1/*
2 * Copyright 2009 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25/* NVIDIA context programs handle a number of other conditions which are
26 * not implemented in our versions.  It's not clear why NVIDIA context
27 * programs have this code, nor whether it's strictly necessary for
28 * correct operation.  We'll implement additional handling if/when we
29 * discover it's necessary.
30 *
31 * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state"
32 *   flag is set, this gets saved into the context.
33 * - On context save, the context program for all cards load nsource
34 *   into a flag register and check for ILLEGAL_MTHD.  If it's set,
35 *   opcode 0x60000d is called before resuming normal operation.
36 * - Some context programs check more conditions than the above.  NV44
37 *   checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001))
38 *   and calls 0x60000d before resuming normal operation.
39 * - At the very beginning of NVIDIA's context programs, flag 9 is checked
40 *   and if true 0x800001 is called with count=0, pos=0, the flag is cleared
41 *   and then the ctxprog is aborted.  It looks like a complicated NOP,
42 *   its purpose is unknown.
43 * - In the section of code that loads the per-vs state, NVIDIA check
44 *   flag 10.  If it's set, they only transfer the small 0x300 byte block
45 *   of state + the state for a single vs as opposed to the state for
46 *   all vs units.  It doesn't seem likely that it'll occur in normal
47 *   operation, especially seeing as it appears NVIDIA may have screwed
48 *   up the ctxprogs for some cards and have an invalid instruction
49 *   rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction.
50 * - There's a number of places where context offset 0 (where we place
51 *   the PRAMIN offset of the context) is loaded into either 0x408000,
52 *   0x408004 or 0x408008.  Not sure what's up there either.
53 * - The ctxprogs for some cards save 0x400a00 again during the cleanup
54 *   path for auto-loadctx.
55 */
56
57#define CP_FLAG_CLEAR                 0
58#define CP_FLAG_SET                   1
59#define CP_FLAG_SWAP_DIRECTION        ((0 * 32) + 0)
60#define CP_FLAG_SWAP_DIRECTION_LOAD   0
61#define CP_FLAG_SWAP_DIRECTION_SAVE   1
62#define CP_FLAG_USER_SAVE             ((0 * 32) + 5)
63#define CP_FLAG_USER_SAVE_NOT_PENDING 0
64#define CP_FLAG_USER_SAVE_PENDING     1
65#define CP_FLAG_USER_LOAD             ((0 * 32) + 6)
66#define CP_FLAG_USER_LOAD_NOT_PENDING 0
67#define CP_FLAG_USER_LOAD_PENDING     1
68#define CP_FLAG_STATUS                ((3 * 32) + 0)
69#define CP_FLAG_STATUS_IDLE           0
70#define CP_FLAG_STATUS_BUSY           1
71#define CP_FLAG_AUTO_SAVE             ((3 * 32) + 4)
72#define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
73#define CP_FLAG_AUTO_SAVE_PENDING     1
74#define CP_FLAG_AUTO_LOAD             ((3 * 32) + 5)
75#define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
