1/*
2 * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 *
22 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23 *
24 */
25#include <subdev/clk.h>
26#include <subdev/timer.h>
27
28#include <core/device.h>
29
30#ifdef __KERNEL__
31#include <nouveau_platform.h>
32#endif
33
34#define MHZ (1000 * 1000)
35
36#define MASK(w)	((1 << w) - 1)
37
38#define SYS_GPCPLL_CFG_BASE			0x00137000
39#define GPC_BCASE_GPCPLL_CFG_BASE		0x00132800
40
41#define GPCPLL_CFG		(SYS_GPCPLL_CFG_BASE + 0)
42#define GPCPLL_CFG_ENABLE	BIT(0)
43#define GPCPLL_CFG_IDDQ		BIT(1)
44#define GPCPLL_CFG_LOCK_DET_OFF	BIT(4)
45#define GPCPLL_CFG_LOCK		BIT(17)
46
47#define GPCPLL_COEFF		(SYS_GPCPLL_CFG_BASE + 4)
48#define GPCPLL_COEFF_M_SHIFT	0
49#define GPCPLL_COEFF_M_WIDTH	8
50#define GPCPLL_COEFF_N_SHIFT	8
51#define GPCPLL_COEFF_N_WIDTH	8
52#define GPCPLL_COEFF_P_SHIFT	16
53#define GPCPLL_COEFF_P_WIDTH	6
54
55#define GPCPLL_CFG2			(SYS_GPCPLL_CFG_BASE + 0xc)
56#define GPCPLL_CFG2_SETUP2_SHIFT	16
57#define GPCPLL_CFG2_PLL_STEPA_SHIFT	24
58
59#define GPCPLL_CFG3			(SYS_GPCPLL_CFG_BASE + 0x18)
60#define GPCPLL_CFG3_PLL_STEPB_SHIFT	16
61
62#define GPCPLL_NDIV_SLOWDOWN			(SYS_GPCPLL_CFG_BASE + 0x1c)
63#define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT	0
64#define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT	8
65#define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT	16
66#define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT	22
67#define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT	31
68
69#define SEL_VCO				(SYS_GPCPLL_CFG_BASE + 0x100)
70#define SEL_VCO_GPC2CLK_OUT_SHIFT	0
71
72#define GPC2CLK_OUT			(SYS_GPCPLL_CFG_BASE + 0x250)
73#define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH	1
74#define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT	31
75#define GPC2CLK_OUT_SDIV14_INDIV4_MODE	1
76#define GPC2CLK_OUT_VCODIV_WIDTH	6
77#define GPC2CLK_OUT_VCODIV_SHIFT	8
78#define GPC2CLK_OUT_VCODIV1		0
79#define GPC2CLK_OUT_VCODIV_MASK		(MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
80					GPC2CLK_OUT_VCODIV_SHIFT)
81#define	GPC2CLK_OUT_BYPDIV_WIDTH	6
82#define GPC2CLK_OUT_BYPDIV_SHIFT	0
83#define GPC2CLK_OUT_BYPDIV31		0x3c
84#define GPC2CLK_OUT_INIT_MASK	((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
85		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
86		| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
87		| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
88#define GPC2CLK_OUT_INIT_VAL	((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
89		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
90		| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
91		| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
92
93#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG	(GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
94#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT	24
95#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
96	    (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
97
98static const u8 pl_to_div[] = {
99/* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
100/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
101};
102
103/* All frequencies in Mhz */
104struct gk20a_clk_pllg_params {
105	u32 min_vco, max_vco;
106	u32 min_u, max_u;
107	u32 min_m, max_m;
108	u32 min_n, max_n;
109	u32 min_pl, max_pl;
110};
111
112static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
113	.min_vco = 1000, .max_vco = 2064,
114	.min_u = 12, .max_u = 38,
115	.min_m = 1, .max_m = 255,
116	.min_n = 8, .max_n = 255,
117	.min_pl = 1, .max_pl = 32,
118};
119
