1/*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26#include <linux/seq_file.h>
27#include <drm/drmP.h>
28#include <drm/i915_drm.h>
29#include "i915_drv.h"
30#include "i915_vgpu.h"
31#include "i915_trace.h"
32#include "intel_drv.h"
33
34/**
35 * DOC: Global GTT views
36 *
37 * Background and previous state
38 *
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
42 *
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
46 *
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
50 *
51 *    12
52 *    34
53 *
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
57 *
58 *   1212
59 *   3434
60 *
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
63 *
64 * Implementation and usage
65 *
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
68 *
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming  in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
73 *
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
78 *
79 * Code wanting to add or use a new GGTT view needs to:
80 *
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
84 *
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
88 *
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
92 *
93 */
94
95const struct i915_ggtt_view i915_ggtt_view_normal;
96const struct i915_ggtt_view i915_ggtt_view_rotated = {
97        .type = I915_GGTT_VIEW_ROTATED
98};
99
100static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
101static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
102
103static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104{
105	bool has_aliasing_ppgtt;
106	bool has_full_ppgtt;
107
108	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111	if (intel_vgpu_active(dev))
112		has_full_ppgtt = false; /* emulation is too hard */
113
114	/*
115	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116	 * execlists, the sole mechanism available to submit work.
117	 */
118	if (INTEL_INFO(dev)->gen < 9 &&
119	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120		return 0;
121
122	if (enable_ppgtt == 1)
123		return 1;
124
125	if (enable_ppgtt == 2 && has_full_ppgtt)
126		return 2;
127
128#ifdef CONFIG_INTEL_IOMMU
129	/* Disable ppgtt on SNB if VT-d is on. */
130	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131		DRM_INFO("Disabling PPGTT because VT-d is on\n");
132		return 0;
133	}
134#endif
135
136	/* Early VLV doesn't have this */
137	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138	    dev->pdev->revision < 0xb) {
139		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140		return 0;
141	}
142
143	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144		return 2;
145	else
146		return has_aliasing_ppgtt ? 1 : 0;
147}
148
149static void ppgtt_bind_vma(struct i915_vma *vma,
150			   enum i915_cache_level cache_level,
151			   u32 flags);
152static void ppgtt_unbind_vma(struct i915_vma *vma);
153
154static inline gen8_pte_t gen8_pte_encode(dma_addr_t addr,
155					 enum i915_cache_level level,
156					 bool valid)
157{
158	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
159	pte |= addr;
160
161	switch (level) {
162	case I915_CACHE_NONE:
163		pte |= PPAT_UNCACHED_INDEX;
164		break;
165	case I915_CACHE_WT:
166		pte |= PPAT_DISPLAY_ELLC_INDEX;
167		break;
168	default:
169		pte |= PPAT_CACHED_INDEX;
170		break;
171	}
172
173	return pte;
174}
175
176static inline gen8_pde_t gen8_pde_encode(struct drm_device *dev,
177					  dma_addr_t addr,
178					  enum i915_cache_level level)
179{
180	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
181	pde |= addr;
182	if (level != I915_CACHE_NONE)
183		pde |= PPAT_CACHED_PDE_INDEX;
184	else
185		pde |= PPAT_UNCACHED_INDEX;
186	return pde;
187}
188
189static gen6_pte_t snb_pte_encode(dma_addr_t addr,
190				 enum i915_cache_level level,
191				 bool valid, u32 unused)
192{
193	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
194	pte |= GEN6_PTE_ADDR_ENCODE(addr);
195
196	switch (level) {
197	case I915_CACHE_L3_LLC:
198	case I915_CACHE_LLC:
199		pte |= GEN6_PTE_CACHE_LLC;
200		break;
201	case I915_CACHE_NONE:
202		pte |= GEN6_PTE_UNCACHED;
203		break;
204	default:
205		MISSING_CASE(level);
206	}
207
208	return pte;
209}
210
211static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
212				 enum i915_cache_level level,
213				 bool valid, u32 unused)
214{
215	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
216	pte |= GEN6_PTE_ADDR_ENCODE(addr);
217
218	switch (level) {
219	case I915_CACHE_L3_LLC:
220		pte |= GEN7_PTE_CACHE_L3_LLC;
221		break;
222	case I915_CACHE_LLC:
223		pte |= GEN6_PTE_CACHE_LLC;
224		break;
225	case I915_CACHE_NONE:
226		pte |= GEN6_PTE_UNCACHED;
227		break;
228	default:
229		MISSING_CASE(level);
230	}
231
232	return pte;
233}
234
235static gen6_pte_t byt_pte_encode(dma_addr_t addr,
236				 enum i915_cache_level level,
237				 bool valid, u32 flags)
238{
239	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240	pte |= GEN6_PTE_ADDR_ENCODE(addr);
241
242	if (!(flags & PTE_READ_ONLY))
243		pte |= BYT_PTE_WRITEABLE;
244
245	if (level != I915_CACHE_NONE)
246		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
247
248	return pte;
249}
250
251static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
252				 enum i915_cache_level level,
253				 bool valid, u32 unused)
254{
255	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
256	pte |= HSW_PTE_ADDR_ENCODE(addr);
257
258	if (level != I915_CACHE_NONE)
259		pte |= HSW_WB_LLC_AGE3;
260
261	return pte;
262}
263
264static gen6_pte_t iris_pte_encode(dma_addr_t addr,
265				  enum i915_cache_level level,
266				  bool valid, u32 unused)
267{
268	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
269	pte |= HSW_PTE_ADDR_ENCODE(addr);
270
271	switch (level) {
272	case I915_CACHE_NONE:
273		break;
274	case I915_CACHE_WT:
275		pte |= HSW_WT_ELLC_LLC_AGE3;
276		break;
277	default:
278		pte |= HSW_WB_ELLC_LLC_AGE3;
279		break;
280	}
281
282	return pte;
283}
284
285#define i915_dma_unmap_single(px, dev) \
286	__i915_dma_unmap_single((px)->daddr, dev)
287
288static inline void __i915_dma_unmap_single(dma_addr_t daddr,
289					struct drm_device *dev)
290{
291	struct device *device = &dev->pdev->dev;
292
293	dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
294}
295
296/**
297 * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
298 * @px:	Page table/dir/etc to get a DMA map for
299 * @dev:	drm device
300 *
301 * Page table allocations are unified across all gens. They always require a
302 * single 4k allocation, as well as a DMA mapping. If we keep the structs
303 * symmetric here, the simple macro covers us for every page table type.
304 *
305 * Return: 0 if success.
306 */
307#define i915_dma_map_single(px, dev) \
308	i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
309
310static inline int i915_dma_map_page_single(struct page *page,
311					   struct drm_device *dev,
312					   dma_addr_t *daddr)
313{
314	struct device *device = &dev->pdev->dev;
315
316	*daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317	if (dma_mapping_error(device, *daddr))
318		return -ENOMEM;
319
320	return 0;
321}
322
323static void unmap_and_free_pt(struct i915_page_table_entry *pt,
324			       struct drm_device *dev)
325{
326	if (WARN_ON(!pt->page))
327		return;
328
329	i915_dma_unmap_single(pt, dev);
330	__free_page(pt->page);
331	kfree(pt->used_ptes);
332	kfree(pt);
333}
334
335static struct i915_page_table_entry *alloc_pt_single(struct drm_device *dev)
336{
337	struct i915_page_table_entry *pt;
338	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
339		GEN8_PTES : GEN6_PTES;
340	int ret = -ENOMEM;
341
342	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
343	if (!pt)
344		return ERR_PTR(-ENOMEM);
345
346	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
347				GFP_KERNEL);
348
349	if (!pt->used_ptes)
350		goto fail_bitmap;
351
352	pt->page = alloc_page(GFP_KERNEL);
353	if (!pt->page)
354		goto fail_page;
355
356	ret = i915_dma_map_single(pt, dev);
357	if (ret)
358		goto fail_dma;
359
360	return pt;
361
362fail_dma:
363	__free_page(pt->page);
364fail_page:
365	kfree(pt->used_ptes);
366fail_bitmap:
367	kfree(pt);
368
369	return ERR_PTR(ret);
370}
371
372/**
373 * alloc_pt_range() - Allocate a multiple page tables
374 * @pd:		The page directory which will have at least @count entries
375 *		available to point to the allocated page tables.
376 * @pde:	First page directory entry for which we are allocating.
377 * @count:	Number of pages to allocate.
378 * @dev:	DRM device.
379 *
380 * Allocates multiple page table pages and sets the appropriate entries in the
381 * page table structure within the page directory. Function cleans up after
382 * itself on any failures.
383 *
384 * Return: 0 if allocation succeeded.