76#define CP_FLAG_AUTO_LOAD_PENDING     1
77#define CP_FLAG_UNK54                 ((3 * 32) + 6)
78#define CP_FLAG_UNK54_CLEAR           0
79#define CP_FLAG_UNK54_SET             1
80#define CP_FLAG_ALWAYS                ((3 * 32) + 8)
81#define CP_FLAG_ALWAYS_FALSE          0
82#define CP_FLAG_ALWAYS_TRUE           1
83#define CP_FLAG_UNK57                 ((3 * 32) + 9)
84#define CP_FLAG_UNK57_CLEAR           0
85#define CP_FLAG_UNK57_SET             1
86
87#define CP_CTX                   0x00100000
88#define CP_CTX_COUNT             0x000fc000
89#define CP_CTX_COUNT_SHIFT               14
90#define CP_CTX_REG               0x00003fff
91#define CP_LOAD_SR               0x00200000
92#define CP_LOAD_SR_VALUE         0x000fffff
93#define CP_BRA                   0x00400000
94#define CP_BRA_IP                0x0000ff00
95#define CP_BRA_IP_SHIFT                   8
96#define CP_BRA_IF_CLEAR          0x00000080
97#define CP_BRA_FLAG              0x0000007f
98#define CP_WAIT                  0x00500000
99#define CP_WAIT_SET              0x00000080
100#define CP_WAIT_FLAG             0x0000007f
101#define CP_SET                   0x00700000
102#define CP_SET_1                 0x00000080
103#define CP_SET_FLAG              0x0000007f
104#define CP_NEXT_TO_SWAP          0x00600007
105#define CP_NEXT_TO_CURRENT       0x00600009
106#define CP_SET_CONTEXT_POINTER   0x0060000a
107#define CP_END                   0x0060000e
108#define CP_LOAD_MAGIC_UNK01      0x00800001 /* unknown */
109#define CP_LOAD_MAGIC_NV44TCL    0x00800029 /* per-vs state (0x4497) */
110#define CP_LOAD_MAGIC_NV40TCL    0x00800041 /* per-vs state (0x4097) */
111
112#include "ctxnv40.h"
113#include "nv40.h"
114#include <core/device.h>
115
116/* TODO:
117 *  - get vs count from 0x1540
118 */
119
120static int
121nv40_gr_vs_count(struct nvkm_device *device)
122{
123
124	switch (device->chipset) {
125	case 0x47:
126	case 0x49:
127	case 0x4b:
128		return 8;
129	case 0x40:
130		return 6;
131	case 0x41:
132	case 0x42:
133		return 5;
134	case 0x43:
135	case 0x44:
136	case 0x46:
137	case 0x4a:
138		return 3;
139	case 0x4c:
140	case 0x4e:
141	case 0x67:
142	default:
143		return 1;
144	}
145}
146
147
148enum cp_label {
149	cp_check_load = 1,
150	cp_setup_auto_load,
151	cp_setup_load,
152	cp_setup_save,
153	cp_swap_state,
154	cp_swap_state3d_3_is_save,
155	cp_prepare_exit,
156	cp_exit,
157};
158
159static void
160nv40_gr_construct_general(struct nvkm_grctx *ctx)
161{
162	struct nvkm_device *device = ctx->device;
163	int i;
164
165	cp_ctx(ctx, 0x4000a4, 1);
166	gr_def(ctx, 0x4000a4, 0x00000008);
167	cp_ctx(ctx, 0x400144, 58);
168	gr_def(ctx, 0x400144, 0x00000001);
169	cp_ctx(ctx, 0x400314, 1);
170	gr_def(ctx, 0x400314, 0x00000000);
171	cp_ctx(ctx, 0x400400, 10);
172	cp_ctx(ctx, 0x400480, 10);
173	cp_ctx(ctx, 0x400500, 19);
174	gr_def(ctx, 0x400514, 0x00040000);
175	gr_def(ctx, 0x400524, 0x55555555);