120struct gk20a_clk_priv {
121	struct nvkm_clk base;
122	const struct gk20a_clk_pllg_params *params;
123	u32 m, n, pl;
124	u32 parent_rate;
125};
126#define to_gk20a_clk(base) container_of(base, struct gk20a_clk_priv, base)
127
128static void
129gk20a_pllg_read_mnp(struct gk20a_clk_priv *priv)
130{
131	u32 val;
132
133	val = nv_rd32(priv, GPCPLL_COEFF);
134	priv->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
135	priv->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
136	priv->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
137}
138
139static u32
140gk20a_pllg_calc_rate(struct gk20a_clk_priv *priv)
141{
142	u32 rate;
143	u32 divider;
144
145	rate = priv->parent_rate * priv->n;
146	divider = priv->m * pl_to_div[priv->pl];
147	do_div(rate, divider);
148
149	return rate / 2;
150}
151
152static int
153gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate)
154{
155	u32 target_clk_f, ref_clk_f, target_freq;
156	u32 min_vco_f, max_vco_f;
157	u32 low_pl, high_pl, best_pl;
158	u32 target_vco_f, vco_f;
159	u32 best_m, best_n;
160	u32 u_f;
161	u32 m, n, n2;
162	u32 delta, lwv, best_delta = ~0;
163	u32 pl;
164
165	target_clk_f = rate * 2 / MHZ;
166	ref_clk_f = priv->parent_rate / MHZ;
167
168	max_vco_f = priv->params->max_vco;
169	min_vco_f = priv->params->min_vco;
170	best_m = priv->params->max_m;
171	best_n = priv->params->min_n;
172	best_pl = priv->params->min_pl;
173
174	target_vco_f = target_clk_f + target_clk_f / 50;
175	if (max_vco_f < target_vco_f)
176		max_vco_f = target_vco_f;
177
178	/* min_pl <= high_pl <= max_pl */
179	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
180	high_pl = min(high_pl, priv->params->max_pl);
181	high_pl = max(high_pl, priv->params->min_pl);
182
183	/* min_pl <= low_pl <= max_pl */
184	low_pl = min_vco_f / target_vco_f;
185	low_pl = min(low_pl, priv->params->max_pl);
186	low_pl = max(low_pl, priv->params->min_pl);
187
188	/* Find Indices of high_pl and low_pl */
189	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
190		if (pl_to_div[pl] >= low_pl) {
191			low_pl = pl;
192			break;
193		}
194	}
195	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
196		if (pl_to_div[pl] >= high_pl) {
197			high_pl = pl;
198			break;
199		}
200	}
201
202	nv_debug(priv, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
203		 pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
204
205	/* Select lowest possible VCO */
206	for (pl = low_pl; pl <= high_pl; pl++) {
207		target_vco_f = target_clk_f * pl_to_div[pl];
208		for (m = priv->params->min_m; m <= priv->params->max_m; m++) {
209			u_f = ref_clk_f / m;
210
211			if (u_f < priv->params->min_u)
212				break;
213			if (u_f > priv->params->max_u)
214				continue;
215
216			n = (target_vco_f * m) / ref_clk_f;
217			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
218
219			if (n > priv->params->max_n)
220				break;
221
222			for (; n <= n2; n++) {
223				if (n < priv->params->min_n)
224					continue;
225				if (n > priv->params->max_n)
226					break;
227
228				vco_f = ref_clk_f * n / m;
229
230				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
231					lwv = (vco_f + (pl_to_div[pl] / 2))
232						/ pl_to_div[pl];
233					delta = abs(lwv - target_clk_f);
234
235					if (delta < best_delta) {
236						best_delta = delta;
237						best_m = m;
238						best_n = n;
239						best_pl = pl;
240
241						if (best_delta == 0)
242							goto found_match;
243					}
244				}
245			}
246		}
247	}
248
249found_match:
250	WARN_ON(best_delta == ~0);
251
252	if (best_delta != 0)
253		nv_debug(priv, "no best match for target @ %dMHz on gpc_pll",
