1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Ben Widawsky <ben@bwidawsk.net>
25 *    Michel Thierry <michel.thierry@intel.com>
26 *    Thomas Daniel <thomas.daniel@intel.com>
27 *    Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
138
139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143#define RING_EXECLIST_QFULL		(1 << 0x2)
144#define RING_EXECLIST1_VALID		(1 << 0x3)
145#define RING_EXECLIST0_VALID		(1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
147#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
148#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156
157#define CTX_LRI_HEADER_0		0x01
158#define CTX_CONTEXT_CONTROL		0x02
159#define CTX_RING_HEAD			0x04
160#define CTX_RING_TAIL			0x06
161#define CTX_RING_BUFFER_START		0x08
162#define CTX_RING_BUFFER_CONTROL		0x0a
163#define CTX_BB_HEAD_U			0x0c
164#define CTX_BB_HEAD_L			0x0e
165#define CTX_BB_STATE			0x10
166#define CTX_SECOND_BB_HEAD_U		0x12
167#define CTX_SECOND_BB_HEAD_L		0x14
168#define CTX_SECOND_BB_STATE		0x16
169#define CTX_BB_PER_CTX_PTR		0x18
170#define CTX_RCS_INDIRECT_CTX		0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
172#define CTX_LRI_HEADER_1		0x21
173#define CTX_CTX_TIMESTAMP		0x22
174#define CTX_PDP3_UDW			0x24
175#define CTX_PDP3_LDW			0x26
176#define CTX_PDP2_UDW			0x28
177#define CTX_PDP2_LDW			0x2a
178#define CTX_PDP1_UDW			0x2c
179#define CTX_PDP1_LDW			0x2e
180#define CTX_PDP0_UDW			0x30
181#define CTX_PDP0_LDW			0x32
182#define CTX_LRI_HEADER_2		0x41
183#define CTX_R_PWR_CLK_STATE		0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
185
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
191enum {
192	ADVANCED_CONTEXT = 0,
193	LEGACY_CONTEXT,
194	ADVANCED_AD_CONTEXT,
195	LEGACY_64B_CONTEXT
196};
197#define GEN8_CTX_MODE_SHIFT 3
198enum {
199	FAULT_AND_HANG = 0,
200	FAULT_AND_HALT, /* Debug only */
201	FAULT_AND_STREAM,
202	FAULT_AND_CONTINUE /* Unsupported */
203};
204#define GEN8_CTX_ID_SHIFT 32
205
206static int intel_lr_context_pin(struct intel_engine_cs *ring,
207		struct intel_context *ctx);
208
209/**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 *
217 * Return: 1 if Execlists is supported and has to be enabled.
218 */
219int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220{
221	WARN_ON(i915.enable_ppgtt == -1);
222
223	if (INTEL_INFO(dev)->gen >= 9)
224		return 1;
225
226	if (enable_execlists == 0)
227		return 0;
228
229	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230	    i915.use_mmio_flip >= 0)
231		return 1;
232
233	return 0;
234}
235
236/**
237 * intel_execlists_ctx_id() - get the Execlists Context ID
238 * @ctx_obj: Logical Ring Context backing object.
239 *
240 * Do not confuse with ctx->id! Unfortunately we have a name overload
241 * here: the old context ID we pass to userspace as a handler so that
242 * they can refer to a context, and the new context ID we pass to the
243 * ELSP so that the GPU can inform us of the context status via
244 * interrupts.
245 *
246 * Return: 20-bits globally unique context ID.
247 */
248u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249{
250	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252	/* LRCA is required to be 4K aligned so the more significant 20 bits
253	 * are globally unique */
254	return lrca >> 12;
255}
256
257static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
258					 struct drm_i915_gem_object *ctx_obj)
259{
260	struct drm_device *dev = ring->dev;
261	uint64_t desc;
262	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263
264	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265
266	desc = GEN8_CTX_VALID;
267	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
268	desc |= GEN8_CTX_L3LLC_COHERENT;
269	desc |= GEN8_CTX_PRIVILEGE;
270	desc |= lrca;
271	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
272
273	/* TODO: WaDisableLiteRestore when we start using semaphore
274	 * signalling between Command Streamers */
275	/* desc |= GEN8_CTX_FORCE_RESTORE; */
276
277	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
278	if (IS_GEN9(dev) &&
279	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
280	    (ring->id == BCS || ring->id == VCS ||
281	    ring->id == VECS || ring->id == VCS2))
282		desc |= GEN8_CTX_FORCE_RESTORE;
283
284	return desc;
285}
286
287static void execlists_elsp_write(struct intel_engine_cs *ring,
288				 struct drm_i915_gem_object *ctx_obj0,
289				 struct drm_i915_gem_object *ctx_obj1)
290{
291	struct drm_device *dev = ring->dev;
292	struct drm_i915_private *dev_priv = dev->dev_private;
293	uint64_t temp = 0;
294	uint32_t desc[4];
295
296	/* XXX: You must always write both descriptors in the order below. */
297	if (ctx_obj1)
298		temp = execlists_ctx_descriptor(ring, ctx_obj1);
299	else
300		temp = 0;
301	desc[1] = (u32)(temp >> 32);
302	desc[0] = (u32)temp;
303
304	temp = execlists_ctx_descriptor(ring, ctx_obj0);
305	desc[3] = (u32)(temp >> 32);
306	desc[2] = (u32)temp;
307
308	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309	I915_WRITE(RING_ELSP(ring), desc[1]);
310	I915_WRITE(RING_ELSP(ring), desc[0]);
311	I915_WRITE(RING_ELSP(ring), desc[3]);
312
313	/* The context is automatically loaded after the following */
314	I915_WRITE(RING_ELSP(ring), desc[2]);
315
316	/* ELSP is a wo register, so use another nearby reg for posting instead */
317	POSTING_READ(RING_EXECLIST_STATUS(ring));
318	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319}
320
321static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
322				    struct drm_i915_gem_object *ring_obj,
323				    u32 tail)
324{
325	struct page *page;
326	uint32_t *reg_state;
327
328	page = i915_gem_object_get_page(ctx_obj, 1);
329	reg_state = kmap_atomic(page);
330
331	reg_state[CTX_RING_TAIL+1] = tail;
332	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333
334	kunmap_atomic(reg_state);
335
336	return 0;
337}
338
339static void execlists_submit_contexts(struct intel_engine_cs *ring,
340				      struct intel_context *to0, u32 tail0,
341				      struct intel_context *to1, u32 tail1)
342{
343	struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
344	struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345	struct drm_i915_gem_object *ctx_obj1 = NULL;
346	struct intel_ringbuffer *ringbuf1 = NULL;
347
348	BUG_ON(!ctx_obj0);
349	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350	WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351
352	execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353
354	if (to1) {
355		ringbuf1 = to1->engine[ring->id].ringbuf;
356		ctx_obj1 = to1->engine[ring->id].state;
357		BUG_ON(!ctx_obj1);
358		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359		WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360
361		execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362	}
363
364	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
365}
366
367static void execlists_context_unqueue(struct intel_engine_cs *ring)
368{
369	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
370	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371
372	assert_spin_locked(&ring->execlist_lock);
373
374	if (list_empty(&ring->execlist_queue))
375		return;
376
377	/* Try to read in pairs */
378	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
379				 execlist_link) {
380		if (!req0) {
381			req0 = cursor;
382		} else if (req0->ctx == cursor->ctx) {
383			/* Same ctx: ignore first request, as second request
384			 * will update tail past first request's workload */
385			cursor->elsp_submitted = req0->elsp_submitted;
386			list_del(&req0->execlist_link);
387			list_add_tail(&req0->execlist_link,
388				&ring->execlist_retired_req_list);
389			req0 = cursor;
390		} else {
391			req1 = cursor;
392			break;
393		}
394	}
395
396	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
397		/*
398		 * WaIdleLiteRestore: make sure we never cause a lite
399		 * restore with HEAD==TAIL
400		 */
401		if (req0 && req0->elsp_submitted) {
402			/*
403			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
404			 * as we resubmit the request. See gen8_emit_request()
405			 * for where we prepare the padding after the end of the
406			 * request.