385 */
386static int alloc_pt_range(struct i915_page_directory_entry *pd, uint16_t pde, size_t count,
387			  struct drm_device *dev)
388{
389	int i, ret;
390
391	/* 512 is the max page tables per page_directory on any platform. */
392	if (WARN_ON(pde + count > I915_PDES))
393		return -EINVAL;
394
395	for (i = pde; i < pde + count; i++) {
396		struct i915_page_table_entry *pt = alloc_pt_single(dev);
397
398		if (IS_ERR(pt)) {
399			ret = PTR_ERR(pt);
400			goto err_out;
401		}
402		WARN(pd->page_table[i],
403		     "Leaking page directory entry %d (%p)\n",
404		     i, pd->page_table[i]);
405		pd->page_table[i] = pt;
406	}
407
408	return 0;
409
410err_out:
411	while (i-- > pde)
412		unmap_and_free_pt(pd->page_table[i], dev);
413	return ret;
414}
415
416static void unmap_and_free_pd(struct i915_page_directory_entry *pd)
417{
418	if (pd->page) {
419		__free_page(pd->page);
420		kfree(pd);
421	}
422}
423
424static struct i915_page_directory_entry *alloc_pd_single(void)
425{
426	struct i915_page_directory_entry *pd;
427
428	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
429	if (!pd)
430		return ERR_PTR(-ENOMEM);
431
432	pd->page = alloc_page(GFP_KERNEL | __GFP_ZERO);
433	if (!pd->page) {
434		kfree(pd);
435		return ERR_PTR(-ENOMEM);
436	}
437
438	return pd;
439}
440
441/* Broadwell Page Directory Pointer Descriptors */
442static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
443			   uint64_t val)
444{
445	int ret;
446
447	BUG_ON(entry >= 4);
448
449	ret = intel_ring_begin(ring, 6);
450	if (ret)
451		return ret;
452
453	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
454	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
455	intel_ring_emit(ring, (u32)(val >> 32));
456	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
457	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
458	intel_ring_emit(ring, (u32)(val));
459	intel_ring_advance(ring);
460
461	return 0;
462}
463
464static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
465			  struct intel_engine_cs *ring)
466{
467	int i, ret;
468
469	/* bit of a hack to find the actual last used pd */
470	int used_pd = ppgtt->num_pd_entries / I915_PDES;
471
472	for (i = used_pd - 1; i >= 0; i--) {
473		dma_addr_t addr = ppgtt->pdp.page_directory[i]->daddr;
474		ret = gen8_write_pdp(ring, i, addr);
475		if (ret)
476			return ret;
477	}
478
479	return 0;
480}
481
482static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
483				   uint64_t start,
484				   uint64_t length,
485				   bool use_scratch)
486{
487	struct i915_hw_ppgtt *ppgtt =
488		container_of(vm, struct i915_hw_ppgtt, base);
489	gen8_pte_t *pt_vaddr, scratch_pte;
490	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
491	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
492	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
493	unsigned num_entries = length >> PAGE_SHIFT;
494	unsigned last_pte, i;
495
496	scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
497				      I915_CACHE_LLC, use_scratch);
498
499	while (num_entries) {
500		struct i915_page_directory_entry *pd;
501		struct i915_page_table_entry *pt;
502		struct page *page_table;
503
504		if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
505			break;
506
507		pd = ppgtt->pdp.page_directory[pdpe];
508
509		if (WARN_ON(!pd->page_table[pde]))
510			break;
511
512		pt = pd->page_table[pde];
513
514		if (WARN_ON(!pt->page))
515			break;
516
517		page_table = pt->page;
518
519		last_pte = pte + num_entries;
520		if (last_pte > GEN8_PTES)
521			last_pte = GEN8_PTES;
522
523		pt_vaddr = kmap_atomic(page_table);
524
525		for (i = pte; i < last_pte; i++) {
526			pt_vaddr[i] = scratch_pte;
527			num_entries--;
528		}
529
530		if (!HAS_LLC(ppgtt->base.dev))
531			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
532		kunmap_atomic(pt_vaddr);
533
534		pte = 0;
535		if (++pde == I915_PDES) {
536			pdpe++;
537			pde = 0;
538		}
539	}
540}
541
542static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
543				      struct sg_table *pages,
544				      uint64_t start,
545				      enum i915_cache_level cache_level, u32 unused)
546{
547	struct i915_hw_ppgtt *ppgtt =
548		container_of(vm, struct i915_hw_ppgtt, base);
549	gen8_pte_t *pt_vaddr;
550	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
551	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
552	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
553	struct sg_page_iter sg_iter;
554
555	pt_vaddr = NULL;
556
557	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
558		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
559			break;
560
561		if (pt_vaddr == NULL) {
562			struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[pdpe];
563			struct i915_page_table_entry *pt = pd->page_table[pde];
564			struct page *page_table = pt->page;
565
566			pt_vaddr = kmap_atomic(page_table);
567		}
568
569		pt_vaddr[pte] =
570			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
571					cache_level, true);
572		if (++pte == GEN8_PTES) {
573			if (!HAS_LLC(ppgtt->base.dev))
574				drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
575			kunmap_atomic(pt_vaddr);
576			pt_vaddr = NULL;
577			if (++pde == I915_PDES) {
578				pdpe++;
579				pde = 0;
580			}
581			pte = 0;
582		}
583	}
584	if (pt_vaddr) {
585		if (!HAS_LLC(ppgtt->base.dev))
586			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
587		kunmap_atomic(pt_vaddr);
588	}
589}
590
591static void gen8_free_page_tables(struct i915_page_directory_entry *pd, struct drm_device *dev)
592{
593	int i;
594
595	if (!pd->page)
596		return;
597
598	for (i = 0; i < I915_PDES; i++) {
599		if (WARN_ON(!pd->page_table[i]))
600			continue;
601
602		unmap_and_free_pt(pd->page_table[i], dev);
603		pd->page_table[i] = NULL;
604	}
605}
606
607static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
608{
609	int i;
610
611	for (i = 0; i < ppgtt->num_pd_pages; i++) {
612		if (WARN_ON(!ppgtt->pdp.page_directory[i]))
613			continue;
614
615		gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
616		unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
617	}
618}
619
620static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
621{
622	struct pci_dev *hwdev = ppgtt->base.dev->pdev;
623	int i, j;
624
625	for (i = 0; i < ppgtt->num_pd_pages; i++) {
626		/* TODO: In the future we'll support sparse mappings, so this
627		 * will have to change. */
628		if (!ppgtt->pdp.page_directory[i]->daddr)
629			continue;
630
631		pci_unmap_page(hwdev, ppgtt->pdp.page_directory[i]->daddr, PAGE_SIZE,
632			       PCI_DMA_BIDIRECTIONAL);
633
634		for (j = 0; j < I915_PDES; j++) {
635			struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
636			struct i915_page_table_entry *pt;
637			dma_addr_t addr;
638
639			if (WARN_ON(!pd->page_table[j]))
640				continue;
641
642			pt = pd->page_table[j];
643			addr = pt->daddr;
644
645			if (addr)
646				pci_unmap_page(hwdev, addr, PAGE_SIZE,
647					       PCI_DMA_BIDIRECTIONAL);
648		}
649	}
650}
651
652static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
653{
654	struct i915_hw_ppgtt *ppgtt =
655		container_of(vm, struct i915_hw_ppgtt, base);
656
657	gen8_ppgtt_unmap_pages(ppgtt);
658	gen8_ppgtt_free(ppgtt);
659}
660
661static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
662{
663	int i, ret;
664
665	for (i = 0; i < ppgtt->num_pd_pages; i++) {
666		ret = alloc_pt_range(ppgtt->pdp.page_directory[i],
667				     0, I915_PDES, ppgtt->base.dev);
668		if (ret)
669			goto unwind_out;
670	}
671
672	return 0;
673
674unwind_out:
675	while (i--)
676		gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
677
678	return -ENOMEM;
679}
680
681static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
682						const int max_pdp)
683{
684	int i;
685
686	for (i = 0; i < max_pdp; i++) {
687		ppgtt->pdp.page_directory[i] = alloc_pd_single();
688		if (IS_ERR(ppgtt->pdp.page_directory[i]))
689			goto unwind_out;
690	}
691
692	ppgtt->num_pd_pages = max_pdp;
693	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPES);
694
695	return 0;
696
697unwind_out:
698	while (i--)
699		unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
700
701	return -ENOMEM;
702}
703
704static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
705			    const int max_pdp)
706{
707	int ret;
708
709	ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
710	if (ret)
711		return ret;
712
713	ret = gen8_ppgtt_allocate_page_tables(ppgtt);
714	if (ret)
715		goto err_out;
716
717	ppgtt->num_pd_entries = max_pdp * I915_PDES;
718
719	return 0;
720
721err_out:
722	gen8_ppgtt_free(ppgtt);
723	return ret;
724}
725
726static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
727					     const int pd)
728{
729	dma_addr_t pd_addr;
730	int ret;
731
732	pd_addr = pci_map_page(ppgtt->base.dev->pdev,
733			       ppgtt->pdp.page_directory[pd]->page, 0,
734			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
735
736	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
737	if (ret)
738		return ret;
739
740	ppgtt->pdp.page_directory[pd]->daddr = pd_addr;
741
742	return 0;
743}
744
745static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
746					const int pd,
747					const int pt)
748{
749	dma_addr_t pt_addr;
750	struct i915_page_directory_entry *pdir = ppgtt->pdp.page_directory[pd];
751	struct i915_page_table_entry *ptab = pdir->page_table[pt];
752	struct page *p = ptab->page;
753	int ret;
754
755	pt_addr = pci_map_page(ppgtt->base.dev->pdev,
756			       p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
757	ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
758	if (ret)
759		return ret;
760
761	ptab->daddr = pt_addr;
762
763	return 0;
764}
765
766/*
767 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
768 * with a net effect resembling a 2-level page table in normal x86 terms. Each
769 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
770 * space.
