1/* 2 * Copyright 2012 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24#include "gt215.h" 25#include "pll.h" 26 27#include <core/device.h> 28#include <subdev/bios.h> 29#include <subdev/bios/pll.h> 30#include <subdev/timer.h> 31 32struct mcp77_clk_priv { 33 struct nvkm_clk base; 34 enum nv_clk_src csrc, ssrc, vsrc; 35 u32 cctrl, sctrl; 36 u32 ccoef, scoef; 37 u32 cpost, spost; 38 u32 vdiv; 39}; 40 41static u32 42read_div(struct nvkm_clk *clk) 43{ 44 return nv_rd32(clk, 0x004600); 45} 46 47static u32 48read_pll(struct nvkm_clk *clk, u32 base) 49{ 50 u32 ctrl = nv_rd32(clk, base + 0); 51 u32 coef = nv_rd32(clk, base + 4); 52 u32 ref = clk->read(clk, nv_clk_src_href); 53 u32 post_div = 0; 54 u32 clock = 0; 55 int N1, M1; 56 57 switch (base){ 58 case 0x4020: 59 post_div = 1 << ((nv_rd32(clk, 0x4070) & 0x000f0000) >> 16); 60 break; 61 case 0x4028: 62 post_div = (nv_rd32(clk, 0x4040) & 0x000f0000) >> 16; 63 break; 64 default: 65 break; 66 } 67 68 N1 = (coef & 0x0000ff00) >> 8; 69 M1 = (coef & 0x000000ff); 70 if ((ctrl & 0x80000000) && M1) { 71 clock = ref * N1 / M1; 72 clock = clock / post_div; 73 } 74 75 return clock; 76} 77 78static int 79mcp77_clk_read(struct nvkm_clk *clk, enum nv_clk_src src) 80{ 81 struct mcp77_clk_priv *priv = (void *)clk; 82 u32 mast = nv_rd32(clk, 0x00c054); 83 u32 P = 0; 84 85 switch (src) { 86 case nv_clk_src_crystal: 87 return nv_device(priv)->crystal; 88 case nv_clk_src_href: 89 return 100000; /* PCIE reference clock */ 90 case nv_clk_src_hclkm4: 91 return clk->read(clk, nv_clk_src_href) * 4; 92 case nv_clk_src_hclkm2d3: 93 return clk->read(clk, nv_clk_src_href) * 2 / 3; 94 case nv_clk_src_host: 95 switch (mast & 0x000c0000) { 96 case 0x00000000: return clk->read(clk, nv_clk_src_hclkm2d3); 97 case 0x00040000: break; 98 case 0x00080000: return clk->read(clk, nv_clk_src_hclkm4); 99 case 0x000c0000: return clk->read(clk, nv_clk_src_cclk); 100 } 101 break; 102 case nv_clk_src_core: 103 P = (nv_rd32(clk, 0x004028) & 0x00070000) >> 16; 104 105 switch (mast & 0x00000003) { 106 case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P; 107 case 0x00000001: return 0; 108 case 0x00000002: return clk->read(clk, nv_clk_src_hclkm4) >> P; 109 case 0x00000003: return read_pll(clk, 0x004028) >> P; 110 } 111 break; 112 case nv_clk_src_cclk: 113 if ((mast & 0x03000000) != 0x03000000) 114 return clk->read(clk, nv_clk_src_core); 115 116 if ((mast & 0x00000200) == 0x00000000) 117 return clk->read(clk, nv_clk_src_core); 118 119 switch (mast & 0x00000c00) { 120 case 0x00000000: return clk->read(clk, nv_clk_src_href); 121 case 0x00000400: return clk->read(clk, nv_clk_src_hclkm4); 122 case 0x00000800: return clk->read(clk, nv_clk_src_hclkm2d3); 123 default: return 0; 124 } 125 case nv_clk_src_shader: 126 P = (nv_rd32(clk, 0x004020) & 0x00070000) >> 16; 127 switch (mast & 0x00000030) { 128 case 0x00000000: 129 if (mast & 0x00000040) 130 return clk->read(clk, nv_clk_src_href) >> P; 131 return clk->read(clk, nv_clk_src_crystal) >> P; 132 case 0x00000010: break; 133 case 0x00000020: return read_pll(clk, 0x004028) >> P; 134 case 0x00000030: return read_pll(clk, 0x004020) >> P; 135 } 136 break; 137 case nv_clk_src_mem: 138 return 0; 139 break; 140 case nv_clk_src_vdec: 141 P = (read_div(clk) & 0x00000700) >> 8; 142 143 switch (mast & 0x00400000) { 144 case 0x00400000: 145 return clk->read(clk, nv_clk_src_core) >> P; 146 break; 147 default: 148 return 500000 >> P; 149 break; 150 } 151 break; 152 default: 153 break; 154 } 155 156 nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast); 157 