176	gr_def(ctx, 0x400528, 0x55555555);
177	gr_def(ctx, 0x40052c, 0x55555555);
178	gr_def(ctx, 0x400530, 0x55555555);
179	cp_ctx(ctx, 0x400560, 6);
180	gr_def(ctx, 0x400568, 0x0000ffff);
181	gr_def(ctx, 0x40056c, 0x0000ffff);
182	cp_ctx(ctx, 0x40057c, 5);
183	cp_ctx(ctx, 0x400710, 3);
184	gr_def(ctx, 0x400710, 0x20010001);
185	gr_def(ctx, 0x400714, 0x0f73ef00);
186	cp_ctx(ctx, 0x400724, 1);
187	gr_def(ctx, 0x400724, 0x02008821);
188	cp_ctx(ctx, 0x400770, 3);
189	if (device->chipset == 0x40) {
190		cp_ctx(ctx, 0x400814, 4);
191		cp_ctx(ctx, 0x400828, 5);
192		cp_ctx(ctx, 0x400840, 5);
193		gr_def(ctx, 0x400850, 0x00000040);
194		cp_ctx(ctx, 0x400858, 4);
195		gr_def(ctx, 0x400858, 0x00000040);
196		gr_def(ctx, 0x40085c, 0x00000040);
197		gr_def(ctx, 0x400864, 0x80000000);
198		cp_ctx(ctx, 0x40086c, 9);
199		gr_def(ctx, 0x40086c, 0x80000000);
200		gr_def(ctx, 0x400870, 0x80000000);
201		gr_def(ctx, 0x400874, 0x80000000);
202		gr_def(ctx, 0x400878, 0x80000000);
203		gr_def(ctx, 0x400888, 0x00000040);
204		gr_def(ctx, 0x40088c, 0x80000000);
205		cp_ctx(ctx, 0x4009c0, 8);
206		gr_def(ctx, 0x4009cc, 0x80000000);
207		gr_def(ctx, 0x4009dc, 0x80000000);
208	} else {
209		cp_ctx(ctx, 0x400840, 20);
210		if (nv44_gr_class(ctx->device)) {
211			for (i = 0; i < 8; i++)
212				gr_def(ctx, 0x400860 + (i * 4), 0x00000001);
213		}
214		gr_def(ctx, 0x400880, 0x00000040);
215		gr_def(ctx, 0x400884, 0x00000040);
216		gr_def(ctx, 0x400888, 0x00000040);
217		cp_ctx(ctx, 0x400894, 11);
218		gr_def(ctx, 0x400894, 0x00000040);
219		if (!nv44_gr_class(ctx->device)) {
220			for (i = 0; i < 8; i++)
221				gr_def(ctx, 0x4008a0 + (i * 4), 0x80000000);
222		}
223		cp_ctx(ctx, 0x4008e0, 2);
224		cp_ctx(ctx, 0x4008f8, 2);
225		if (device->chipset == 0x4c ||
226		    (device->chipset & 0xf0) == 0x60)
227			cp_ctx(ctx, 0x4009f8, 1);
228	}
229	cp_ctx(ctx, 0x400a00, 73);
230	gr_def(ctx, 0x400b0c, 0x0b0b0b0c);
231	cp_ctx(ctx, 0x401000, 4);
232	cp_ctx(ctx, 0x405004, 1);
233	switch (device->chipset) {
234	case 0x47:
235	case 0x49:
236	case 0x4b:
237		cp_ctx(ctx, 0x403448, 1);
238		gr_def(ctx, 0x403448, 0x00001010);
239		break;
240	default:
241		cp_ctx(ctx, 0x403440, 1);
242		switch (device->chipset) {
243		case 0x40:
244			gr_def(ctx, 0x403440, 0x00000010);
245			break;
246		case 0x44:
247		case 0x46:
248		case 0x4a:
249			gr_def(ctx, 0x403440, 0x00003010);
250			break;
251		case 0x41:
252		case 0x42:
253		case 0x43:
254		case 0x4c:
255		case 0x4e:
256		case 0x67:
257		default:
258			gr_def(ctx, 0x403440, 0x00001010);
259			break;
260		}
261		break;
262	}
263}
264
265static void
266nv40_gr_construct_state3d(struct nvkm_grctx *ctx)
267{
268	struct nvkm_device *device = ctx->device;
269	int i;
270
271	if (device->chipset == 0x40) {
272		cp_ctx(ctx, 0x401880, 51);
273		gr_def(ctx, 0x401940, 0x00000100);
274	} else
275	if (device->chipset == 0x46 || device->chipset == 0x47 ||
276	    device->chipset == 0x49 || device->chipset == 0x4b) {