771 *
772 * FIXME: split allocation into smaller pieces. For now we only ever do this
773 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
774 * TODO: Do something with the size parameter
775 */
776static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
777{
778	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
779	const int min_pt_pages = I915_PDES * max_pdp;
780	int i, j, ret;
781
782	if (size % (1<<30))
783		DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
784
785	/* 1. Do all our allocations for page directories and page tables.
786	 * We allocate more than was asked so that we can point the unused parts
787	 * to valid entries that point to scratch page. Dynamic page tables
788	 * will fix this eventually.
789	 */
790	ret = gen8_ppgtt_alloc(ppgtt, GEN8_LEGACY_PDPES);
791	if (ret)
792		return ret;
793
794	/*
795	 * 2. Create DMA mappings for the page directories and page tables.
796	 */
797	for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
798		ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
799		if (ret)
800			goto bail;
801
802		for (j = 0; j < I915_PDES; j++) {
803			ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
804			if (ret)
805				goto bail;
806		}
807	}
808
809	/*
810	 * 3. Map all the page directory entires to point to the page tables
811	 * we've allocated.
812	 *
813	 * For now, the PPGTT helper functions all require that the PDEs are
814	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
815	 * will never need to touch the PDEs again.
816	 */
817	for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
818		struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
819		gen8_pde_t *pd_vaddr;
820		pd_vaddr = kmap_atomic(ppgtt->pdp.page_directory[i]->page);
821		for (j = 0; j < I915_PDES; j++) {
822			struct i915_page_table_entry *pt = pd->page_table[j];
823			dma_addr_t addr = pt->daddr;
824			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
825						      I915_CACHE_LLC);
826		}
827		if (!HAS_LLC(ppgtt->base.dev))
828			drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
829		kunmap_atomic(pd_vaddr);
830	}
831
832	ppgtt->switch_mm = gen8_mm_switch;
833	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
834	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
835	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
836	ppgtt->base.start = 0;
837
838	/* This is the area that we advertise as usable for the caller */
839	ppgtt->base.total = max_pdp * I915_PDES * GEN8_PTES * PAGE_SIZE;
840
841	/* Set all ptes to a valid scratch page. Also above requested space */
842	ppgtt->base.clear_range(&ppgtt->base, 0,
843				ppgtt->num_pd_pages * GEN8_PTES * PAGE_SIZE,
844				true);
845
846	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
847			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
848	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
849			 ppgtt->num_pd_entries,
850			 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
851	return 0;
852
853bail:
854	gen8_ppgtt_unmap_pages(ppgtt);
855	gen8_ppgtt_free(ppgtt);
856	return ret;
857}
858
859static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
860{
861	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
862	struct i915_address_space *vm = &ppgtt->base;
863	gen6_pte_t __iomem *pd_addr;
864	gen6_pte_t scratch_pte;
865	uint32_t pd_entry;
866	int pte, pde;
867
868	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
869
870	pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
871		ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
872
873	seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
874		   ppgtt->pd.pd_offset,
875		   ppgtt->pd.pd_offset + ppgtt->num_pd_entries);
876	for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
877		u32 expected;
878		gen6_pte_t *pt_vaddr;
879		dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
880		pd_entry = readl(pd_addr + pde);
881		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
882
883		if (pd_entry != expected)
884			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
885				   pde,
886				   pd_entry,
887				   expected);
888		seq_printf(m, "\tPDE: %x\n", pd_entry);
889
890		pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
891		for (pte = 0; pte < GEN6_PTES; pte+=4) {
892			unsigned long va =
893				(pde * PAGE_SIZE * GEN6_PTES) +
894				(pte * PAGE_SIZE);
895			int i;
896			bool found = false;
897			for (i = 0; i < 4; i++)
898				if (pt_vaddr[pte + i] != scratch_pte)
899					found = true;
900			if (!found)
901				continue;
902
903			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
904			for (i = 0; i < 4; i++) {
905				if (pt_vaddr[pte + i] != scratch_pte)
906					seq_printf(m, " %08x", pt_vaddr[pte + i]);
907				else
908					seq_puts(m, "  SCRATCH ");
909			}
910			seq_puts(m, "\n");
911		}
912		kunmap_atomic(pt_vaddr);
913	}
914}
915
916/* Write pde (index) from the page directory @pd to the page table @pt */
917static void gen6_write_pde(struct i915_page_directory_entry *pd,
918			    const int pde, struct i915_page_table_entry *pt)
919{
920	/* Caller needs to make sure the write completes if necessary */
921	struct i915_hw_ppgtt *ppgtt =
922		container_of(pd, struct i915_hw_ppgtt, pd);
923	u32 pd_entry;
924
925	pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
926	pd_entry |= GEN6_PDE_VALID;
927
928	writel(pd_entry, ppgtt->pd_addr + pde);
929}
930
931/* Write all the page tables found in the ppgtt structure to incrementing page
932 * directories. */
933static void gen6_write_page_range(struct drm_i915_private *dev_priv,
934				  struct i915_page_directory_entry *pd,
935				  uint32_t start, uint32_t length)
936{
937	struct i915_page_table_entry *pt;
938	uint32_t pde, temp;
939
940	gen6_for_each_pde(pt, pd, start, length, temp, pde)
941		gen6_write_pde(pd, pde, pt);
942
943	/* Make sure write is complete before other code can use this page
944	 * table. Also require for WC mapped PTEs */
945	readl(dev_priv->gtt.gsm);
946}
947
948static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
949{
950	BUG_ON(ppgtt->pd.pd_offset & 0x3f);
951
952	return (ppgtt->pd.pd_offset / 64) << 16;
953}
954
955static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
956			 struct intel_engine_cs *ring)
957{
958	int ret;
959
960	/* NB: TLBs must be flushed and invalidated before a switch */
961	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
962	if (ret)
963		return ret;
964
965	ret = intel_ring_begin(ring, 6);
966	if (ret)
967		return ret;
968
969	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
970	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
971	intel_ring_emit(ring, PP_DIR_DCLV_2G);
972	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
973	intel_ring_emit(ring, get_pd_offset(ppgtt));
974	intel_ring_emit(ring, MI_NOOP);
975	intel_ring_advance(ring);
976
977	return 0;
978}
979
980static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
981			  struct intel_engine_cs *ring)
982{
983	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
984
985	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
986	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
987	return 0;
988}
989
990static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
991			  struct intel_engine_cs *ring)
992{
993	int ret;
994
995	/* NB: TLBs must be flushed and invalidated before a switch */
996	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
997	if (ret)
998		return ret;
999
1000	ret = intel_ring_begin(ring, 6);
1001	if (ret)
1002		return ret;
1003
1004	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1005	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1006	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1007	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1008	intel_ring_emit(ring, get_pd_offset(ppgtt));
1009	intel_ring_emit(ring, MI_NOOP);
1010	intel_ring_advance(ring);
1011
1012	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1013	if (ring->id != RCS) {
1014		ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1015		if (ret)
1016			return ret;
1017	}
1018
1019	return 0;
1020}
1021
1022static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1023			  struct intel_engine_cs *ring)
1024{
1025	struct drm_device *dev = ppgtt->base.dev;
1026	struct drm_i915_private *dev_priv = dev->dev_private;
1027
1028
1029	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1030	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1031