return 0; 158} 159 160static u32 161calc_pll(struct mcp77_clk_priv *priv, u32 reg, 162 u32 clock, int *N, int *M, int *P) 163{ 164 struct nvkm_bios *bios = nvkm_bios(priv); 165 struct nvbios_pll pll; 166 struct nvkm_clk *clk = &priv->base; 167 int ret; 168 169 ret = nvbios_pll_parse(bios, reg, &pll); 170 if (ret) 171 return 0; 172 173 pll.vco2.max_freq = 0; 174 pll.refclk = clk->read(clk, nv_clk_src_href); 175 if (!pll.refclk) 176 return 0; 177 178 return nv04_pll_calc(nv_subdev(priv), &pll, clock, N, M, NULL, NULL, P); 179} 180 181static inline u32 182calc_P(u32 src, u32 target, int *div) 183{ 184 u32 clk0 = src, clk1 = src; 185 for (*div = 0; *div <= 7; (*div)++) { 186 if (clk0 <= target) { 187 clk1 = clk0 << (*div ? 1 : 0); 188 break; 189 } 190 clk0 >>= 1; 191 } 192 193 if (target - clk0 <= clk1 - target) 194 return clk0; 195 (*div)--; 196 return clk1; 197} 198 199static int 200mcp77_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate) 201{ 202 struct mcp77_clk_priv *priv = (void *)clk; 203 const int shader = cstate->domain[nv_clk_src_shader]; 204 const int core = cstate->domain[nv_clk_src_core]; 205 const int vdec = cstate->domain[nv_clk_src_vdec]; 206 u32 out = 0, clock = 0; 207 int N, M, P1, P2 = 0; 208 int divs = 0; 209 210 /* cclk: find suitable source, disable PLL if we can */ 211 if (core < clk->read(clk, nv_clk_src_hclkm4)) 212 out = calc_P(clk->read(clk, nv_clk_src_hclkm4), core, &divs); 213 214 /* Calculate clock * 2, so shader clock can use it too */ 215 clock = calc_pll(priv, 0x4028, (core << 1), &N, &M, &P1); 216 217 if (abs(core - out) <= abs(core - (clock >> 1))) { 218 priv->csrc = nv_clk_src_hclkm4; 219 priv->cctrl = divs << 16; 220 } else { 221 /* NVCTRL is actually used _after_ NVPOST, and after what we 222 * call NVPLL. To make matters worse, NVPOST is an integer 223 * divider instead of a right-shift number. */ 224 if(P1 > 2) { 225 P2 = P1 - 2; 226 P1 = 2; 227 } 228 229 priv->csrc = nv_clk_src_core; 230 priv->ccoef = (N << 8) | M; 231 232 priv->cctrl = (P2 + 1) << 16; 233 priv->cpost = (1 << P1) << 16; 234 } 235 236 /* sclk: nvpll + divisor, href or spll */ 237 out = 0; 238 if (shader == clk->read(clk, nv_clk_src_href)) { 239 priv->ssrc = nv_clk_src_href; 240 } else { 241 clock = calc_pll(priv, 0x4020, shader, &N, &M, &P1); 242 if (priv->csrc == nv_clk_src_core) 243 out = calc_P((core << 1), shader, &divs); 244 245 if (abs(shader - out) <= 246 abs(shader - clock) && 247 (divs + P2) <= 7) { 248 priv->ssrc = nv_clk_src_core; 249 priv->sctrl = (divs + P2) << 16; 250 } else { 251 priv->ssrc = nv_clk_src_shader; 252 priv->scoef = (N << 8) | M; 253 priv->sctrl = P1 << 16; 254 } 255 } 256 257 /* vclk */ 258 out = calc_P(core, vdec, &divs); 259 clock = calc_P(500000, vdec, &P1); 260 if(abs(vdec - out) <= abs(vdec - clock)) { 261 priv->vsrc = nv_clk_src_cclk; 262 priv->vdiv = divs << 16; 263 } else { 264 priv->vsrc = nv_clk_src_vdec; 265 priv->vdiv = P1 << 16; 266 } 267 268 /* Print strategy! */ 269 nv_debug(priv, "nvpll: %08x %08x %08x\n", 270 priv->ccoef, priv->cpost, priv->cctrl); 271 nv_debug(priv, " spll: %08x %08x %08x\n", 272 priv->scoef, priv->spost, priv->sctrl); 273 nv_debug(priv, " vdiv: %08x\n", priv->vdiv); 274 if (priv->csrc == nv_clk_src_hclkm4) 275 nv_debug(priv, "core: hrefm4\n"); 276 else 277 nv_debug(priv, "core: nvpll\n"); 278 279 if (priv->ssrc == nv_clk_src_hclkm4) 280 nv_debug(priv, "shader: hrefm4\n"); 281 else if (priv->ssrc == nv_clk_src_core) 282 nv_debug(priv, "shader: nvpll\n"); 283 else 284 nv_debug(priv, "shader: spll\n"); 285 286 if (priv->vsrc == nv_clk_src_hclkm4) 287 nv_debug(priv, "vdec: 500MHz\n"); 288 else 289 nv_debug(priv, "vdec: core\n"); 290 291 return 0; 292} 293 294static int 295mcp77_clk_prog(struct nvkm_clk *clk) 296{ 297 struct mcp77_clk_priv *priv = (void *)clk; 298 u32 pllmask = 0, mast; 299 unsigned long flags; 300 unsigned long *f = &flags; 301 int ret = 0; 302 303 ret = gt215_clk_pre(clk, f); 304 if (ret) 305 goto out; 306 307 /* First switch to safe clocks: href */ 308 mast = nv_mask(clk, 0xc054, 0x03400e70, 0x03400640); 309 mast &= ~0x00400e73; 310 mast |= 0x03000000; 311 312 switch (priv->csrc) { 313 case nv_clk_src_hclkm4: 314 nv_mask(clk, 0x4028, 0x00070000, priv->cctrl); 315 mast |= 0x00000002; 316 break; 317 case nv_clk_src_core: 318 nv_wr32(clk, 0x402c, priv->ccoef); 319 nv_wr32(clk, 0x4028, 0x80000000 | priv->cctrl); 320 nv_wr32(clk, 0x4040, priv->cpost); 321 pllmask |= (0x3 << 8); 322 mast |= 0x00000003; 323 break; 324 default: 325 nv_warn(priv,"Reclocking failed: unknown core clock\n"); 326 goto resume; 327 } 328 329 switch (priv->ssrc) { 330 case nv_clk_src_href: 331 nv_mask(clk, 0x4020, 0x00070000, 0x00000000); 332 /* mast |= 0x00000000; */ 333 break; 334 case nv_clk_src_core: 335 nv_mask(clk, 0x4020, 0x00070000, priv->sctrl); 336 mast |= 0x00000020; 337 break; 338 case nv_clk_src_shader: 339 nv_wr32(clk, 0x4024, priv->scoef); 340 nv_wr32(clk, 0x4020, 0x80000000 | priv->sctrl); 341 nv_wr32(clk, 0x4070, priv->spost); 342 pllmask |= (0x3 << 12); 343 mast |= 0x00000030; 344 break; 345 default: 346 nv_warn(priv,"Reclocking failed: unknown sclk clock\n"); 347 goto resume; 348 } 349 350 if (!nv_wait(clk, 0x004080, pllmask, pllmask)) { 351 nv_warn(priv,"Reclocking failed: unstable PLLs\n"); 352 goto resume; 353 } 354 355 switch (priv->vsrc) { 356 case nv_clk_src_cclk: 357 mast |= 0x00400000; 358 default: 359 nv_wr32(clk, 0x4600, priv->vdiv); 360 } 361 362 nv_wr32(clk, 0xc054, mast); 363 364resume: 365 /* Disable some PLLs and dividers when unused */ 366 if (priv->csrc != nv_clk_src_core) { 367 nv_wr32(clk, 0x4040, 0x00000000); 368 nv_mask(clk, 0x4028, 0x80000000, 0x00000000); 369 } 370 371 if (priv->ssrc != nv_clk_src_shader) { 372 nv_wr32(clk, 0x4070, 0x00000000); 373 nv_mask(clk, 0x4020, 0x80000000, 0x00000000); 374 } 375 376out: 377 if (ret == -EBUSY) 378 f = NULL; 379 380 gt215_clk_post(clk, f); 381 return ret; 382} 383 384static void 385mcp77_clk_tidy(struct nvkm_clk *clk) 386{ 387} 388 389static struct nvkm_domain 390mcp77_domains[] = { 391 { nv_clk_src_crystal, 0xff }, 392 { nv_clk_src_href , 0xff }, 393 { nv_clk_src_core , 0xff, 0, "core", 1000 }, 394 { nv_clk_src_shader , 0xff, 0, "shader", 1000 }, 395 { nv_clk_src_vdec , 0xff, 0, "vdec", 1000 }, 396 { nv_clk_src_max } 397}; 398 399static int 400mcp77_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, 401 struct nvkm_oclass *oclass, void *data, u32 size, 402 struct nvkm_object **pobject) 403{ 404 struct mcp77_clk_priv *priv; 405 int ret; 406 407 ret = nvkm_clk_create(parent, engine, oclass, mcp77_domains, 408 NULL, 0, true, &priv); 409 *pobject = nv_object(priv); 410 if (ret) 411 return ret; 412 413 priv->base.read = mcp77_clk_read; 414 priv->base.calc = mcp77_clk_calc; 415 priv->base.prog = mcp77_clk_prog; 416 priv->base.tidy = mcp77_clk_tidy; 417 return 0; 418} 419 420struct nvkm_oclass * 421mcp77_clk_oclass = &(struct nvkm_oclass) { 422 .handle = NV_SUBDEV(CLK, 0xaa), 423 .ofuncs = &(struct nvkm_ofuncs) { 424 .ctor = mcp77_clk_ctor, 425 .dtor = _nvkm_clk_dtor, 426 .init = _nvkm_clk_init, 427 .fini = _nvkm_clk_fini, 428 }, 429}; 430