277		cp_ctx(ctx, 0x401880, 32);
278		for (i = 0; i < 16; i++)
279			gr_def(ctx, 0x401880 + (i * 4), 0x00000111);
280		if (device->chipset == 0x46)
281			cp_ctx(ctx, 0x401900, 16);
282		cp_ctx(ctx, 0x401940, 3);
283	}
284	cp_ctx(ctx, 0x40194c, 18);
285	gr_def(ctx, 0x401954, 0x00000111);
286	gr_def(ctx, 0x401958, 0x00080060);
287	gr_def(ctx, 0x401974, 0x00000080);
288	gr_def(ctx, 0x401978, 0xffff0000);
289	gr_def(ctx, 0x40197c, 0x00000001);
290	gr_def(ctx, 0x401990, 0x46400000);
291	if (device->chipset == 0x40) {
292		cp_ctx(ctx, 0x4019a0, 2);
293		cp_ctx(ctx, 0x4019ac, 5);
294	} else {
295		cp_ctx(ctx, 0x4019a0, 1);
296		cp_ctx(ctx, 0x4019b4, 3);
297	}
298	gr_def(ctx, 0x4019bc, 0xffff0000);
299	switch (device->chipset) {
300	case 0x46:
301	case 0x47:
302	case 0x49:
303	case 0x4b:
304		cp_ctx(ctx, 0x4019c0, 18);
305		for (i = 0; i < 16; i++)
306			gr_def(ctx, 0x4019c0 + (i * 4), 0x88888888);
307		break;
308	}
309	cp_ctx(ctx, 0x401a08, 8);
310	gr_def(ctx, 0x401a10, 0x0fff0000);
311	gr_def(ctx, 0x401a14, 0x0fff0000);
312	gr_def(ctx, 0x401a1c, 0x00011100);
313	cp_ctx(ctx, 0x401a2c, 4);
314	cp_ctx(ctx, 0x401a44, 26);
315	for (i = 0; i < 16; i++)
316		gr_def(ctx, 0x401a44 + (i * 4), 0x07ff0000);
317	gr_def(ctx, 0x401a8c, 0x4b7fffff);
318	if (device->chipset == 0x40) {
319		cp_ctx(ctx, 0x401ab8, 3);
320	} else {
321		cp_ctx(ctx, 0x401ab8, 1);
322		cp_ctx(ctx, 0x401ac0, 1);
323	}
324	cp_ctx(ctx, 0x401ad0, 8);
325	gr_def(ctx, 0x401ad0, 0x30201000);
326	gr_def(ctx, 0x401ad4, 0x70605040);
327	gr_def(ctx, 0x401ad8, 0xb8a89888);
328	gr_def(ctx, 0x401adc, 0xf8e8d8c8);
329	cp_ctx(ctx, 0x401b10, device->chipset == 0x40 ? 2 : 1);
330	gr_def(ctx, 0x401b10, 0x40100000);
331	cp_ctx(ctx, 0x401b18, device->chipset == 0x40 ? 6 : 5);
332	gr_def(ctx, 0x401b28, device->chipset == 0x40 ?
333			      0x00000004 : 0x00000000);
334	cp_ctx(ctx, 0x401b30, 25);
335	gr_def(ctx, 0x401b34, 0x0000ffff);
336	gr_def(ctx, 0x401b68, 0x435185d6);
337	gr_def(ctx, 0x401b6c, 0x2155b699);
338	gr_def(ctx, 0x401b70, 0xfedcba98);
339	gr_def(ctx, 0x401b74, 0x00000098);
340	gr_def(ctx, 0x401b84, 0xffffffff);
341	gr_def(ctx, 0x401b88, 0x00ff7000);
342	gr_def(ctx, 0x401b8c, 0x0000ffff);
343	if (device->chipset != 0x44 && device->chipset != 0x4a &&
344	    device->chipset != 0x4e)
345		cp_ctx(ctx, 0x401b94, 1);
346	cp_ctx(ctx, 0x401b98, 8);
347	gr_def(ctx, 0x401b9c, 0x00ff0000);
348	cp_ctx(ctx, 0x401bc0, 9);
349	gr_def(ctx, 0x401be0, 0x00ffff00);
350	cp_ctx(ctx, 0x401c00, 192);
351	for (i = 0; i < 16; i++) { /* fragment texture units */
352		gr_def(ctx, 0x401c40 + (i * 4), 0x00018488);
353		gr_def(ctx, 0x401c80 + (i * 4), 0x00028202);
354		gr_def(ctx, 0x401d00 + (i * 4), 0x0000aae4);
355		gr_def(ctx, 0x401d40 + (i * 4), 0x01012000);
356		gr_def(ctx, 0x401d80 + (i * 4), 0x00080008);
357		gr_def(ctx, 0x401e00 + (i * 4), 0x00100008);
358	}
359	for (i = 0; i < 4; i++) { /* vertex texture units */