1032	POSTING_READ(RING_PP_DIR_DCLV(ring));
1033
1034	return 0;
1035}
1036
1037static void gen8_ppgtt_enable(struct drm_device *dev)
1038{
1039	struct drm_i915_private *dev_priv = dev->dev_private;
1040	struct intel_engine_cs *ring;
1041	int j;
1042
1043	for_each_ring(ring, dev_priv, j) {
1044		I915_WRITE(RING_MODE_GEN7(ring),
1045			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1046	}
1047}
1048
1049static void gen7_ppgtt_enable(struct drm_device *dev)
1050{
1051	struct drm_i915_private *dev_priv = dev->dev_private;
1052	struct intel_engine_cs *ring;
1053	uint32_t ecochk, ecobits;
1054	int i;
1055
1056	ecobits = I915_READ(GAC_ECO_BITS);
1057	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1058
1059	ecochk = I915_READ(GAM_ECOCHK);
1060	if (IS_HASWELL(dev)) {
1061		ecochk |= ECOCHK_PPGTT_WB_HSW;
1062	} else {
1063		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1064		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1065	}
1066	I915_WRITE(GAM_ECOCHK, ecochk);
1067
1068	for_each_ring(ring, dev_priv, i) {
1069		/* GFX_MODE is per-ring on gen7+ */
1070		I915_WRITE(RING_MODE_GEN7(ring),
1071			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1072	}
1073}
1074
1075static void gen6_ppgtt_enable(struct drm_device *dev)
1076{
1077	struct drm_i915_private *dev_priv = dev->dev_private;
1078	uint32_t ecochk, gab_ctl, ecobits;
1079
1080	ecobits = I915_READ(GAC_ECO_BITS);
1081	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1082		   ECOBITS_PPGTT_CACHE64B);
1083
1084	gab_ctl = I915_READ(GAB_CTL);
1085	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1086
1087	ecochk = I915_READ(GAM_ECOCHK);
1088	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1089
1090	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1091}
1092
1093/* PPGTT support for Sandybdrige/Gen6 and later */
1094static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1095				   uint64_t start,
1096				   uint64_t length,
1097				   bool use_scratch)
1098{
1099	struct i915_hw_ppgtt *ppgtt =
1100		container_of(vm, struct i915_hw_ppgtt, base);
1101	gen6_pte_t *pt_vaddr, scratch_pte;
1102	unsigned first_entry = start >> PAGE_SHIFT;
1103	unsigned num_entries = length >> PAGE_SHIFT;
1104	unsigned act_pt = first_entry / GEN6_PTES;
1105	unsigned first_pte = first_entry % GEN6_PTES;
1106	unsigned last_pte, i;
1107
1108	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1109
1110	while (num_entries) {
1111		last_pte = first_pte + num_entries;
1112		if (last_pte > GEN6_PTES)
1113			last_pte = GEN6_PTES;
1114
1115		pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1116
1117		for (i = first_pte; i < last_pte; i++)
1118			pt_vaddr[i] = scratch_pte;
1119
1120		kunmap_atomic(pt_vaddr);
1121
1122		num_entries -= last_pte - first_pte;
1123		first_pte = 0;
1124		act_pt++;
1125	}
1126}
1127
1128static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1129				      struct sg_table *pages,
1130				      uint64_t start,
1131				      enum i915_cache_level cache_level, u32 flags)
1132{
1133	struct i915_hw_ppgtt *ppgtt =
1134		container_of(vm, struct i915_hw_ppgtt, base);
1135	gen6_pte_t *pt_vaddr;
1136	unsigned first_entry = start >> PAGE_SHIFT;
1137	unsigned act_pt = first_entry / GEN6_PTES;
1138	unsigned act_pte = first_entry % GEN6_PTES;
1139	struct sg_page_iter sg_iter;
1140
1141	pt_vaddr = NULL;
1142	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1143		if (pt_vaddr == NULL)
1144			pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1145
1146		pt_vaddr[act_pte] =
1147			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1148				       cache_level, true, flags);
1149
1150		if (++act_pte == GEN6_PTES) {
1151			kunmap_atomic(pt_vaddr);
1152			pt_vaddr = NULL;
1153			act_pt++;
1154			act_pte = 0;
1155		}
1156	}
1157	if (pt_vaddr)
1158		kunmap_atomic(pt_vaddr);
1159}
1160
1161/* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1162 * are switching between contexts with the same LRCA, we also must do a force
1163 * restore.
1164 */
1165static inline void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1166{
1167	/* If current vm != vm, */
1168	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1169}
1170
1171static void gen6_initialize_pt(struct i915_address_space *vm,
1172		struct i915_page_table_entry *pt)
1173{
1174	gen6_pte_t *pt_vaddr, scratch_pte;
1175	int i;
1176
1177	WARN_ON(vm->scratch.addr == 0);
1178
1179	scratch_pte = vm->pte_encode(vm->scratch.addr,
1180			I915_CACHE_LLC, true, 0);
1181
1182	pt_vaddr = kmap_atomic(pt->page);
1183
1184	for (i = 0; i < GEN6_PTES; i++)
1185		pt_vaddr[i] = scratch_pte;
1186
1187	kunmap_atomic(pt_vaddr);
1188}
1189
1190static int gen6_alloc_va_range(struct i915_address_space *vm,
1191			       uint64_t start, uint64_t length)
1192{
1193	DECLARE_BITMAP(new_page_tables, I915_PDES);
1194	struct drm_device *dev = vm->dev;
1195	struct drm_i915_private *dev_priv = dev->dev_private;
1196	struct i915_hw_ppgtt *ppgtt =
1197				container_of(vm, struct i915_hw_ppgtt, base);
1198	struct i915_page_table_entry *pt;
1199	const uint32_t start_save = start, length_save = length;
1200	uint32_t pde, temp;
1201	int ret;
1202
1203	WARN_ON(upper_32_bits(start));
1204
1205	bitmap_zero(new_page_tables, I915_PDES);
1206
1207	/* The allocation is done in two stages so that we can bail out with
1208	 * minimal amount of pain. The first stage finds new page tables that
1209	 * need allocation. The second stage marks use ptes within the page
1210	 * tables.
1211	 */
1212	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1213		if (pt != ppgtt->scratch_pt) {
1214			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1215			continue;
1216		}
1217
1218		/* We've already allocated a page table */
1219		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1220
1221		pt = alloc_pt_single(dev);
1222		if (IS_ERR(pt)) {
1223			ret = PTR_ERR(pt);
1224			goto unwind_out;
1225		}
1226
1227		gen6_initialize_pt(vm, pt);
1228
1229		ppgtt->pd.page_table[pde] = pt;
1230		set_bit(pde, new_page_tables);
1231		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1232	}
1233
1234	start = start_save;
1235	length = length_save;
1236
1237	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1238		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1239
1240		bitmap_zero(tmp_bitmap, GEN6_PTES);
1241		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1242			   gen6_pte_count(start, length));
1243
1244		if (test_and_clear_bit(pde, new_page_tables))
1245			gen6_write_pde(&ppgtt->pd, pde, pt);
1246
1247		trace_i915_page_table_entry_map(vm, pde, pt,
1248					 gen6_pte_index(start),
1249					 gen6_pte_count(start, length),
1250					 GEN6_PTES);
1251		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1252				GEN6_PTES);
1253	}
1254
1255	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1256
1257	/* Make sure write is complete before other code can use this page
1258	 * table. Also require for WC mapped PTEs */
1259	readl(dev_priv->gtt.gsm);
1260
1261	mark_tlbs_dirty(ppgtt);
1262	return 0;
1263
1264unwind_out:
1265	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1266		struct i915_page_table_entry *pt = ppgtt->pd.page_table[pde];
1267
1268		ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1269		unmap_and_free_pt(pt, vm->dev);
1270	}
1271
1272	mark_tlbs_dirty(ppgtt);
1273	return ret;
1274}
1275
1276static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1277{
1278	int i;
1279
1280	for (i = 0; i < ppgtt->num_pd_entries; i++) {
1281		struct i915_page_table_entry *pt = ppgtt->pd.page_table[i];
1282
1283		if (pt != ppgtt->scratch_pt)
1284			unmap_and_free_pt(ppgtt->pd.page_table[i], ppgtt->base.dev);
1285	}
1286
1287	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1288	unmap_and_free_pd(&ppgtt->pd);
1289}
1290
1291static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1292{
1293	struct i915_hw_ppgtt *ppgtt =
1294		container_of(vm, struct i915_hw_ppgtt, base);
1295
1296	drm_mm_remove_node(&ppgtt->node);
1297
1298	gen6_ppgtt_free(ppgtt);
1299}
1300
1301static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1302{
1303	struct drm_device *dev = ppgtt->base.dev;
1304	struct drm_i915_private *dev_priv = dev->dev_private;
1305	bool retried = false;
1306	int ret;
1307
1308	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1309	 * allocator works in address space sizes, so it's multiplied by page
1310	 * size. We allocate at the top of the GTT to avoid fragmentation.