254			 target_clk_f);
255
256	priv->m = best_m;
257	priv->n = best_n;
258	priv->pl = best_pl;
259
260	target_freq = gk20a_pllg_calc_rate(priv) / MHZ;
261
262	nv_debug(priv, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
263		 target_freq, priv->m, priv->n, priv->pl, pl_to_div[priv->pl]);
264	return 0;
265}
266
267static int
268gk20a_pllg_slide(struct gk20a_clk_priv *priv, u32 n)
269{
270	u32 val;
271	int ramp_timeout;
272
273	/* get old coefficients */
274	val = nv_rd32(priv, GPCPLL_COEFF);
275	/* do nothing if NDIV is the same */
276	if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
277		return 0;
278
279	/* setup */
280	nv_mask(priv, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
281		0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
282	nv_mask(priv, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
283		0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
284
285	/* pll slowdown mode */
286	nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
287		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
288		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
289
290	/* new ndiv ready for ramp */
291	val = nv_rd32(priv, GPCPLL_COEFF);
292	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
293	val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
294	udelay(1);
295	nv_wr32(priv, GPCPLL_COEFF, val);
296
297	/* dynamic ramp to new ndiv */
298	val = nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
299	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
300	udelay(1);
301	nv_wr32(priv, GPCPLL_NDIV_SLOWDOWN, val);
302
303	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
304		udelay(1);
305		val = nv_rd32(priv, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
306		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
307			break;
308	}
309
310	/* exit slowdown mode */
311	nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
312		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
313		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
314	nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
315
316	if (ramp_timeout <= 0) {
317		nv_error(priv, "gpcpll dynamic ramp timeout\n");
318		return -ETIMEDOUT;
319	}
320
321	return 0;
322}
323
324static void
325_gk20a_pllg_enable(struct gk20a_clk_priv *priv)
326{
327	nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
328	nv_rd32(priv, GPCPLL_CFG);
329}
330
331static void
332_gk20a_pllg_disable(struct gk20a_clk_priv *priv)
333{
334	nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
335	nv_rd32(priv, GPCPLL_CFG);
336}
337
338static int
339_gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv, bool allow_slide)
340{
341	u32 val, cfg;
342	u32 m_old, pl_old, n_lo;
343
344	/* get old coefficients */
345	val = nv_rd32(priv, GPCPLL_COEFF);
346	m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
347	pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
348
349	/* do NDIV slide if there is no change in M and PL */
350	cfg = nv_rd32(priv, GPCPLL_CFG);
351	if (allow_slide && priv->m == m_old && priv->pl == pl_old &&
352	    (cfg & GPCPLL_CFG_ENABLE)) {
353		return gk20a_pllg_slide(priv, priv->n);
354	}
355
356	/* slide down to NDIV_LO */
357	n_lo = DIV_ROUND_UP(m_old * priv->params->min_vco,
358			    priv->parent_rate / MHZ);
359	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
360		int ret = gk20a_pllg_slide(priv, n_lo);
361
362		if (ret)
363			return ret;
364	}
365
366	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
367	nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
368		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