407			 */
408			struct intel_ringbuffer *ringbuf;
409
410			ringbuf = req0->ctx->engine[ring->id].ringbuf;
411			req0->tail += 8;
412			req0->tail &= ringbuf->size - 1;
413		}
414	}
415
416	WARN_ON(req1 && req1->elsp_submitted);
417
418	execlists_submit_contexts(ring, req0->ctx, req0->tail,
419				  req1 ? req1->ctx : NULL,
420				  req1 ? req1->tail : 0);
421
422	req0->elsp_submitted++;
423	if (req1)
424		req1->elsp_submitted++;
425}
426
427static bool execlists_check_remove_request(struct intel_engine_cs *ring,
428					   u32 request_id)
429{
430	struct drm_i915_gem_request *head_req;
431
432	assert_spin_locked(&ring->execlist_lock);
433
434	head_req = list_first_entry_or_null(&ring->execlist_queue,
435					    struct drm_i915_gem_request,
436					    execlist_link);
437
438	if (head_req != NULL) {
439		struct drm_i915_gem_object *ctx_obj =
440				head_req->ctx->engine[ring->id].state;
441		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
442			WARN(head_req->elsp_submitted == 0,
443			     "Never submitted head request\n");
444
445			if (--head_req->elsp_submitted <= 0) {
446				list_del(&head_req->execlist_link);
447				list_add_tail(&head_req->execlist_link,
448					&ring->execlist_retired_req_list);
449				return true;
450			}
451		}
452	}
453
454	return false;
455}
456
457/**
458 * intel_lrc_irq_handler() - handle Context Switch interrupts
459 * @ring: Engine Command Streamer to handle.
460 *
461 * Check the unread Context Status Buffers and manage the submission of new
462 * contexts to the ELSP accordingly.
463 */
464void intel_lrc_irq_handler(struct intel_engine_cs *ring)
465{
466	struct drm_i915_private *dev_priv = ring->dev->dev_private;
467	u32 status_pointer;
468	u8 read_pointer;
469	u8 write_pointer;
470	u32 status;
471	u32 status_id;
472	u32 submit_contexts = 0;
473
474	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
475
476	read_pointer = ring->next_context_status_buffer;
477	write_pointer = status_pointer & 0x07;
478	if (read_pointer > write_pointer)
479		write_pointer += 6;
480
481	spin_lock(&ring->execlist_lock);
482
483	while (read_pointer < write_pointer) {
484		read_pointer++;
485		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486				(read_pointer % 6) * 8);
487		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
488				(read_pointer % 6) * 8 + 4);
489
490		if (status & GEN8_CTX_STATUS_PREEMPTED) {
491			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
492				if (execlists_check_remove_request(ring, status_id))
493					WARN(1, "Lite Restored request removed from queue\n");
494			} else
495				WARN(1, "Preemption without Lite Restore\n");
496		}
497
498		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
499		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
500			if (execlists_check_remove_request(ring, status_id))
501				submit_contexts++;
502		}
503	}
504
505	if (submit_contexts != 0)
506		execlists_context_unqueue(ring);
507
508	spin_unlock(&ring->execlist_lock);
509
510	WARN(submit_contexts > 2, "More than two context complete events?\n");
511	ring->next_context_status_buffer = write_pointer % 6;
512
513	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
514		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
515}
516
517static int execlists_context_queue(struct intel_engine_cs *ring,
518				   struct intel_context *to,
519				   u32 tail,
520				   struct drm_i915_gem_request *request)
521{
522	struct drm_i915_gem_request *cursor;
523	struct drm_i915_private *dev_priv = ring->dev->dev_private;
524	unsigned long flags;
525	int num_elements = 0;
526
527	if (to != ring->default_context)
528		intel_lr_context_pin(ring, to);
529
530	if (!request) {
531		/*
532		 * If there isn't a request associated with this submission,
533		 * create one as a temporary holder.
534		 */
535		request = kzalloc(sizeof(*request), GFP_KERNEL);
536		if (request == NULL)
537			return -ENOMEM;
538		request->ring = ring;
539		request->ctx = to;
540		kref_init(&request->ref);
541		request->uniq = dev_priv->request_uniq++;
542		i915_gem_context_reference(request->ctx);
543	} else {
544		i915_gem_request_reference(request);
545		WARN_ON(to != request->ctx);
546	}
547	request->tail = tail;
548
549	intel_runtime_pm_get(dev_priv);
550
551	spin_lock_irqsave(&ring->execlist_lock, flags);
552
553	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554		if (++num_elements > 2)
555			break;
556
557	if (num_elements > 2) {
558		struct drm_i915_gem_request *tail_req;
559
560		tail_req = list_last_entry(&ring->execlist_queue,
561					   struct drm_i915_gem_request,
562					   execlist_link);
563
564		if (to == tail_req->ctx) {
565			WARN(tail_req->elsp_submitted != 0,
566				"More than 2 already-submitted reqs queued\n");
567			list_del(&tail_req->execlist_link);
568			list_add_tail(&tail_req->execlist_link,
569				&ring->execlist_retired_req_list);
570		}
571	}
572
573	list_add_tail(&request->execlist_link, &ring->execlist_queue);
574	if (num_elements == 0)
575		execlists_context_unqueue(ring);
576
577	spin_unlock_irqrestore(&ring->execlist_lock, flags);
578
579	return 0;
580}
581
582static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
583					      struct intel_context *ctx)
584{
585	struct intel_engine_cs *ring = ringbuf->ring;
586	uint32_t flush_domains;
587	int ret;
588
589	flush_domains = 0;
590	if (ring->gpu_caches_dirty)
591		flush_domains = I915_GEM_GPU_DOMAINS;
592
593	ret = ring->emit_flush(ringbuf, ctx,
594			       I915_GEM_GPU_DOMAINS, flush_domains);
595	if (ret)
596		return ret;
597
598	ring->gpu_caches_dirty = false;
599	return 0;
600}
601
602static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
603				 struct intel_context *ctx,
604				 struct list_head *vmas)
605{
606	struct intel_engine_cs *ring = ringbuf->ring;
607	struct i915_vma *vma;
608	uint32_t flush_domains = 0;
609	bool flush_chipset = false;
610	int ret;
611
612	list_for_each_entry(vma, vmas, exec_list) {
613		struct drm_i915_gem_object *obj = vma->obj;
614
615		ret = i915_gem_object_sync(obj, ring);
616		if (ret)
617			return ret;
618
619		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
620			flush_chipset |= i915_gem_clflush_object(obj, false);
621
622		flush_domains |= obj->base.write_domain;
623	}
624
625	if (flush_domains & I915_GEM_DOMAIN_GTT)
626		wmb();
627
628	/* Unconditionally invalidate gpu caches and ensure that we do flush
629	 * any residual writes from the previous batch.