1311	 */
1312	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1313	ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1314	if (IS_ERR(ppgtt->scratch_pt))
1315		return PTR_ERR(ppgtt->scratch_pt);
1316
1317	gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1318
1319alloc:
1320	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1321						  &ppgtt->node, GEN6_PD_SIZE,
1322						  GEN6_PD_ALIGN, 0,
1323						  0, dev_priv->gtt.base.total,
1324						  DRM_MM_TOPDOWN);
1325	if (ret == -ENOSPC && !retried) {
1326		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1327					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
1328					       I915_CACHE_NONE,
1329					       0, dev_priv->gtt.base.total,
1330					       0);
1331		if (ret)
1332			goto err_out;
1333
1334		retried = true;
1335		goto alloc;
1336	}
1337
1338	if (ret)
1339		goto err_out;
1340
1341
1342	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1343		DRM_DEBUG("Forced to use aperture for PDEs\n");
1344
1345	ppgtt->num_pd_entries = I915_PDES;
1346	return 0;
1347
1348err_out:
1349	unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1350	return ret;
1351}
1352
1353static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1354{
1355	return gen6_ppgtt_allocate_page_directories(ppgtt);
1356}
1357
1358static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1359				  uint64_t start, uint64_t length)
1360{
1361	struct i915_page_table_entry *unused;
1362	uint32_t pde, temp;
1363
1364	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1365		ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1366}
1367
1368static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1369{
1370	struct drm_device *dev = ppgtt->base.dev;
1371	struct drm_i915_private *dev_priv = dev->dev_private;
1372	int ret;
1373
1374	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1375	if (IS_GEN6(dev)) {
1376		ppgtt->switch_mm = gen6_mm_switch;
1377	} else if (IS_HASWELL(dev)) {
1378		ppgtt->switch_mm = hsw_mm_switch;
1379	} else if (IS_GEN7(dev)) {
1380		ppgtt->switch_mm = gen7_mm_switch;
1381	} else
1382		BUG();
1383
1384	if (intel_vgpu_active(dev))
1385		ppgtt->switch_mm = vgpu_mm_switch;
1386
1387	ret = gen6_ppgtt_alloc(ppgtt);
1388	if (ret)
1389		return ret;
1390
1391	if (aliasing) {
1392		/* preallocate all pts */
1393		ret = alloc_pt_range(&ppgtt->pd, 0, ppgtt->num_pd_entries,
1394				ppgtt->base.dev);
1395
1396		if (ret) {
1397			gen6_ppgtt_cleanup(&ppgtt->base);
1398			return ret;
1399		}
1400	}
1401
1402	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1403	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1404	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1405	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1406	ppgtt->base.start = 0;
1407	ppgtt->base.total = ppgtt->num_pd_entries * GEN6_PTES * PAGE_SIZE;
1408	ppgtt->debug_dump = gen6_dump_ppgtt;
1409
1410	ppgtt->pd.pd_offset =
1411		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1412
1413	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1414		ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1415
1416	if (aliasing)
1417		ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1418	else
1419		gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1420
1421	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1422
1423	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1424			 ppgtt->node.size >> 20,
1425			 ppgtt->node.start / PAGE_SIZE);
1426
1427	DRM_DEBUG("Adding PPGTT at offset %x\n",
1428		  ppgtt->pd.pd_offset << 10);
1429
1430	return 0;
1431}
1432
1433static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1434		bool aliasing)
1435{
1436	struct drm_i915_private *dev_priv = dev->dev_private;
1437
1438	ppgtt->base.dev = dev;
1439	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1440
1441	if (INTEL_INFO(dev)->gen < 8)
1442		return gen6_ppgtt_init(ppgtt, aliasing);
1443	else
1444		return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1445}
1446int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1447{
1448	struct drm_i915_private *dev_priv = dev->dev_private;
1449	int ret = 0;
1450
1451	ret = __hw_ppgtt_init(dev, ppgtt, false);
1452	if (ret == 0) {
1453		kref_init(&ppgtt->ref);
1454		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1455			    ppgtt->base.total);
1456		i915_init_vm(dev_priv, &ppgtt->base);
1457	}
1458
1459	return ret;
1460}
1461
1462int i915_ppgtt_init_hw(struct drm_device *dev)
1463{
1464	struct drm_i915_private *dev_priv = dev->dev_private;
1465	struct intel_engine_cs *ring;
1466	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1467	int i, ret = 0;
1468
1469	/* In the case of execlists, PPGTT is enabled by the context descriptor
1470	 * and the PDPs are contained within the context itself.  We don't
1471	 * need to do anything here. */
1472	if (i915.enable_execlists)
1473		return 0;
1474
1475	if (!USES_PPGTT(dev))
1476		return 0;
1477
1478	if (IS_GEN6(dev))
1479		gen6_ppgtt_enable(dev);
1480	else if (IS_GEN7(dev))
1481		gen7_ppgtt_enable(dev);
1482	else if (INTEL_INFO(dev)->gen >= 8)
1483		gen8_ppgtt_enable(dev);
1484	else
1485		MISSING_CASE(INTEL_INFO(dev)->gen);
1486
1487	if (ppgtt) {
1488		for_each_ring(ring, dev_priv, i) {
1489			ret = ppgtt->switch_mm(ppgtt, ring);
1490			if (ret != 0)
1491				return ret;
1492		}
1493	}
1494
1495	return ret;
1496}
1497struct i915_hw_ppgtt *
1498i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1499{
1500	struct i915_hw_ppgtt *ppgtt;
1501	int ret;
1502
1503	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1504	if (!ppgtt)
1505		return ERR_PTR(-ENOMEM);
1506
1507	ret = i915_ppgtt_init(dev, ppgtt);
1508	if (ret) {
1509		kfree(ppgtt);
1510		return ERR_PTR(ret);
1511	}
1512
1513	ppgtt->file_priv = fpriv;
1514
1515	trace_i915_ppgtt_create(&ppgtt->base);
1516
1517	return ppgtt;
1518}
1519
1520void  i915_ppgtt_release(struct kref *kref)
1521{
1522	struct i915_hw_ppgtt *ppgtt =
1523		container_of(kref, struct i915_hw_ppgtt, ref);
1524
1525	trace_i915_ppgtt_release(&ppgtt->base);
1526
1527	/* vmas should already be unbound */
1528	WARN_ON(!list_empty(&ppgtt->base.active_list));
1529	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1530
1531	list_del(&ppgtt->base.global_link);
1532	drm_mm_takedown(&ppgtt->base.mm);
1533
1534	ppgtt->base.cleanup(&ppgtt->base);
1535	kfree(ppgtt);
1536}
1537
1538static void
1539ppgtt_bind_vma(struct i915_vma *vma,
1540	       enum i915_cache_level cache_level,
1541	       u32 flags)
1542{
1543	/* Currently applicable only to VLV */
1544	if (vma->obj->gt_ro)
1545		flags |= PTE_READ_ONLY;
1546
1547	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1548				cache_level, flags);
1549}
1550
1551static void ppgtt_unbind_vma(struct i915_vma *vma)
1552{
1553	vma->vm->clear_range(vma->vm,
1554			     vma->node.start,
1555			     vma->obj->base.size,
1556			     true);
1557}
1558
1559extern int intel_iommu_gfx_mapped;
1560/* Certain Gen5 chipsets require require idling the GPU before
1561 * unmapping anything from the GTT when VT-d is enabled.
1562 */
1563static inline bool needs_idle_maps(struct drm_device *dev)
1564{
1565#ifdef CONFIG_INTEL_IOMMU
1566	/* Query intel_iommu to see if we need the workaround. Presumably that
1567	 * was loaded first.
1568	 */
1569	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1570		return true;
1571#endif
1572	return false;
1573}
1574
1575static bool do_idling(struct drm_i915_private *dev_priv)
1576{
1577	bool ret = dev_priv->mm.interruptible;
1578
1579	if (unlikely(dev_priv->gtt.do_idle_maps)) {
1580		dev_priv->mm.interruptible = false;
1581		if (i915_gpu_idle(dev_priv->dev)) {
1582			DRM_ERROR("Couldn't idle GPU\n");
1583			/* Wait a bit, in hopes it avoids the hang */
1584			udelay(10);
1585		}
1586	}
1587
1588	return ret;
1589}
1590
1591static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1592{
1593	if (unlikely(dev_priv->gtt.do_idle_maps))
1594		dev_priv->mm.interruptible = interruptible;
1595}
1596
1597void i915_check_and_clear_faults(struct drm_device *dev)
1598{
1599	struct drm_i915_private *dev_priv = dev->dev_private;
1600	struct intel_engine_cs *ring;
1601	int i;
1602
1603	if (INTEL_INFO(dev)->gen < 6)
1604		return;
1605
1606	for_each_ring(ring, dev_priv, i) {
1607		u32 fault_reg;
1608		fault_reg = I915_READ(RING_FAULT_REG(ring));
1609		if (fault_reg & RING_FAULT_VALID) {
1610			DRM_DEBUG_DRIVER("Unexpected fault\n"
1611					 "\tAddr: 0x%08lx\n"
1612					 "\tAddress space: %s\n"
1613					 "\tSource ID: %d\n"
1614					 "\tType: %d\n",
1615					 fault_reg & PAGE_MASK,
1616					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1617					 RING_FAULT_SRCID(fault_reg),
1618					 RING_FAULT_FAULT_TYPE(fault_reg));
1619			I915_WRITE(RING_FAULT_REG(ring),
1620				   fault_reg & ~RING_FAULT_VALID);
1621		}
1622	}
1623	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1624}
1625
1626static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1627{
1628	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1629		intel_gtt_chipset_flush();
1630	} else {
1631		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1632		POSTING_READ(GFX_FLSH_CNTL_GEN6);
1633	}
1634}
1635
1636void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1637{
1638	struct drm_i915_private *dev_priv = dev->dev_private;
1639
1640	/* Don't bother messing with faults pre GEN6 as we have little
1641	 * documentation supporting that it's a good idea.