360		gr_def(ctx, 0x401e90 + (i * 4), 0x0001bc80);
361		gr_def(ctx, 0x401ea0 + (i * 4), 0x00000202);
362		gr_def(ctx, 0x401ec0 + (i * 4), 0x00000008);
363		gr_def(ctx, 0x401ee0 + (i * 4), 0x00080008);
364	}
365	cp_ctx(ctx, 0x400f5c, 3);
366	gr_def(ctx, 0x400f5c, 0x00000002);
367	cp_ctx(ctx, 0x400f84, 1);
368}
369
370static void
371nv40_gr_construct_state3d_2(struct nvkm_grctx *ctx)
372{
373	struct nvkm_device *device = ctx->device;
374	int i;
375
376	cp_ctx(ctx, 0x402000, 1);
377	cp_ctx(ctx, 0x402404, device->chipset == 0x40 ? 1 : 2);
378	switch (device->chipset) {
379	case 0x40:
380		gr_def(ctx, 0x402404, 0x00000001);
381		break;
382	case 0x4c:
383	case 0x4e:
384	case 0x67:
385		gr_def(ctx, 0x402404, 0x00000020);
386		break;
387	case 0x46:
388	case 0x49:
389	case 0x4b:
390		gr_def(ctx, 0x402404, 0x00000421);
391		break;
392	default:
393		gr_def(ctx, 0x402404, 0x00000021);
394	}
395	if (device->chipset != 0x40)
396		gr_def(ctx, 0x402408, 0x030c30c3);
397	switch (device->chipset) {
398	case 0x44:
399	case 0x46:
400	case 0x4a:
401	case 0x4c:
402	case 0x4e:
403	case 0x67:
404		cp_ctx(ctx, 0x402440, 1);
405		gr_def(ctx, 0x402440, 0x00011001);
406		break;
407	default:
408		break;
409	}
410	cp_ctx(ctx, 0x402480, device->chipset == 0x40 ? 8 : 9);
411	gr_def(ctx, 0x402488, 0x3e020200);
412	gr_def(ctx, 0x40248c, 0x00ffffff);
413	switch (device->chipset) {
414	case 0x40:
415		gr_def(ctx, 0x402490, 0x60103f00);
416		break;
417	case 0x47:
418		gr_def(ctx, 0x402490, 0x40103f00);
419		break;
420	case 0x41:
421	case 0x42:
422	case 0x49:
423	case 0x4b:
424		gr_def(ctx, 0x402490, 0x20103f00);
425		break;
426	default:
427		gr_def(ctx, 0x402490, 0x0c103f00);
428		break;
429	}
430	gr_def(ctx, 0x40249c, device->chipset <= 0x43 ?
431			      0x00020000 : 0x00040000);
432	cp_ctx(ctx, 0x402500, 31);
433	gr_def(ctx, 0x402530, 0x00008100);
434	if (device->chipset == 0x40)
435		cp_ctx(ctx, 0x40257c, 6);
436	cp_ctx(ctx, 0x402594, 16);
437	cp_ctx(ctx, 0x402800, 17);
438	gr_def(ctx, 0x402800, 0x00000001);
439	switch (device->chipset) {
440	case 0x47:
441	case 0x49:
442	case 0x4b:
443		cp_ctx(ctx, 0x402864, 1);
444		gr_def(ctx, 0x402864, 0x00001001);
445		cp_ctx(ctx, 0x402870, 3);
446		gr_def(ctx, 0x402878, 0x00000003);
447		if (device->chipset != 0x47) { /* belong at end!! */
448			cp_ctx(ctx, 0x402900, 1);
449			cp_ctx(ctx, 0x402940, 1);
450			cp_ctx(ctx, 0x402980, 1);
451			cp_ctx(ctx, 0x4029c0, 1);
452			cp_ctx(ctx, 0x402a00, 1);
453			cp_ctx(ctx, 0x402a40, 1);
454			cp_ctx(ctx, 0x402a80, 1);
455			cp_ctx(ctx, 0x402ac0, 1);
456		}
457		break;
458	case 0x40:
459		cp_ctx(ctx, 0x402844, 1);
460		gr_def(ctx, 0x402844, 0x00000001);
461		cp_ctx(ctx, 0x402850, 1);
462		break;
463	default:
464		cp_ctx(ctx, 0x402844, 1);
465		gr_def(ctx, 0x402844, 0x00001001);
466		cp_ctx(ctx, 0x402850, 2);
467		gr_def(ctx, 0x402854, 0x00000003);
468		break;
469	}
470
471	cp_ctx(ctx, 0x402c00, 4);
472	gr_def(ctx, 0x402c00, device->chipset == 0x40 ?