630	 */
631	return logical_ring_invalidate_all_caches(ringbuf, ctx);
632}
633
634/**
635 * execlists_submission() - submit a batchbuffer for execution, Execlists style
636 * @dev: DRM device.
637 * @file: DRM file.
638 * @ring: Engine Command Streamer to submit to.
639 * @ctx: Context to employ for this submission.
640 * @args: execbuffer call arguments.
641 * @vmas: list of vmas.
642 * @batch_obj: the batchbuffer to submit.
643 * @exec_start: batchbuffer start virtual address pointer.
644 * @dispatch_flags: translated execbuffer call flags.
645 *
646 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
647 * away the submission details of the execbuffer ioctl call.
648 *
649 * Return: non-zero if the submission fails.
650 */
651int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
652			       struct intel_engine_cs *ring,
653			       struct intel_context *ctx,
654			       struct drm_i915_gem_execbuffer2 *args,
655			       struct list_head *vmas,
656			       struct drm_i915_gem_object *batch_obj,
657			       u64 exec_start, u32 dispatch_flags)
658{
659	struct drm_i915_private *dev_priv = dev->dev_private;
660	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
661	int instp_mode;
662	u32 instp_mask;
663	int ret;
664
665	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
666	instp_mask = I915_EXEC_CONSTANTS_MASK;
667	switch (instp_mode) {
668	case I915_EXEC_CONSTANTS_REL_GENERAL:
669	case I915_EXEC_CONSTANTS_ABSOLUTE:
670	case I915_EXEC_CONSTANTS_REL_SURFACE:
671		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
672			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
673			return -EINVAL;
674		}
675
676		if (instp_mode != dev_priv->relative_constants_mode) {
677			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
678				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
679				return -EINVAL;
680			}
681
682			/* The HW changed the meaning on this bit on gen6 */
683			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
684		}
685		break;
686	default:
687		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
688		return -EINVAL;
689	}
690
691	if (args->num_cliprects != 0) {
692		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
693		return -EINVAL;
694	} else {
695		if (args->DR4 == 0xffffffff) {
696			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
697			args->DR4 = 0;
698		}
699
700		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
701			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
702			return -EINVAL;
703		}
704	}
705
706	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
707		DRM_DEBUG("sol reset is gen7 only\n");
708		return -EINVAL;
709	}
710
711	ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
712	if (ret)
713		return ret;
714
715	if (ring == &dev_priv->ring[RCS] &&
716	    instp_mode != dev_priv->relative_constants_mode) {
717		ret = intel_logical_ring_begin(ringbuf, ctx, 4);
718		if (ret)
719			return ret;
720
721		intel_logical_ring_emit(ringbuf, MI_NOOP);
722		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
723		intel_logical_ring_emit(ringbuf, INSTPM);
724		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
725		intel_logical_ring_advance(ringbuf);
726
727		dev_priv->relative_constants_mode = instp_mode;
728	}
729
730	ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
731	if (ret)
732		return ret;
733
734	trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
735
736	i915_gem_execbuffer_move_to_active(vmas, ring);
737	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
738
739	return 0;
740}
741
742void intel_execlists_retire_requests(struct intel_engine_cs *ring)
743{
744	struct drm_i915_gem_request *req, *tmp;
745	struct drm_i915_private *dev_priv = ring->dev->dev_private;
746	unsigned long flags;
747	struct list_head retired_list;
748
749	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
750	if (list_empty(&ring->execlist_retired_req_list))
751		return;
752
753	INIT_LIST_HEAD(&retired_list);
754	spin_lock_irqsave(&ring->execlist_lock, flags);
755	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
756	spin_unlock_irqrestore(&ring->execlist_lock, flags);
757
758	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
759		struct intel_context *ctx = req->ctx;
760		struct drm_i915_gem_object *ctx_obj =
761				ctx->engine[ring->id].state;
762
763		if (ctx_obj && (ctx != ring->default_context))
764			intel_lr_context_unpin(ring, ctx);
765		intel_runtime_pm_put(dev_priv);
766		list_del(&req->execlist_link);
767		i915_gem_request_unreference(req);
768	}
769}
770
771void intel_logical_ring_stop(struct intel_engine_cs *ring)
772{
773	struct drm_i915_private *dev_priv = ring->dev->dev_private;
774	int ret;
775
776	if (!intel_ring_initialized(ring))
777		return;
778
779	ret = intel_ring_idle(ring);
780	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
781		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
782			  ring->name, ret);
783
784	/* TODO: Is this correct with Execlists enabled? */
785	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
786	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
787		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
788		return;
789	}
790	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
791}
792
793int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
794				  struct intel_context *ctx)
795{
796	struct intel_engine_cs *ring = ringbuf->ring;
797	int ret;
798
799	if (!ring->gpu_caches_dirty)
800		return 0;
801
802	ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
803	if (ret)
804		return ret;
805
806	ring->gpu_caches_dirty = false;
807	return 0;
808}
809
810/*
811 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
812 * @ringbuf: Logical Ringbuffer to advance.
813 *
814 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
815 * really happens during submission is that the context and current tail will be placed
816 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
817 * point, the tail *inside* the context is updated and the ELSP written to.