1642	 */
1643	if (INTEL_INFO(dev)->gen < 6)
1644		return;
1645
1646	i915_check_and_clear_faults(dev);
1647
1648	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1649				       dev_priv->gtt.base.start,
1650				       dev_priv->gtt.base.total,
1651				       true);
1652
1653	i915_ggtt_flush(dev_priv);
1654}
1655
1656void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1657{
1658	struct drm_i915_private *dev_priv = dev->dev_private;
1659	struct drm_i915_gem_object *obj;
1660	struct i915_address_space *vm;
1661
1662	i915_check_and_clear_faults(dev);
1663
1664	/* First fill our portion of the GTT with scratch pages */
1665	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1666				       dev_priv->gtt.base.start,
1667				       dev_priv->gtt.base.total,
1668				       true);
1669
1670	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1671		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1672							   &dev_priv->gtt.base);
1673		if (!vma)
1674			continue;
1675
1676		i915_gem_clflush_object(obj, obj->pin_display);
1677		/* The bind_vma code tries to be smart about tracking mappings.
1678		 * Unfortunately above, we've just wiped out the mappings
1679		 * without telling our object about it. So we need to fake it.
1680		 *
1681		 * Bind is not expected to fail since this is only called on
1682		 * resume and assumption is all requirements exist already.
1683		 */
1684		vma->bound &= ~GLOBAL_BIND;
1685		WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1686	}
1687
1688
1689	if (INTEL_INFO(dev)->gen >= 8) {
1690		if (IS_CHERRYVIEW(dev))
1691			chv_setup_private_ppat(dev_priv);
1692		else
1693			bdw_setup_private_ppat(dev_priv);
1694
1695		return;
1696	}
1697
1698	if (USES_PPGTT(dev)) {
1699		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1700			/* TODO: Perhaps it shouldn't be gen6 specific */
1701
1702			struct i915_hw_ppgtt *ppgtt =
1703					container_of(vm, struct i915_hw_ppgtt,
1704						     base);
1705
1706			if (i915_is_ggtt(vm))
1707				ppgtt = dev_priv->mm.aliasing_ppgtt;
1708
1709			gen6_write_page_range(dev_priv, &ppgtt->pd,
1710					      0, ppgtt->base.total);
1711		}
1712	}
1713
1714	i915_ggtt_flush(dev_priv);
1715}
1716
1717int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1718{
1719	if (obj->has_dma_mapping)
1720		return 0;
1721
1722	if (!dma_map_sg(&obj->base.dev->pdev->dev,
1723			obj->pages->sgl, obj->pages->nents,
1724			PCI_DMA_BIDIRECTIONAL))
1725		return -ENOSPC;
1726
1727	return 0;
1728}
1729
1730static inline void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1731{
1732#ifdef writeq
1733	writeq(pte, addr);
1734#else
1735	iowrite32((u32)pte, addr);
1736	iowrite32(pte >> 32, addr + 4);
1737#endif
1738}
1739
1740static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1741				     struct sg_table *st,
1742				     uint64_t start,
1743				     enum i915_cache_level level, u32 unused)
1744{
1745	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1746	unsigned first_entry = start >> PAGE_SHIFT;
1747	gen8_pte_t __iomem *gtt_entries =
1748		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1749	int i = 0;
1750	struct sg_page_iter sg_iter;
1751	dma_addr_t addr = 0; /* shut up gcc */
1752
1753	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1754		addr = sg_dma_address(sg_iter.sg) +
1755			(sg_iter.sg_pgoffset << PAGE_SHIFT);
1756		gen8_set_pte(&gtt_entries[i],
1757			     gen8_pte_encode(addr, level, true));
1758		i++;
1759	}
1760
1761	/*
1762	 * XXX: This serves as a posting read to make sure that the PTE has
1763	 * actually been updated. There is some concern that even though
1764	 * registers and PTEs are within the same BAR that they are potentially
1765	 * of NUMA access patterns. Therefore, even with the way we assume
1766	 * hardware should work, we must keep this posting read for paranoia.
1767	 */
1768	if (i != 0)
1769		WARN_ON(readq(&gtt_entries[i-1])
1770			!= gen8_pte_encode(addr, level, true));
1771
1772	/* This next bit makes the above posting read even more important. We
1773	 * want to flush the TLBs only after we're certain all the PTE updates
1774	 * have finished.
1775	 */
1776	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1777	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1778}
1779
1780/*
1781 * Binds an object into the global gtt with the specified cache level. The object
1782 * will be accessible to the GPU via commands whose operands reference offsets
1783 * within the global GTT as well as accessible by the GPU through the GMADR
1784 * mapped BAR (dev_priv->mm.gtt->gtt).
1785 */
1786static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1787				     struct sg_table *st,
1788				     uint64_t start,
1789				     enum i915_cache_level level, u32 flags)
1790{
1791	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1792	unsigned first_entry = start >> PAGE_SHIFT;
1793	gen6_pte_t __iomem *gtt_entries =
1794		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1795	int i = 0;
1796	struct sg_page_iter sg_iter;
1797	dma_addr_t addr = 0;
1798
1799	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1800		addr = sg_page_iter_dma_address(&sg_iter);
1801		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1802		i++;
1803	}
1804
1805	/* XXX: This serves as a posting read to make sure that the PTE has
1806	 * actually been updated. There is some concern that even though
1807	 * registers and PTEs are within the same BAR that they are potentially
1808	 * of NUMA access patterns. Therefore, even with the way we assume
1809	 * hardware should work, we must keep this posting read for paranoia.
1810	 */
1811	if (i != 0) {
1812		unsigned long gtt = readl(&gtt_entries[i-1]);
1813		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1814	}
1815
1816	/* This next bit makes the above posting read even more important. We
1817	 * want to flush the TLBs only after we're certain all the PTE updates
1818	 * have finished.
1819	 */
1820	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1821	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1822}
1823
1824static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1825				  uint64_t start,
1826				  uint64_t length,
1827				  bool use_scratch)
1828{
1829	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1830	unsigned first_entry = start >> PAGE_SHIFT;
1831	unsigned num_entries = length >> PAGE_SHIFT;
1832	gen8_pte_t scratch_pte, __iomem *gtt_base =
1833		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1834	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1835	int i;
1836
1837	if (WARN(num_entries > max_entries,
1838		 "First entry = %d; Num entries = %d (max=%d)\n",
1839		 first_entry, num_entries, max_entries))
1840		num_entries = max_entries;
1841
1842	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1843				      I915_CACHE_LLC,
1844				      use_scratch);
1845	for (i = 0; i < num_entries; i++)
1846		gen8_set_pte(&gtt_base[i], scratch_pte);
1847	readl(gtt_base);
1848}
1849
1850static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1851				  uint64_t start,
1852				  uint64_t length,
1853				  bool use_scratch)
1854{
1855	struct drm_i915_private *dev_priv = vm->dev->dev_private;
1856	unsigned first_entry = start >> PAGE_SHIFT;
1857	unsigned num_entries = length >> PAGE_SHIFT;
1858	gen6_pte_t scratch_pte, __iomem *gtt_base =
1859		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1860	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1861	int i;
1862
1863	if (WARN(num_entries > max_entries,
1864		 "First entry = %d; Num entries = %d (max=%d)\n",
1865		 first_entry, num_entries, max_entries))
1866		num_entries = max_entries;
1867
1868	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1869
1870	for (i = 0; i < num_entries; i++)
1871		iowrite32(scratch_pte, &gtt_base[i]);
1872	readl(gtt_base);
1873}
1874
1875
1876static void i915_ggtt_bind_vma(struct i915_vma *vma,
1877			       enum i915_cache_level cache_level,
1878			       u32 unused)
1879{
1880	const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1881	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1882		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1883
1884	BUG_ON(!i915_is_ggtt(vma->vm));
1885	intel_gtt_insert_sg_entries(vma->ggtt_view.pages, entry, flags);
1886	vma->bound = GLOBAL_BIND;
1887}
1888
1889static void i915_ggtt_clear_range(struct i915_address_space *vm,
1890				  uint64_t start,
1891				  uint64_t length,
1892				  bool unused)
1893{
1894	unsigned first_entry = start >> PAGE_SHIFT;
1895	unsigned num_entries = length >> PAGE_SHIFT;
1896	intel_gtt_clear_range(first_entry, num_entries);
1897}
1898
1899static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1900{
1901	const unsigned int first = vma->node.start >> PAGE_SHIFT;
1902	const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1903
1904	BUG_ON(!i915_is_ggtt(vma->vm));
1905	vma->bound = 0;
1906	intel_gtt_clear_range(first, size);
1907}
1908
1909static void ggtt_bind_vma(struct i915_vma *vma,
1910			  enum i915_cache_level cache_level,
1911			  u32 flags)
1912{
1913	struct drm_device *dev = vma->vm->dev;
1914	struct drm_i915_private *dev_priv = dev->dev_private;
1915	struct drm_i915_gem_object *obj = vma->obj;
1916	struct sg_table *pages = obj->pages;
1917
1918	/* Currently applicable only to VLV */
1919	if (obj->gt_ro)
1920		flags |= PTE_READ_ONLY;
1921
1922	if (i915_is_ggtt(vma->vm))
1923		pages = vma->ggtt_view.pages;
1924
1925	/* If there is no aliasing PPGTT, or the caller needs a global mapping,
1926	 * or we have a global mapping already but the cacheability flags have
1927	 * changed, set the global PTEs.