369
370	/* put PLL in bypass before programming it */
371	val = nv_rd32(priv, SEL_VCO);
372	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
373	udelay(2);
374	nv_wr32(priv, SEL_VCO, val);
375
376	/* get out from IDDQ */
377	val = nv_rd32(priv, GPCPLL_CFG);
378	if (val & GPCPLL_CFG_IDDQ) {
379		val &= ~GPCPLL_CFG_IDDQ;
380		nv_wr32(priv, GPCPLL_CFG, val);
381		nv_rd32(priv, GPCPLL_CFG);
382		udelay(2);
383	}
384
385	_gk20a_pllg_disable(priv);
386
387	nv_debug(priv, "%s: m=%d n=%d pl=%d\n", __func__, priv->m, priv->n,
388		 priv->pl);
389
390	n_lo = DIV_ROUND_UP(priv->m * priv->params->min_vco,
391			    priv->parent_rate / MHZ);
392	val = priv->m << GPCPLL_COEFF_M_SHIFT;
393	val |= (allow_slide ? n_lo : priv->n) << GPCPLL_COEFF_N_SHIFT;
394	val |= priv->pl << GPCPLL_COEFF_P_SHIFT;
395	nv_wr32(priv, GPCPLL_COEFF, val);
396
397	_gk20a_pllg_enable(priv);
398
399	val = nv_rd32(priv, GPCPLL_CFG);
400	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
401		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
402		nv_wr32(priv, GPCPLL_CFG, val);
403	}
404
405	if (!nvkm_timer_wait_eq(priv, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
406				GPCPLL_CFG_LOCK)) {
407		nv_error(priv, "%s: timeout waiting for pllg lock\n", __func__);
408		return -ETIMEDOUT;
409	}
410
411	/* switch to VCO mode */
412	nv_mask(priv, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
413
414	/* restore out divider 1:1 */
415	val = nv_rd32(priv, GPC2CLK_OUT);
416	val &= ~GPC2CLK_OUT_VCODIV_MASK;
417	udelay(2);
418	nv_wr32(priv, GPC2CLK_OUT, val);
419
420	/* slide up to new NDIV */
421	return allow_slide ? gk20a_pllg_slide(priv, priv->n) : 0;
422}
423
424static int
425gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv)
426{
427	int err;
428
429	err = _gk20a_pllg_program_mnp(priv, true);
430	if (err)
431		err = _gk20a_pllg_program_mnp(priv, false);
432
433	return err;
434}
435
436static void
437gk20a_pllg_disable(struct gk20a_clk_priv *priv)
438{
439	u32 val;
440
441	/* slide to VCO min */
442	val = nv_rd32(priv, GPCPLL_CFG);
443	if (val & GPCPLL_CFG_ENABLE) {
444		u32 coeff, m, n_lo;
445
446		coeff = nv_rd32(priv, GPCPLL_COEFF);
447		m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
448		n_lo = DIV_ROUND_UP(m * priv->params->min_vco,
449				    priv->parent_rate / MHZ);
450		gk20a_pllg_slide(priv, n_lo);
451	}
452
453	/* put PLL in bypass before disabling it */
454	nv_mask(priv, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
455
456	_gk20a_pllg_disable(priv);
457}
458
459#define GK20A_CLK_GPC_MDIV 1000
460
461static struct nvkm_domain
462gk20a_domains[] = {
463	{ nv_clk_src_crystal, 0xff },
464	{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
465	{ nv_clk_src_max }
466};
467
468static struct nvkm_pstate
469gk20a_pstates[] = {
470	{
471		.base = {
472			.domain[nv_clk_src_gpc] = 72000,
473			.voltage = 0,
474		},
475	},
476	{
477		.base = {
478			.domain[nv_clk_src_gpc] = 108000,
479			.voltage = 1,
480		},
481	},
482	{
483		.base = {
484			.domain[nv_clk_src_gpc] = 180000,
485			.voltage = 2,
486		},
487	},
488	{
489		.base = {
490			.domain[nv_clk_src_gpc] = 252000,
491			.voltage = 3,
492		},
493	},
494	{
495		.base = {
496			.domain[nv_clk_src_gpc] = 324000,
497			.voltage = 4,
498		},
499	},
500	{
501		.base = {
502			.domain[nv_clk_src_gpc] = 396000,
503			.voltage = 5,
504		},
505	},
506	{
507		.base = {
508			.domain[nv_clk_src_gpc] = 468000,
509			.voltage = 6,
510		},
511	},
512	{
513		.base = {
514			.domain[nv_clk_src_gpc] = 540000,
515			.voltage = 7,
516		},
517	},
518	{
519		.base = {