818 */
819static void
820intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
821				      struct intel_context *ctx,
822				      struct drm_i915_gem_request *request)
823{
824	struct intel_engine_cs *ring = ringbuf->ring;
825
826	intel_logical_ring_advance(ringbuf);
827
828	if (intel_ring_stopped(ring))
829		return;
830
831	execlists_context_queue(ring, ctx, ringbuf->tail, request);
832}
833
834static int intel_lr_context_pin(struct intel_engine_cs *ring,
835		struct intel_context *ctx)
836{
837	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
838	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
839	int ret = 0;
840
841	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
842	if (ctx->engine[ring->id].pin_count++ == 0) {
843		ret = i915_gem_obj_ggtt_pin(ctx_obj,
844				GEN8_LR_CONTEXT_ALIGN, 0);
845		if (ret)
846			goto reset_pin_count;
847
848		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
849		if (ret)
850			goto unpin_ctx_obj;
851
852		ctx_obj->dirty = true;
853	}
854
855	return ret;
856
857unpin_ctx_obj:
858	i915_gem_object_ggtt_unpin(ctx_obj);
859reset_pin_count:
860	ctx->engine[ring->id].pin_count = 0;
861
862	return ret;
863}
864
865void intel_lr_context_unpin(struct intel_engine_cs *ring,
866		struct intel_context *ctx)
867{
868	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
869	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
870
871	if (ctx_obj) {
872		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
873		if (--ctx->engine[ring->id].pin_count == 0) {
874			intel_unpin_ringbuffer_obj(ringbuf);
875			i915_gem_object_ggtt_unpin(ctx_obj);
876		}
877	}
878}
879
880static int logical_ring_alloc_request(struct intel_engine_cs *ring,
881				      struct intel_context *ctx)
882{
883	struct drm_i915_gem_request *request;
884	struct drm_i915_private *dev_private = ring->dev->dev_private;
885	int ret;
886
887	if (ring->outstanding_lazy_request)
888		return 0;
889
890	request = kzalloc(sizeof(*request), GFP_KERNEL);
891	if (request == NULL)
892		return -ENOMEM;
893
894	if (ctx != ring->default_context) {
895		ret = intel_lr_context_pin(ring, ctx);
896		if (ret) {
897			kfree(request);
898			return ret;
899		}
900	}
901
902	kref_init(&request->ref);
903	request->ring = ring;
904	request->uniq = dev_private->request_uniq++;
905
906	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
907	if (ret) {
908		intel_lr_context_unpin(ring, ctx);
909		kfree(request);
910		return ret;
911	}
912
913	request->ctx = ctx;
914	i915_gem_context_reference(request->ctx);
915	request->ringbuf = ctx->engine[ring->id].ringbuf;
916
917	ring->outstanding_lazy_request = request;
918	return 0;
919}
920
921static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
922				     int bytes)
923{
924	struct intel_engine_cs *ring = ringbuf->ring;
925	struct drm_i915_gem_request *request;
926	int ret;
927
928	if (intel_ring_space(ringbuf) >= bytes)
929		return 0;
930
931	list_for_each_entry(request, &ring->request_list, list) {
932		/*
933		 * The request queue is per-engine, so can contain requests
934		 * from multiple ringbuffers. Here, we must ignore any that
935		 * aren't from the ringbuffer we're considering.
936		 */
937		struct intel_context *ctx = request->ctx;
938		if (ctx->engine[ring->id].ringbuf != ringbuf)
939			continue;
940
941		/* Would completion of this request free enough space? */
942		if (__intel_ring_space(request->tail, ringbuf->tail,
943				       ringbuf->size) >= bytes) {
944			break;
945		}
946	}
947
948	if (&request->list == &ring->request_list)
949		return -ENOSPC;
950
951	ret = i915_wait_request(request);
952	if (ret)
953		return ret;
954
955	i915_gem_retire_requests_ring(ring);
956
957	return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
958}
959
960static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
961				       struct intel_context *ctx,
962				       int bytes)
963{
964	struct intel_engine_cs *ring = ringbuf->ring;
965	struct drm_device *dev = ring->dev;
966	struct drm_i915_private *dev_priv = dev->dev_private;
967	unsigned long end;
968	int ret;
969
970	ret = logical_ring_wait_request(ringbuf, bytes);
971	if (ret != -ENOSPC)
972		return ret;
973
974	/* Force the context submission in case we have been skipping it */
975	intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
976
977	/* With GEM the hangcheck timer should kick us out of the loop,
978	 * leaving it early runs the risk of corrupting GEM state (due
979	 * to running on almost untested codepaths). But on resume
980	 * timers don't work yet, so prevent a complete hang in that
981	 * case by choosing an insanely large timeout. */
982	end = jiffies + 60 * HZ;
983
984	ret = 0;
985	do {
986		if (intel_ring_space(ringbuf) >= bytes)
987			break;
988
989		msleep(1);
990
991		if (dev_priv->mm.interruptible && signal_pending(current)) {
992			ret = -ERESTARTSYS;
993			break;
994		}
995
996		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
997					   dev_priv->mm.interruptible);
998		if (ret)
999			break;
1000
1001		if (time_after(jiffies, end)) {
1002			ret = -EBUSY;
1003			break;
1004		}
1005	} while (1);
1006
1007	return ret;
1008}
1009
1010static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
1011				    struct intel_context *ctx)
1012{
1013	uint32_t __iomem *virt;
1014	int rem = ringbuf->size - ringbuf->tail;
1015
1016	if (ringbuf->space < rem) {
1017		int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
1018
1019		if (ret)
1020			return ret;
1021	}
1022
1023	virt = ringbuf->virtual_start + ringbuf->tail;
1024	rem /= 4;
1025	while (rem--)
1026		iowrite32(MI_NOOP, virt++);
1027
1028	ringbuf->tail = 0;
1029	intel_ring_update_space(ringbuf);
1030
1031	return 0;
1032}
1033
1034static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
1035				struct intel_context *ctx, int bytes)
1036{
1037	int ret;
1038
1039	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1040		ret = logical_ring_wrap_buffer(ringbuf, ctx);
1041		if (unlikely(ret))
1042			return ret;
1043	}
1044
1045	if (unlikely(ringbuf->space < bytes)) {
1046		ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1047		if (unlikely(ret))
1048			return ret;
1049	}
1050
1051	return 0;
1052}
1053
1054/**
1055 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1056 *
1057 * @ringbuf: Logical ringbuffer.
1058 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1059 *
1060 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1061 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1062 * and also preallocates a request (every workload submission is still mediated through
1063 * requests, same as it did with legacy ringbuffer submission).
1064 *
1065 * Return: non-zero if the ringbuffer is not ready to be written to.
1066 */
1067int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
1068			     struct intel_context *ctx, int num_dwords)
1069{
1070	struct intel_engine_cs *ring = ringbuf->ring;
1071	struct drm_device *dev = ring->dev;
1072	struct drm_i915_private *dev_priv = dev->dev_private;
1073	int ret;
1074
1075	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1076				   dev_priv->mm.interruptible);
1077	if (ret)
1078		return ret;
1079
1080	ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1081	if (ret)
1082		return ret;
1083
1084	/* Preallocate the olr before touching the ring */
1085	ret = logical_ring_alloc_request(ring, ctx);
1086	if (ret)
1087		return ret;
1088
1089	ringbuf->space -= num_dwords * sizeof(uint32_t);
1090	return 0;
1091}
1092
1093static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1094					       struct intel_context *ctx)
1095{
1096	int ret, i;
1097	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1098	struct drm_device *dev = ring->dev;
1099	struct drm_i915_private *dev_priv = dev->dev_private;
1100	struct i915_workarounds *w = &dev_priv->workarounds;
1101
1102	if (WARN_ON_ONCE(w->count == 0))
1103		return 0;
1104
1105	ring->gpu_caches_dirty = true;
1106	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1107	if (ret)
1108		return ret;
1109
1110	ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1111	if (ret)
1112		return ret;
1113
1114	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1115	for (i = 0; i < w->count; i++) {
1116		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1117		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1118	}
1119	intel_logical_ring_emit(ringbuf, MI_NOOP);
1120
1121	intel_logical_ring_advance(ringbuf);
1122
1123	ring->gpu_caches_dirty = true;
1124	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1125	if (ret)
1126		return ret;
1127
1128	return 0;
1129}
1130
1131static int gen8_init_common_ring(struct intel_engine_cs *ring)
1132{
1133	struct drm_device *dev = ring->dev;
1134	struct drm_i915_private *dev_priv = dev->dev_private;
1135
1136	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1137	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1138
1139	if (ring->status_page.obj) {
1140		I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1141			   (u32)ring->status_page.gfx_addr);
1142		POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1143	}
1144
1145	I915_WRITE(RING_MODE_GEN7(ring),
1146		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1147		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1148	POSTING_READ(RING_MODE_GEN7(ring));
1149	ring->next_context_status_buffer = 0;
1150	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1151
1152	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1153
1154	return 0;
1155}
1156
1157static int gen8_init_render_ring(struct intel_engine_cs *ring)
1158{
1159	struct drm_device *dev = ring->dev;
1160	struct drm_i915_private *dev_priv = dev->dev_private;
1161	int ret;
1162
1163	ret = gen8_init_common_ring(ring);
1164	if (ret)
1165		return ret;
1166
1167	/* We need to disable the AsyncFlip performance optimisations in order
1168	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1169	 * programmed to '1' on all products.