473			      0x80800001 : 0x00888001);
474	switch (device->chipset) {
475	case 0x47:
476	case 0x49:
477	case 0x4b:
478		cp_ctx(ctx, 0x402c20, 40);
479		for (i = 0; i < 32; i++)
480			gr_def(ctx, 0x402c40 + (i * 4), 0xffffffff);
481		cp_ctx(ctx, 0x4030b8, 13);
482		gr_def(ctx, 0x4030dc, 0x00000005);
483		gr_def(ctx, 0x4030e8, 0x0000ffff);
484		break;
485	default:
486		cp_ctx(ctx, 0x402c10, 4);
487		if (device->chipset == 0x40)
488			cp_ctx(ctx, 0x402c20, 36);
489		else
490		if (device->chipset <= 0x42)
491			cp_ctx(ctx, 0x402c20, 24);
492		else
493		if (device->chipset <= 0x4a)
494			cp_ctx(ctx, 0x402c20, 16);
495		else
496			cp_ctx(ctx, 0x402c20, 8);
497		cp_ctx(ctx, 0x402cb0, device->chipset == 0x40 ? 12 : 13);
498		gr_def(ctx, 0x402cd4, 0x00000005);
499		if (device->chipset != 0x40)
500			gr_def(ctx, 0x402ce0, 0x0000ffff);
501		break;
502	}
503
504	cp_ctx(ctx, 0x403400, device->chipset == 0x40 ? 4 : 3);
505	cp_ctx(ctx, 0x403410, device->chipset == 0x40 ? 4 : 3);
506	cp_ctx(ctx, 0x403420, nv40_gr_vs_count(ctx->device));
507	for (i = 0; i < nv40_gr_vs_count(ctx->device); i++)
508		gr_def(ctx, 0x403420 + (i * 4), 0x00005555);
509
510	if (device->chipset != 0x40) {
511		cp_ctx(ctx, 0x403600, 1);
512		gr_def(ctx, 0x403600, 0x00000001);
513	}
514	cp_ctx(ctx, 0x403800, 1);
515
516	cp_ctx(ctx, 0x403c18, 1);
517	gr_def(ctx, 0x403c18, 0x00000001);
518	switch (device->chipset) {
519	case 0x46:
520	case 0x47:
521	case 0x49:
522	case 0x4b:
523		cp_ctx(ctx, 0x405018, 1);
524		gr_def(ctx, 0x405018, 0x08e00001);
525		cp_ctx(ctx, 0x405c24, 1);
526		gr_def(ctx, 0x405c24, 0x000e3000);
527		break;
528	}
529	if (device->chipset != 0x4e)
530		cp_ctx(ctx, 0x405800, 11);
531	cp_ctx(ctx, 0x407000, 1);
532}
533
534static void
535nv40_gr_construct_state3d_3(struct nvkm_grctx *ctx)
536{
537	int len = nv44_gr_class(ctx->device) ? 0x0084 : 0x0684;
538
539	cp_out (ctx, 0x300000);
540	cp_lsr (ctx, len - 4);
541	cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_swap_state3d_3_is_save);
542	cp_lsr (ctx, len);
543	cp_name(ctx, cp_swap_state3d_3_is_save);
544	cp_out (ctx, 0x800001);
545
546	ctx->ctxvals_pos += len;
547}
548
549static void
550nv40_gr_construct_shader(struct nvkm_grctx *ctx)
551{
552	struct nvkm_device *device = ctx->device;
553	struct nvkm_gpuobj *obj = ctx->data;
554	int vs, vs_nr, vs_len, vs_nr_b0, vs_nr_b1, b0_offset, b1_offset;
555	int offset, i;
556
557	vs_nr    = nv40_gr_vs_count(ctx->device);
558	vs_nr_b0 = 363;
559	vs_nr_b1 = device->chipset == 0x40 ? 128 : 64;
560	if (device->chipset == 0x40) {
561		b0_offset = 0x2200/4; /* 33a0 */
562		b1_offset = 0x55a0/4; /* 1500 */
563		vs_len = 0x6aa0/4;
564	} else
565	if (device->chipset == 0x41 || device->chipset == 0x42) {
566		b0_offset = 0x2200/4; /* 2200 */
567		b1_offset = 0x4400/4; /* 0b00 */
568		vs_len = 0x4f00/4;
569	} else {
570		b0_offset = 0x1d40/4; /* 2200 */
571		b1_offset = 0x3f40/4; /* 0b00 : 0a40 */
572		vs_len = nv44_gr_class(device) ? 0x4980/4 : 0x4a40/4;
573	}
574
575	cp_lsr(ctx, vs_len * vs_nr + 0x300/4);
576	cp_out(ctx, nv44_gr_class(device) ? 0x800029 : 0x800041);
577
578	offset = ctx->ctxvals_pos;
579	ctx->ctxvals_pos += (0x0300/4 + (vs_nr * vs_len));
580
581	if (ctx->mode != NVKM_GRCTX_VALS)
582		return;
583