520			.domain[nv_clk_src_gpc] = 612000,
521			.voltage = 8,
522		},
523	},
524	{
525		.base = {
526			.domain[nv_clk_src_gpc] = 648000,
527			.voltage = 9,
528		},
529	},
530	{
531		.base = {
532			.domain[nv_clk_src_gpc] = 684000,
533			.voltage = 10,
534		},
535	},
536	{
537		.base = {
538			.domain[nv_clk_src_gpc] = 708000,
539			.voltage = 11,
540		},
541	},
542	{
543		.base = {
544			.domain[nv_clk_src_gpc] = 756000,
545			.voltage = 12,
546		},
547	},
548	{
549		.base = {
550			.domain[nv_clk_src_gpc] = 804000,
551			.voltage = 13,
552		},
553	},
554	{
555		.base = {
556			.domain[nv_clk_src_gpc] = 852000,
557			.voltage = 14,
558		},
559	},
560};
561
562static int
563gk20a_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
564{
565	struct gk20a_clk_priv *priv = (void *)clk;
566
567	switch (src) {
568	case nv_clk_src_crystal:
569		return nv_device(clk)->crystal;
570	case nv_clk_src_gpc:
571		gk20a_pllg_read_mnp(priv);
572		return gk20a_pllg_calc_rate(priv) / GK20A_CLK_GPC_MDIV;
573	default:
574		nv_error(clk, "invalid clock source %d\n", src);
575		return -EINVAL;
576	}
577}
578
579static int
580gk20a_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
581{
582	struct gk20a_clk_priv *priv = (void *)clk;
583
584	return gk20a_pllg_calc_mnp(priv, cstate->domain[nv_clk_src_gpc] *
585					 GK20A_CLK_GPC_MDIV);
586}
587
588static int
589gk20a_clk_prog(struct nvkm_clk *clk)
590{
591	struct gk20a_clk_priv *priv = (void *)clk;
592
593	return gk20a_pllg_program_mnp(priv);
594}
595
596static void
597gk20a_clk_tidy(struct nvkm_clk *clk)
598{
599}
600
601static int
602gk20a_clk_fini(struct nvkm_object *object, bool suspend)
603{
604	struct gk20a_clk_priv *priv = (void *)object;
605	int ret;
606
607	ret = nvkm_clk_fini(&priv->base, false);
608
609	gk20a_pllg_disable(priv);
610
611	return ret;
612}
613
614static int
615gk20a_clk_init(struct nvkm_object *object)
616{
617	struct gk20a_clk_priv *priv = (void *)object;
618	int ret;
619
620	nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
621
622	ret = nvkm_clk_init(&priv->base);
623	if (ret)
624		return ret;
625
626	ret = gk20a_clk_prog(&priv->base);
627	if (ret) {
628		nv_error(priv, "cannot initialize clock\n");
629		return ret;
630	}
631
632	return 0;
633}
634
635static int
636gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
637	       struct nvkm_oclass *oclass, void *data, u32 size,
638	       struct nvkm_object **pobject)
639{
640	struct gk20a_clk_priv *priv;
641	struct nouveau_platform_device *plat;
642	int ret;
643	int i;
644
645	/* Finish initializing the pstates */
646	for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
647		INIT_LIST_HEAD(&gk20a_pstates[i].list);
648		gk20a_pstates[i].pstate = i + 1;
649	}
650
651	ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains,
652			      gk20a_pstates, ARRAY_SIZE(gk20a_pstates),
653			      true, &priv);
654	*pobject = nv_object(priv);
655	if (ret)
656		return ret;
657
658	priv->params = &gk20a_pllg_params;
659
660	plat = nv_device_to_platform(nv_device(parent));
661	priv->parent_rate = clk_get_rate(plat->gpu->clk);
662	nv_info(priv, "parent clock rate: %d Mhz\n", priv->parent_rate / MHZ);
663
664	priv->base.read = gk20a_clk_read;
665	priv->base.calc = gk20a_clk_calc;
666	priv->base.prog = gk20a_clk_prog;
667	priv->base.tidy = gk20a_clk_tidy;
668	return 0;
669}
670
671struct nvkm_oclass
672gk20a_clk_oclass = {
673	.handle = NV_SUBDEV(CLK, 0xea),
674	.ofuncs = &(struct nvkm_ofuncs) {
675		.ctor = gk20a_clk_ctor,
676		.dtor = _nvkm_subdev_dtor,
677		.init = gk20a_clk_init,
678		.fini = gk20a_clk_fini,
679	},
680};
681