1170	 *
1171	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1172	 */
1173	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1174
1175	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1176
1177	return init_workarounds_ring(ring);
1178}
1179
1180static int gen9_init_render_ring(struct intel_engine_cs *ring)
1181{
1182	int ret;
1183
1184	ret = gen8_init_common_ring(ring);
1185	if (ret)
1186		return ret;
1187
1188	return init_workarounds_ring(ring);
1189}
1190
1191static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1192			      struct intel_context *ctx,
1193			      u64 offset, unsigned dispatch_flags)
1194{
1195	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1196	int ret;
1197
1198	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1199	if (ret)
1200		return ret;
1201
1202	/* FIXME(BDW): Address space and security selectors. */
1203	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1204	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1205	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1206	intel_logical_ring_emit(ringbuf, MI_NOOP);
1207	intel_logical_ring_advance(ringbuf);
1208
1209	return 0;
1210}
1211
1212static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1213{
1214	struct drm_device *dev = ring->dev;
1215	struct drm_i915_private *dev_priv = dev->dev_private;
1216	unsigned long flags;
1217
1218	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1219		return false;
1220
1221	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1222	if (ring->irq_refcount++ == 0) {
1223		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1224		POSTING_READ(RING_IMR(ring->mmio_base));
1225	}
1226	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1227
1228	return true;
1229}
1230
1231static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1232{
1233	struct drm_device *dev = ring->dev;
1234	struct drm_i915_private *dev_priv = dev->dev_private;
1235	unsigned long flags;
1236
1237	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1238	if (--ring->irq_refcount == 0) {
1239		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1240		POSTING_READ(RING_IMR(ring->mmio_base));
1241	}
1242	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1243}
1244
1245static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1246			   struct intel_context *ctx,
1247			   u32 invalidate_domains,
1248			   u32 unused)
1249{
1250	struct intel_engine_cs *ring = ringbuf->ring;
1251	struct drm_device *dev = ring->dev;
1252	struct drm_i915_private *dev_priv = dev->dev_private;
1253	uint32_t cmd;
1254	int ret;
1255
1256	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1257	if (ret)
1258		return ret;
1259
1260	cmd = MI_FLUSH_DW + 1;
1261
1262	/* We always require a command barrier so that subsequent
1263	 * commands, such as breadcrumb interrupts, are strictly ordered
1264	 * wrt the contents of the write cache being flushed to memory
1265	 * (and thus being coherent from the CPU).
1266	 */
1267	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1268
1269	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1270		cmd |= MI_INVALIDATE_TLB;
1271		if (ring == &dev_priv->ring[VCS])
1272			cmd |= MI_INVALIDATE_BSD;
1273	}
1274
1275	intel_logical_ring_emit(ringbuf, cmd);
1276	intel_logical_ring_emit(ringbuf,
1277				I915_GEM_HWS_SCRATCH_ADDR |
1278				MI_FLUSH_DW_USE_GTT);
1279	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1280	intel_logical_ring_emit(ringbuf, 0); /* value */
1281	intel_logical_ring_advance(ringbuf);
1282
1283	return 0;
1284}
1285
1286static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1287				  struct intel_context *ctx,
1288				  u32 invalidate_domains,
1289				  u32 flush_domains)
1290{
1291	struct intel_engine_cs *ring = ringbuf->ring;
1292	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1293	u32 flags = 0;
1294	int ret;
1295
1296	flags |= PIPE_CONTROL_CS_STALL;
1297
1298	if (flush_domains) {
1299		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1300		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1301		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1302	}
1303
1304	if (invalidate_domains) {
1305		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1306		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1307		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1308		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1309		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1310		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1311		flags |= PIPE_CONTROL_QW_WRITE;
1312		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1313	}
1314
1315	ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1316	if (ret)
1317		return ret;
1318
1319	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1320	intel_logical_ring_emit(ringbuf, flags);
1321	intel_logical_ring_emit(ringbuf, scratch_addr);
1322	intel_logical_ring_emit(ringbuf, 0);
1323	intel_logical_ring_emit(ringbuf, 0);
1324	intel_logical_ring_emit(ringbuf, 0);
1325	intel_logical_ring_advance(ringbuf);
1326
1327	return 0;
1328}
1329
1330static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1331{
1332	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1333}
1334
1335static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1336{
1337	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1338}
1339
1340static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1341			     struct drm_i915_gem_request *request)
1342{
1343	struct intel_engine_cs *ring = ringbuf->ring;
1344	u32 cmd;
1345	int ret;
1346
1347	/*
1348	 * Reserve space for 2 NOOPs at the end of each request to be
1349	 * used as a workaround for not being allowed to do lite
1350	 * restore with HEAD==TAIL (WaIdleLiteRestore).
1351	 */
1352	ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1353	if (ret)
1354		return ret;
1355
1356	cmd = MI_STORE_DWORD_IMM_GEN4;
1357	cmd |= MI_GLOBAL_GTT;
1358
1359	intel_logical_ring_emit(ringbuf, cmd);
1360	intel_logical_ring_emit(ringbuf,
1361				(ring->status_page.gfx_addr +
1362				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1363	intel_logical_ring_emit(ringbuf, 0);
1364	intel_logical_ring_emit(ringbuf,
1365		i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1366	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1367	intel_logical_ring_emit(ringbuf, MI_NOOP);
1368	intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1369
1370	/*
1371	 * Here we add two extra NOOPs as padding to avoid
1372	 * lite restore of a context with HEAD==TAIL.
