height;
1405	}
1406
1407	if (flags & (OMAP_BO_DMA|OMAP_BO_EXT_MEM)) {
1408		drm_gem_private_object_init(dev, obj, size);
1409	} else {
1410		ret = drm_gem_object_init(dev, obj, size);
1411		if (ret)
1412			goto fail;
1413
1414		mapping = file_inode(obj->filp)->i_mapping;
1415		mapping_set_gfp_mask(mapping, GFP_USER | __GFP_DMA32);
1416	}
1417
1418	return obj;
1419
1420fail:
1421	if (obj)
1422		omap_gem_free_object(obj);
1423
1424	return NULL;
1425}
1426
1427/* init/cleanup.. if DMM is used, we need to set some stuff up.. */
1428void omap_gem_init(struct drm_device *dev)
1429{
1430	struct omap_drm_private *priv = dev->dev_private;
1431	const enum tiler_fmt fmts[] = {
1432			TILFMT_8BIT, TILFMT_16BIT, TILFMT_32BIT
1433	};
1434	int i, j;
1435
1436	if (!dmm_is_available()) {
1437		/* DMM only supported on OMAP4 and later, so this isn't fatal */
1438		dev_warn(dev->dev, "DMM not available, disable DMM support\n");
1439		return;
1440	}
1441
1442	usergart = kcalloc(3, sizeof(*usergart), GFP_KERNEL);
1443	if (!usergart)
1444		return;
1445
1446	/* reserve 4k aligned/wide regions for userspace mappings: */
1447	for (i = 0; i < ARRAY_SIZE(fmts); i++) {
1448		uint16_t h = 1, w = PAGE_SIZE >> i;
1449		tiler_align(fmts[i], &w, &h);
1450		/* note: since each region is 1 4kb page wide, and minimum
1451		 * number of rows, the height ends up being the same as the
1452		 * # of pages in the region
1453		 */
1454		usergart[i].height = h;
1455		usergart[i].height_shift = ilog2(h);
1456		usergart[i].stride_pfn = tiler_stride(fmts[i], 0) >> PAGE_SHIFT;
1457		usergart[i].slot_shift = ilog2((PAGE_SIZE / h) >> i);
1458		for (j = 0; j < NUM_USERGART_ENTRIES; j++) {
1459			struct usergart_entry *entry = &usergart[i].entry[j];
1460			struct tiler_block *block =
1461					tiler_reserve_2d(fmts[i], w, h,
1462							PAGE_SIZE);
1463			if (IS_ERR(block)) {
1464				dev_err(dev->dev,
1465						"reserve failed: %d, %d, %ld\n",
1466						i, j, PTR_ERR(block));
1467				return;
1468			}
1469			entry->paddr = tiler_ssptr(block);
1470			entry->block = block;
1471
1472			DBG("%d:%d: %dx%d: paddr=%pad stride=%d", i, j, w, h,
1473					&entry->paddr,
1474					usergart[i].stride_pfn << PAGE_SHIFT);
1475		}
1476	}
1477
1478	priv->has_dmm = true;
1479}
1480
1481void omap_gem_deinit(struct drm_device *dev)
1482{
1483	/* I believe we can rely on there being no more outstanding GEM
1484	 * objects which could depend on usergart/dmm at this point.
1485	 */
1486	kfree(usergart);
1487}
1488