584	offset += 0x0280/4;
585	for (i = 0; i < 16; i++, offset += 2)
586		nv_wo32(obj, offset * 4, 0x3f800000);
587
588	for (vs = 0; vs < vs_nr; vs++, offset += vs_len) {
589		for (i = 0; i < vs_nr_b0 * 6; i += 6)
590			nv_wo32(obj, (offset + b0_offset + i) * 4, 0x00000001);
591		for (i = 0; i < vs_nr_b1 * 4; i += 4)
592			nv_wo32(obj, (offset + b1_offset + i) * 4, 0x3f800000);
593	}
594}
595
596static void
597nv40_grctx_generate(struct nvkm_grctx *ctx)
598{
599	/* decide whether we're loading/unloading the context */
600	cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save);
601	cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save);
602
603	cp_name(ctx, cp_check_load);
604	cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load);
605	cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load);
606	cp_bra (ctx, ALWAYS, TRUE, cp_exit);
607
608	/* setup for context load */
609	cp_name(ctx, cp_setup_auto_load);
610	cp_wait(ctx, STATUS, IDLE);
611	cp_out (ctx, CP_NEXT_TO_SWAP);
612	cp_name(ctx, cp_setup_load);
613	cp_wait(ctx, STATUS, IDLE);
614	cp_set (ctx, SWAP_DIRECTION, LOAD);
615	cp_out (ctx, 0x00910880); /* ?? */
616	cp_out (ctx, 0x00901ffe); /* ?? */
617	cp_out (ctx, 0x01940000); /* ?? */
618	cp_lsr (ctx, 0x20);
619	cp_out (ctx, 0x0060000b); /* ?? */
620	cp_wait(ctx, UNK57, CLEAR);
621	cp_out (ctx, 0x0060000c); /* ?? */
622	cp_bra (ctx, ALWAYS, TRUE, cp_swap_state);
623
624	/* setup for context save */
625	cp_name(ctx, cp_setup_save);
626	cp_set (ctx, SWAP_DIRECTION, SAVE);
627
628	/* general PGRAPH state */
629	cp_name(ctx, cp_swap_state);
630	cp_pos (ctx, 0x00020/4);
631	nv40_gr_construct_general(ctx);
632	cp_wait(ctx, STATUS, IDLE);
633
634	/* 3D state, block 1 */
635	cp_bra (ctx, UNK54, CLEAR, cp_prepare_exit);
636	nv40_gr_construct_state3d(ctx);
637	cp_wait(ctx, STATUS, IDLE);
638
639	/* 3D state, block 2 */
640	nv40_gr_construct_state3d_2(ctx);
641
642	/* Some other block of "random" state */
643	nv40_gr_construct_state3d_3(ctx);
644
645	/* Per-vertex shader state */
646	cp_pos (ctx, ctx->ctxvals_pos);
647	nv40_gr_construct_shader(ctx);
648
649	/* pre-exit state updates */
650	cp_name(ctx, cp_prepare_exit);
651	cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load);
652	cp_bra (ctx, USER_SAVE, PENDING, cp_exit);
653	cp_out (ctx, CP_NEXT_TO_CURRENT);
654
655	cp_name(ctx, cp_exit);
656	cp_set (ctx, USER_SAVE, NOT_PENDING);
657	cp_set (ctx, USER_LOAD, NOT_PENDING);
658	cp_out (ctx, CP_END);
659}
660
661void
662nv40_grctx_fill(struct nvkm_device *device, struct nvkm_gpuobj *mem)
663{
664	nv40_grctx_generate(&(struct nvkm_grctx) {
665			     .device = device,
666			     .mode = NVKM_GRCTX_VALS,
667			     .data = mem,
668			   });
669}
670
671int
672nv40_grctx_init(struct nvkm_device *device, u32 *size)
673{
674	u32 *ctxprog = kmalloc(256 * 4, GFP_KERNEL), i;
675	struct nvkm_grctx ctx = {
676		.device = device,
677		.mode = NVKM_GRCTX_PROG,
678		.data = ctxprog,
679		.ctxprog_max = 256,
680	};
681
682	if (!ctxprog)
683		return -ENOMEM;
684
685	nv40_grctx_generate(&ctx);
686
687	nv_wr32(device, 0x400324, 0);
688	for (i = 0; i < ctx.ctxprog_len; i++)
689		nv_wr32(device, 0x400328, ctxprog[i]);
690	*size = ctx.ctxvals_pos * 4;
691
692	kfree(ctxprog);
693	return 0;
694}
695