1373	 */
1374	intel_logical_ring_emit(ringbuf, MI_NOOP);
1375	intel_logical_ring_emit(ringbuf, MI_NOOP);
1376	intel_logical_ring_advance(ringbuf);
1377
1378	return 0;
1379}
1380
1381static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1382					      struct intel_context *ctx)
1383{
1384	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1385	struct render_state so;
1386	struct drm_i915_file_private *file_priv = ctx->file_priv;
1387	struct drm_file *file = file_priv ? file_priv->file : NULL;
1388	int ret;
1389
1390	ret = i915_gem_render_state_prepare(ring, &so);
1391	if (ret)
1392		return ret;
1393
1394	if (so.rodata == NULL)
1395		return 0;
1396
1397	ret = ring->emit_bb_start(ringbuf,
1398			ctx,
1399			so.ggtt_offset,
1400			I915_DISPATCH_SECURE);
1401	if (ret)
1402		goto out;
1403
1404	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1405
1406	ret = __i915_add_request(ring, file, so.obj);
1407	/* intel_logical_ring_add_request moves object to inactive if it
1408	 * fails */
1409out:
1410	i915_gem_render_state_fini(&so);
1411	return ret;
1412}
1413
1414static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1415		       struct intel_context *ctx)
1416{
1417	int ret;
1418
1419	ret = intel_logical_ring_workarounds_emit(ring, ctx);
1420	if (ret)
1421		return ret;
1422
1423	return intel_lr_context_render_state_init(ring, ctx);
1424}
1425
1426/**
1427 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1428 *
1429 * @ring: Engine Command Streamer.
1430 *
1431 */
1432void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1433{
1434	struct drm_i915_private *dev_priv;
1435
1436	if (!intel_ring_initialized(ring))
1437		return;
1438
1439	dev_priv = ring->dev->dev_private;
1440
1441	intel_logical_ring_stop(ring);
1442	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1443	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1444
1445	if (ring->cleanup)
1446		ring->cleanup(ring);
1447
1448	i915_cmd_parser_fini_ring(ring);
1449
1450	if (ring->status_page.obj) {
1451		kunmap(sg_page(ring->status_page.obj->pages->sgl));
1452		ring->status_page.obj = NULL;
1453	}
1454}
1455
1456static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1457{
1458	int ret;
1459
1460	/* Intentionally left blank. */
1461	ring->buffer = NULL;
1462
1463	ring->dev = dev;
1464	INIT_LIST_HEAD(&ring->active_list);
1465	INIT_LIST_HEAD(&ring->request_list);
1466	init_waitqueue_head(&ring->irq_queue);
1467
1468	INIT_LIST_HEAD(&ring->execlist_queue);
1469	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1470	spin_lock_init(&ring->execlist_lock);
1471
1472	ret = i915_cmd_parser_init_ring(ring);
1473	if (ret)
1474		return ret;
1475
1476	ret = intel_lr_context_deferred_create(ring->default_context, ring);
1477
1478	return ret;
1479}
1480
1481static int logical_render_ring_init(struct drm_device *dev)
1482{
1483	struct drm_i915_private *dev_priv = dev->dev_private;
1484	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1485	int ret;
1486
1487	ring->name = "render ring";
1488	ring->id = RCS;
1489	ring->mmio_base = RENDER_RING_BASE;
1490	ring->irq_enable_mask =
1491		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1492	ring->irq_keep_mask =
1493		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1494	if (HAS_L3_DPF(dev))
1495		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1496
1497	if (INTEL_INFO(dev)->gen >= 9)
1498		ring->init_hw = gen9_init_render_ring;
1499	else
1500		ring->init_hw = gen8_init_render_ring;
1501	ring->init_context = gen8_init_rcs_context;
1502	ring->cleanup = intel_fini_pipe_control;
1503	ring->get_seqno = gen8_get_seqno;
1504	ring->set_seqno = gen8_set_seqno;
1505	ring->emit_request = gen8_emit_request;
1506	ring->emit_flush = gen8_emit_flush_render;
1507	ring->irq_get = gen8_logical_ring_get_irq;
1508	ring->irq_put = gen8_logical_ring_put_irq;
1509	ring->emit_bb_start = gen8_emit_bb_start;
1510
1511	ring->dev = dev;
1512	ret = logical_ring_init(dev, ring);
1513	if (ret)
1514		return ret;
1515
1516	return intel_init_pipe_control(ring);
1517}
1518
1519static int logical_bsd_ring_init(struct drm_device *dev)
1520{
1521	struct drm_i915_private *dev_priv = dev->dev_private;
1522	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1523
1524	ring->name = "bsd ring";
1525	ring->id = VCS;
1526	ring->mmio_base = GEN6_BSD_RING_BASE;
1527	ring->irq_enable_mask =
1528		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1529	ring->irq_keep_mask =
1530		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1531
1532	ring->init_hw = gen8_init_common_ring;
1533	ring->get_seqno = gen8_get_seqno;
1534	ring->set_seqno = gen8_set_seqno;
1535	ring->emit_request = gen8_emit_request;
1536	ring->emit_flush = gen8_emit_flush;
1537	ring->irq_get = gen8_logical_ring_get_irq;
1538	ring->irq_put = gen8_logical_ring_put_irq;
1539	ring->emit_bb_start = gen8_emit_bb_start;
1540
1541	return logical_ring_init(dev, ring);
1542}
1543
1544static int logical_bsd2_ring_init(struct drm_device *dev)
1545{
1546	struct drm_i915_private *dev_priv = dev->dev_private;
1547	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1548
1549	ring->name = "bds2 ring";
1550	ring->id = VCS2;
1551	ring->mmio_base = GEN8_BSD2_RING_BASE;
1552	ring->irq_enable_mask =
1553		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1554	ring->irq_keep_mask =
1555		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1556
1557	ring->init_hw = gen8_init_common_ring;
1558	ring->get_seqno = gen8_get_seqno;
1559	ring->set_seqno = gen8_set_seqno;
1560	ring->emit_request = gen8_emit_request;
1561	ring->emit_flush = gen8_emit_flush;
1562	ring->irq_get = gen8_logical_ring_get_irq;
1563	ring->irq_put = gen8_logical_ring_put_irq;
1564	ring->emit_bb_start = gen8_emit_bb_start;
1565
1566	return logical_ring_init(dev, ring);
1567}
1568
1569static int logical_blt_ring_init(struct drm_device *dev)
1570{
1571	struct drm_i915_private *dev_priv = dev->dev_private;
1572	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1573
1574	ring->name = "blitter ring";
1575	ring->id = BCS;
1576	ring->mmio_base = BLT_RING_BASE;
1577	ring->irq_enable_mask =
1578		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1579	ring->irq_keep_mask =
1580		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1581
1582	ring->init_hw = gen8_init_common_ring;
1583	ring->get_seqno = gen8_get_seqno;
1584	ring->set_seqno = gen8_set_seqno;
1585	ring->emit_request = gen8_emit_request;
1586	ring->emit_flush = gen8_emit_flush;
1587	ring->irq_get = gen8_logical_ring_get_irq;
1588	ring->irq_put = gen8_logical_ring_put_irq;
1589	ring->emit_bb_start = gen8_emit_bb_start;
1590
1591	return logical_ring_init(dev, ring);
1592}
1593
1594static int logical_vebox_ring_init(struct drm_device *dev)
1595{
1596	struct drm_i915_private *dev_priv = dev->dev_private;
1597	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1598
1599	ring->name = "video enhancement ring";
1600	ring->id = VECS;
1601	ring->mmio_base = VEBOX_RING_BASE;
1602	ring->irq_enable_mask =
1603		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1604	ring->irq_keep_mask =
1605		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1606
1607	ring->init_hw = gen8_init_common_ring;
1608	ring->get_seqno = gen8_get_seqno;
1609	ring->set_seqno = gen8_set_seqno;
1610	ring->emit_request = gen8_emit_request;
1611	ring->emit_flush = gen8_emit_flush;
1612	ring->irq_get = gen8_logical_ring_get_irq;
1613	ring->irq_put = gen8_logical_ring_put_irq;
1614	ring->emit_bb_start = gen8_emit_bb_start;
1615
1616	return logical_ring_init(dev, ring);
1617}
1618
1619/**
1620 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1621 * @dev: DRM device.