1928	 *
1929	 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1930	 * instead if none of the above hold true.
1931	 *
1932	 * NB: A global mapping should only be needed for special regions like
1933	 * "gtt mappable", SNB errata, or if specified via special execbuf
1934	 * flags. At all other times, the GPU will use the aliasing PPGTT.
1935	 */
1936	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1937		if (!(vma->bound & GLOBAL_BIND) ||
1938		    (cache_level != obj->cache_level)) {
1939			vma->vm->insert_entries(vma->vm, pages,
1940						vma->node.start,
1941						cache_level, flags);
1942			vma->bound |= GLOBAL_BIND;
1943		}
1944	}
1945
1946	if (dev_priv->mm.aliasing_ppgtt &&
1947	    (!(vma->bound & LOCAL_BIND) ||
1948	     (cache_level != obj->cache_level))) {
1949		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1950		appgtt->base.insert_entries(&appgtt->base, pages,
1951					    vma->node.start,
1952					    cache_level, flags);
1953		vma->bound |= LOCAL_BIND;
1954	}
1955}
1956
1957static void ggtt_unbind_vma(struct i915_vma *vma)
1958{
1959	struct drm_device *dev = vma->vm->dev;
1960	struct drm_i915_private *dev_priv = dev->dev_private;
1961	struct drm_i915_gem_object *obj = vma->obj;
1962
1963	if (vma->bound & GLOBAL_BIND) {
1964		vma->vm->clear_range(vma->vm,
1965				     vma->node.start,
1966				     obj->base.size,
1967				     true);
1968		vma->bound &= ~GLOBAL_BIND;
1969	}
1970
1971	if (vma->bound & LOCAL_BIND) {
1972		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1973		appgtt->base.clear_range(&appgtt->base,
1974					 vma->node.start,
1975					 obj->base.size,
1976					 true);
1977		vma->bound &= ~LOCAL_BIND;
1978	}
1979}
1980
1981void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1982{
1983	struct drm_device *dev = obj->base.dev;
1984	struct drm_i915_private *dev_priv = dev->dev_private;
1985	bool interruptible;
1986
1987	interruptible = do_idling(dev_priv);
1988
1989	if (!obj->has_dma_mapping)
1990		dma_unmap_sg(&dev->pdev->dev,
1991			     obj->pages->sgl, obj->pages->nents,
1992			     PCI_DMA_BIDIRECTIONAL);
1993
1994	undo_idling(dev_priv, interruptible);
1995}
1996
1997static void i915_gtt_color_adjust(struct drm_mm_node *node,
1998				  unsigned long color,
1999				  u64 *start,
2000				  u64 *end)
2001{
2002	if (node->color != color)
2003		*start += 4096;
2004
2005	if (!list_empty(&node->node_list)) {
2006		node = list_entry(node->node_list.next,
2007				  struct drm_mm_node,
2008				  node_list);
2009		if (node->allocated && node->color != color)
2010			*end -= 4096;
2011	}
2012}
2013
2014static int i915_gem_setup_global_gtt(struct drm_device *dev,
2015				     unsigned long start,
2016				     unsigned long mappable_end,
2017				     unsigned long end)
2018{
2019	/* Let GEM Manage all of the aperture.
2020	 *
2021	 * However, leave one page at the end still bound to the scratch page.
2022	 * There are a number of places where the hardware apparently prefetches
2023	 * past the end of the object, and we've seen multiple hangs with the
2024	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2025	 * aperture.  One page should be enough to keep any prefetching inside
2026	 * of the aperture.
2027	 */
2028	struct drm_i915_private *dev_priv = dev->dev_private;
2029	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2030	struct drm_mm_node *entry;
2031	struct drm_i915_gem_object *obj;
2032	unsigned long hole_start, hole_end;
2033	int ret;
2034
2035	BUG_ON(mappable_end > end);
2036
2037	/* Subtract the guard page ... */
2038	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2039
2040	dev_priv->gtt.base.start = start;
2041	dev_priv->gtt.base.total = end - start;
2042
2043	if (intel_vgpu_active(dev)) {
2044		ret = intel_vgt_balloon(dev);
2045		if (ret)
2046			return ret;
2047	}
2048
2049	if (!HAS_LLC(dev))
2050		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2051
2052	/* Mark any preallocated objects as occupied */
2053	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2054		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2055
2056		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2057			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2058
2059		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2060		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2061		if (ret) {
2062			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2063			return ret;
2064		}
2065		vma->bound |= GLOBAL_BIND;
2066	}
2067
2068	/* Clear any non-preallocated blocks */
2069	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2070		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2071			      hole_start, hole_end);
2072		ggtt_vm->clear_range(ggtt_vm, hole_start,
2073				     hole_end - hole_start, true);
2074	}
2075
2076	/* And finally clear the reserved guard page */
2077	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2078
2079	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2080		struct i915_hw_ppgtt *ppgtt;
2081
2082		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2083		if (!ppgtt)
2084			return -ENOMEM;
2085
2086		ret = __hw_ppgtt_init(dev, ppgtt, true);
2087		if (ret) {
2088			kfree(ppgtt);
2089			return ret;
2090		}
2091
2092		dev_priv->mm.aliasing_ppgtt = ppgtt;
2093	}
2094
2095	return 0;
2096}
2097
2098void i915_gem_init_global_gtt(struct drm_device *dev)
2099{
2100	struct drm_i915_private *dev_priv = dev->dev_private;
2101	unsigned long gtt_size, mappable_size;
2102
2103	gtt_size = dev_priv->gtt.base.total;
2104	mappable_size = dev_priv->gtt.mappable_end;
2105
2106	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2107}
2108
2109void i915_global_gtt_cleanup(struct drm_device *dev)
2110{
2111	struct drm_i915_private *dev_priv = dev->dev_private;
2112	struct i915_address_space *vm = &dev_priv->gtt.base;
2113
2114	if (dev_priv->mm.aliasing_ppgtt) {
2115		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2116
2117		ppgtt->base.cleanup(&ppgtt->base);
2118	}
2119
2120	if (drm_mm_initialized(&vm->mm)) {
2121		if (intel_vgpu_active(dev))
2122			intel_vgt_deballoon();
2123
2124		drm_mm_takedown(&vm->mm);
2125		list_del(&vm->global_link);
2126	}
2127
2128	vm->cleanup(vm);
2129}
2130
2131static int setup_scratch_page(struct drm_device *dev)
2132{
2133	struct drm_i915_private *dev_priv = dev->dev_private;
2134	struct page *page;
2135	dma_addr_t dma_addr;
2136
2137	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2138	if (page == NULL)
2139		return -ENOMEM;
2140	set_pages_uc(page, 1);
2141
2142#ifdef CONFIG_INTEL_IOMMU
2143	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2144				PCI_DMA_BIDIRECTIONAL);
2145	if (pci_dma_mapping_error(dev->pdev, dma_addr))
2146		return -EINVAL;
2147#else
2148	dma_addr = page_to_phys(page);
2149#endif
2150	dev_priv->gtt.base.scratch.page = page;
2151	dev_priv->gtt.base.scratch.addr = dma_addr;
2152
2153	return 0;
2154}
2155
2156static void teardown_scratch_page(struct drm_device *dev)
2157{
2158	struct drm_i915_private *dev_priv = dev->dev_private;
2159	struct page *page = dev_priv->gtt.base.scratch.page;
2160
2161	set_pages_wb(page, 1);
2162	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2163		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2164	__free_page(page);
2165}
2166
2167static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2168{
2169	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2170	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2171	return snb_gmch_ctl << 20;
2172}
2173
2174static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2175{
2176	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2177	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2178	if (bdw_gmch_ctl)
2179		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2180
2181#ifdef CONFIG_X86_32
2182	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2183	if (bdw_gmch_ctl > 4)
2184		bdw_gmch_ctl = 4;
2185#endif
2186
2187	return bdw_gmch_ctl << 20;
2188}
2189
2190static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2191{
2192	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2193	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2194
2195	if (gmch_ctrl)
2196		return 1 << (20 + gmch_ctrl);
2197
2198	return 0;
2199}
2200
2201static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2202{
2203	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2204	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2205	return snb_gmch_ctl << 25; /* 32 MB units */
2206}
2207
2208static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2209{
2210	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2211	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2212	return bdw_gmch_ctl << 25; /* 32 MB units */
2213}
2214
2215static size_t chv_get_stolen_size(u16 gmch_ctrl)
2216{
2217	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2218	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2219
2220	/*
2221	 * 0x0  to 0x10: 32MB increments starting at 0MB