1622 *
1623 * This function inits the engines for an Execlists submission style (the equivalent in the
1624 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1625 * those engines that are present in the hardware.
1626 *
1627 * Return: non-zero if the initialization failed.
1628 */
1629int intel_logical_rings_init(struct drm_device *dev)
1630{
1631	struct drm_i915_private *dev_priv = dev->dev_private;
1632	int ret;
1633
1634	ret = logical_render_ring_init(dev);
1635	if (ret)
1636		return ret;
1637
1638	if (HAS_BSD(dev)) {
1639		ret = logical_bsd_ring_init(dev);
1640		if (ret)
1641			goto cleanup_render_ring;
1642	}
1643
1644	if (HAS_BLT(dev)) {
1645		ret = logical_blt_ring_init(dev);
1646		if (ret)
1647			goto cleanup_bsd_ring;
1648	}
1649
1650	if (HAS_VEBOX(dev)) {
1651		ret = logical_vebox_ring_init(dev);
1652		if (ret)
1653			goto cleanup_blt_ring;
1654	}
1655
1656	if (HAS_BSD2(dev)) {
1657		ret = logical_bsd2_ring_init(dev);
1658		if (ret)
1659			goto cleanup_vebox_ring;
1660	}
1661
1662	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1663	if (ret)
1664		goto cleanup_bsd2_ring;
1665
1666	return 0;
1667
1668cleanup_bsd2_ring:
1669	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1670cleanup_vebox_ring:
1671	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1672cleanup_blt_ring:
1673	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1674cleanup_bsd_ring:
1675	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1676cleanup_render_ring:
1677	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1678
1679	return ret;
1680}
1681
1682static u32
1683make_rpcs(struct drm_device *dev)
1684{
1685	u32 rpcs = 0;
1686
1687	/*
1688	 * No explicit RPCS request is needed to ensure full
1689	 * slice/subslice/EU enablement prior to Gen9.
1690	*/
1691	if (INTEL_INFO(dev)->gen < 9)
1692		return 0;
1693
1694	/*
1695	 * Starting in Gen9, render power gating can leave
1696	 * slice/subslice/EU in a partially enabled state. We
1697	 * must make an explicit request through RPCS for full
1698	 * enablement.
1699	*/
1700	if (INTEL_INFO(dev)->has_slice_pg) {
1701		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1702		rpcs |= INTEL_INFO(dev)->slice_total <<
1703			GEN8_RPCS_S_CNT_SHIFT;
1704		rpcs |= GEN8_RPCS_ENABLE;
1705	}
1706
1707	if (INTEL_INFO(dev)->has_subslice_pg) {
1708		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1709		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1710			GEN8_RPCS_SS_CNT_SHIFT;
1711		rpcs |= GEN8_RPCS_ENABLE;
1712	}
1713
1714	if (INTEL_INFO(dev)->has_eu_pg) {
1715		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1716			GEN8_RPCS_EU_MIN_SHIFT;
1717		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1718			GEN8_RPCS_EU_MAX_SHIFT;
1719		rpcs |= GEN8_RPCS_ENABLE;
1720	}
1721
1722	return rpcs;
1723}
1724
1725static int
1726populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1727		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1728{
1729	struct drm_device *dev = ring->dev;
1730	struct drm_i915_private *dev_priv = dev->dev_private;
1731	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1732	struct page *page;
1733	uint32_t *reg_state;
1734	int ret;
1735
1736	if (!ppgtt)
1737		ppgtt = dev_priv->mm.aliasing_ppgtt;
1738
1739	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1740	if (ret) {
1741		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1742		return ret;
1743	}
1744
1745	ret = i915_gem_object_get_pages(ctx_obj);
1746	if (ret) {
1747		DRM_DEBUG_DRIVER("Could not get object pages\n");
1748		return ret;
1749	}
1750
1751	i915_gem_object_pin_pages(ctx_obj);
1752
1753	/* The second page of the context object contains some fields which must
1754	 * be set up prior to the first execution. */
1755	page = i915_gem_object_get_page(ctx_obj, 1);
1756	reg_state = kmap_atomic(page);
1757
1758	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1759	 * commands followed by (reg, value) pairs. The values we are setting here are
1760	 * only for the first context restore: on a subsequent save, the GPU will
1761	 * recreate this batchbuffer with new values (including all the missing
1762	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1763	if (ring->id == RCS)
1764		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1765	else
1766		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1767	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1768	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1769	reg_state[CTX_CONTEXT_CONTROL+1] =
1770		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1771				CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1772	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1773	reg_state[CTX_RING_HEAD+1] = 0;
1774	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1775	reg_state[CTX_RING_TAIL+1] = 0;
1776	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1777	/* Ring buffer start address is not known until the buffer is pinned.
1778	 * It is written to the context image in execlists_update_context()
1779	 */
1780	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1781	reg_state[CTX_RING_BUFFER_CONTROL+1] =
1782			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1783	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1784	reg_state[CTX_BB_HEAD_U+1] = 0;
1785	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1786	reg_state[CTX_BB_HEAD_L+1] = 0;
1787	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1788	reg_state[CTX_BB_STATE+1] = (1<<5);
1789	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1790	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1791	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1792	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1793	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1794	reg_state[CTX_SECOND_BB_STATE+1] = 0;
1795	if (ring->id == RCS) {
1796		/* TODO: according to BSpec, the register state context
1797		 * for CHV does not have these. OTOH, these registers do
1798		 * exist in CHV. I'm waiting for a clarification */
1799		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1800		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1801		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1802		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1803		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1804		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1805	}
1806	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1807	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1808	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1809	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1810	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1811	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1812	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1813	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1814	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1815	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1816	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1817	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1818	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1819	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1820	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1821	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1822	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1823	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1824	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1825	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1826	if (ring->id == RCS) {
1827		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1828		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1829		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1830	}
1831
1832	kunmap_atomic(reg_state);
1833
1834	ctx_obj->dirty = 1;
1835	set_page_dirty(page);
1836	i915_gem_object_unpin_pages(ctx_obj);
1837
1838	return 0;
1839}
1840
1841/**
1842 * intel_lr_context_free() - free the LRC specific bits of a context
1843 * @ctx: the LR context to free.
1844 *
1845 * The real context freeing is done in i915_gem_context_free: this only
1846 * takes care of the bits that are LRC related: the per-engine backing
1847 * objects and the logical ringbuffer.
1848 */
1849void intel_lr_context_free(struct intel_context *ctx)
1850{
1851	int i;
1852
1853	for (i = 0; i < I915_NUM_RINGS; i++) {
1854		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1855
1856		if (ctx_obj) {
1857			struct intel_ringbuffer *ringbuf =
1858					ctx->engine[i].ringbuf;
1859			struct intel_engine_cs *ring = ringbuf->ring;
1860
1861			if (ctx == ring->default_context) {
1862				intel_unpin_ringbuffer_obj(ringbuf);
1863				i915_gem_object_ggtt_unpin(ctx_obj);
1864			}
1865			WARN_ON(ctx->engine[ring->id].pin_count);
1866			intel_destroy_ringbuffer_obj(ringbuf);
1867			kfree(ringbuf);
1868			drm_gem_object_unreference(&ctx_obj->base);
1869		}
1870	}
1871}
1872
1873static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1874{
1875	int ret = 0;
1876
1877	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1878
1879	switch (ring->id) {
1880	case RCS:
1881		if (INTEL_INFO(ring->dev)->gen >= 9)
1882			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1883		else
1884			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1885		break;
1886	case VCS:
1887	case BCS:
1888	case VECS:
1889	case VCS2:
1890		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1891		break;
1892	}
1893
1894	return ret;
1895}
1896
1897static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1898		struct drm_i915_gem_object *default_ctx_obj)
1899{
1900	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1901
1902	/* The status page is offset 0 from the default context object
1903	 * in LRC mode. */
1904	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1905	ring->status_page.page_addr =
1906			kmap(sg_page(default_ctx_obj->pages->sgl));
1907	ring->status_page.obj = default_ctx_obj;
1908
1909	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1910			(u32)ring->status_page.gfx_addr);
1911	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1912}
1913
1914/**
1915 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1916 * @ctx: LR context to create.
1917 * @ring: engine to be used with the context.
1918 *
1919 * This function can be called more than once, with different engines, if we plan
1920 * to use the context with them. The context backing objects and the ringbuffers
1921 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1922 * the creation is a deferred call: it's better to make sure first that we need to use
1923 * a given ring with the context.
1924 *
1925 * Return: non-zero on error.
1926 */
1927int intel_lr_context_deferred_create(struct intel_context *ctx,
1928				     struct intel_engine_cs *ring)
1929{
1930	const bool is_global_default_ctx = (ctx == ring->default_context);
1931	struct drm_device *dev = ring->dev;
1932	struct drm_i915_gem_object *ctx_obj;
1933	uint32_t context_size;
1934	struct intel_ringbuffer *ringbuf;
1935	int ret;
1936
1937	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1938	WARN_ON(ctx->engine[ring->id].state);
1939
1940	context_size = round_up(get_lr_context_size(ring), 4096);
1941
1942	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1943	if (IS_ERR(ctx_obj)) {
1944		ret = PTR_ERR(ctx_obj);
1945		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1946		return ret;
1947	}
1948
1949	if (is_global_default_ctx) {
1950		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1951		if (ret) {
1952			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1953					ret);
1954			drm_gem_object_unreference(&ctx_obj->base);
1955			return ret;
1956		}
1957	}
1958
1959	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1960	if (!ringbuf) {
1961		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1962				ring->name);
1963		ret = -ENOMEM;
1964		goto error_unpin_ctx;
1965	}
1966
1967	ringbuf->ring = ring;
1968
1969	ringbuf->size = 32 * PAGE_SIZE;
1970	ringbuf->effective_size = ringbuf->size;
1971	ringbuf->head = 0;
1972	ringbuf->tail = 0;
1973	ringbuf->last_retired_head = -1;
1974	intel_ring_update_space(ringbuf);
1975
1976	if (ringbuf->obj == NULL) {
1977		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1978		if (ret) {
1979			DRM_DEBUG_DRIVER(
1980				"Failed to allocate ringbuffer obj %s: %d\n",
1981				ring->name, ret);
1982			goto error_free_rbuf;
1983		}
1984
1985		if (is_global_default_ctx) {
1986			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1987			if (ret) {
1988				DRM_ERROR(
1989					"Failed to pin and map ringbuffer %s: %d\n",
1990					ring->name, ret);
1991				goto error_destroy_rbuf;
1992			}
1993		}
1994
1995	}
1996
1997	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1998	if (ret) {
1999		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2000		goto error;
2001	}
2002
2003	ctx->engine[ring->id].ringbuf = ringbuf;
2004	ctx->engine[ring->id].state = ctx_obj;
2005
2006	if (ctx == ring->default_context)
2007		lrc_setup_hardware_status_page(ring, ctx_obj);
2008	else if (ring->id == RCS && !ctx->rcs_initialized) {
2009		if (ring->init_context) {
2010			ret = ring->init_context(ring, ctx);
2011			if (ret) {
2012				DRM_ERROR("ring init context: %d\n", ret);
2013				ctx->engine[ring->id].ringbuf = NULL;
2014				ctx->engine[ring->id].state = NULL;
2015				goto error;
2016			}
2017		}
2018
2019		ctx->rcs_initialized = true;
2020	}
2021
2022	return 0;
2023
2024error:
2025	if (is_global_default_ctx)
2026		intel_unpin_ringbuffer_obj(ringbuf);
2027error_destroy_rbuf:
2028	intel_destroy_ringbuffer_obj(ringbuf);
2029error_free_rbuf:
2030	kfree(ringbuf);
2031error_unpin_ctx:
2032	if (is_global_default_ctx)
2033		i915_gem_object_ggtt_unpin(ctx_obj);
2034	drm_gem_object_unreference(&ctx_obj->base);
2035	return ret;
2036}
2037
2038void intel_lr_context_reset(struct drm_device *dev,
2039			struct intel_context *ctx)
2040{
2041	struct drm_i915_private *dev_priv = dev->dev_private;
2042	struct intel_engine_cs *ring;
2043	int i;
2044
2045	for_each_ring(ring, dev_priv, i) {
2046		struct drm_i915_gem_object *ctx_obj =
2047				ctx->engine[ring->id].state;
2048		struct intel_ringbuffer *ringbuf =
2049				ctx->engine[ring->id].ringbuf;
2050		uint32_t *reg_state;
2051		struct page *page;
2052
2053		if (!ctx_obj)
2054			continue;
2055
2056		if (i915_gem_object_get_pages(ctx_obj)) {
2057			WARN(1, "Failed get_pages for context obj\n");
2058			continue;
2059		}
2060		page = i915_gem_object_get_page(ctx_obj, 1);
2061		reg_state = kmap_atomic(page);
2062
2063		reg_state[CTX_RING_HEAD+1] = 0;
2064		reg_state[CTX_RING_TAIL+1] = 0;
2065
2066		kunmap_atomic(reg_state);
2067
2068		ringbuf->head = 0;
2069		ringbuf->tail = 0;
2070	}
2071}
2072