2222	 * 0x11 to 0x16: 4MB increments starting at 8MB
2223	 * 0x17 to 0x1d: 4MB increments start at 36MB
2224	 */
2225	if (gmch_ctrl < 0x11)
2226		return gmch_ctrl << 25;
2227	else if (gmch_ctrl < 0x17)
2228		return (gmch_ctrl - 0x11 + 2) << 22;
2229	else
2230		return (gmch_ctrl - 0x17 + 9) << 22;
2231}
2232
2233static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2234{
2235	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2236	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2237
2238	if (gen9_gmch_ctl < 0xf0)
2239		return gen9_gmch_ctl << 25; /* 32 MB units */
2240	else
2241		/* 4MB increments starting at 0xf0 for 4MB */
2242		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2243}
2244
2245static int ggtt_probe_common(struct drm_device *dev,
2246			     size_t gtt_size)
2247{
2248	struct drm_i915_private *dev_priv = dev->dev_private;
2249	phys_addr_t gtt_phys_addr;
2250	int ret;
2251
2252	/* For Modern GENs the PTEs and register space are split in the BAR */
2253	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2254		(pci_resource_len(dev->pdev, 0) / 2);
2255
2256	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2257	if (!dev_priv->gtt.gsm) {
2258		DRM_ERROR("Failed to map the gtt page table\n");
2259		return -ENOMEM;
2260	}
2261
2262	ret = setup_scratch_page(dev);
2263	if (ret) {
2264		DRM_ERROR("Scratch setup failed\n");
2265		/* iounmap will also get called at remove, but meh */
2266		iounmap(dev_priv->gtt.gsm);
2267	}
2268
2269	return ret;
2270}
2271
2272/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2273 * bits. When using advanced contexts each context stores its own PAT, but
2274 * writing this data shouldn't be harmful even in those cases. */
2275static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2276{
2277	uint64_t pat;
2278
2279	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2280	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2281	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2282	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2283	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2284	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2285	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2286	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2287
2288	if (!USES_PPGTT(dev_priv->dev))
2289		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2290		 * so RTL will always use the value corresponding to
2291		 * pat_sel = 000".
2292		 * So let's disable cache for GGTT to avoid screen corruptions.
2293		 * MOCS still can be used though.
2294		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2295		 * before this patch, i.e. the same uncached + snooping access
2296		 * like on gen6/7 seems to be in effect.
2297		 * - So this just fixes blitter/render access. Again it looks
2298		 * like it's not just uncached access, but uncached + snooping.
2299		 * So we can still hold onto all our assumptions wrt cpu
2300		 * clflushing on LLC machines.
2301		 */
2302		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2303
2304	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2305	 * write would work. */
2306	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2307	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2308}
2309
2310static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2311{
2312	uint64_t pat;
2313
2314	/*
2315	 * Map WB on BDW to snooped on CHV.
2316	 *
2317	 * Only the snoop bit has meaning for CHV, the rest is
2318	 * ignored.
2319	 *
2320	 * The hardware will never snoop for certain types of accesses:
2321	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2322	 * - PPGTT page tables
2323	 * - some other special cycles
2324	 *
2325	 * As with BDW, we also need to consider the following for GT accesses:
2326	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2327	 * so RTL will always use the value corresponding to
2328	 * pat_sel = 000".
2329	 * Which means we must set the snoop bit in PAT entry 0
2330	 * in order to keep the global status page working.
2331	 */
2332	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2333	      GEN8_PPAT(1, 0) |
2334	      GEN8_PPAT(2, 0) |
2335	      GEN8_PPAT(3, 0) |
2336	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2337	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2338	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2339	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2340
2341	I915_WRITE(GEN8_PRIVATE_PAT, pat);
2342	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2343}
2344
2345static int gen8_gmch_probe(struct drm_device *dev,
2346			   size_t *gtt_total,
2347			   size_t *stolen,
2348			   phys_addr_t *mappable_base,
2349			   unsigned long *mappable_end)
2350{
2351	struct drm_i915_private *dev_priv = dev->dev_private;
2352	unsigned int gtt_size;
2353	u16 snb_gmch_ctl;
2354	int ret;
2355
2356	/* TODO: We're not aware of mappable constraints on gen8 yet */
2357	*mappable_base = pci_resource_start(dev->pdev, 2);
2358	*mappable_end = pci_resource_len(dev->pdev, 2);
2359
2360	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2361		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2362
2363	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2364
2365	if (INTEL_INFO(dev)->gen >= 9) {
2366		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2367		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2368	} else if (IS_CHERRYVIEW(dev)) {
2369		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2370		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2371	} else {
2372		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
2373		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2374	}
2375
2376	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2377
2378	if (IS_CHERRYVIEW(dev))
2379		chv_setup_private_ppat(dev_priv);
2380	else
2381		bdw_setup_private_ppat(dev_priv);
2382
2383	ret = ggtt_probe_common(dev, gtt_size);
2384
2385	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2386	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2387
2388	return ret;
2389}
2390
2391static int gen6_gmch_probe(struct drm_device *dev,
2392			   size_t *gtt_total,
2393			   size_t *stolen,
2394			   phys_addr_t *mappable_base,
2395			   unsigned long *mappable_end)
2396{
2397	struct drm_i915_private *dev_priv = dev->dev_private;
2398	unsigned int gtt_size;
2399	u16 snb_gmch_ctl;
2400	int ret;
2401
2402	*mappable_base = pci_resource_start(dev->pdev, 2);
2403	*mappable_end = pci_resource_len(dev->pdev, 2);
2404
2405	/* 64/512MB is the current min/max we actually know of, but this is just
2406	 * a coarse sanity check.
2407	 */
2408	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2409		DRM_ERROR("Unknown GMADR size (%lx)\n",
2410			  dev_priv->gtt.mappable_end);
2411		return -ENXIO;
2412	}
2413
2414	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2415		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2416	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2417
2418	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
2419
2420	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2421	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2422
2423	ret = ggtt_probe_common(dev, gtt_size);
2424
2425	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2426	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2427
2428	return ret;
2429}
2430
2431static void gen6_gmch_remove(struct i915_address_space *vm)
2432{
2433
2434	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2435
2436	iounmap(gtt->gsm);
2437	teardown_scratch_page(vm->dev);
2438}
2439
2440static int i915_gmch_probe(struct drm_device *dev,
2441			   size_t *gtt_total,
2442			   size_t *stolen,
2443			   phys_addr_t *mappable_base,
2444			   unsigned long *mappable_end)
2445{
2446	struct drm_i915_private *dev_priv = dev->dev_private;
2447	int ret;
2448
2449	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2450	if (!ret) {
2451		DRM_ERROR("failed to set up gmch\n");
2452		return -EIO;
2453	}
2454
2455	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2456
2457	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2458	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2459
2460	if (unlikely(dev_priv->gtt.do_idle_maps))
2461		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2462
2463	return 0;
2464}
2465
2466static void i915_gmch_remove(struct i915_address_space *vm)
2467{
2468	intel_gmch_remove();
2469}
2470
2471int i915_gem_gtt_init(struct drm_device *dev)
2472{
2473	struct drm_i915_private *dev_priv = dev->dev_private;
2474	struct i915_gtt *gtt = &dev_priv->gtt;
2475	int ret;
2476
2477	if (INTEL_INFO(dev)->gen <= 5) {
2478		gtt->gtt_probe = i915_gmch_probe;
2479		gtt->base.cleanup = i915_gmch_remove;
2480	} else if (INTEL_INFO(dev)->gen < 8) {
2481		gtt->gtt_probe = gen6_gmch_probe;
2482		gtt->base.cleanup = gen6_gmch_remove;
2483		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2484			gtt->base.pte_encode = iris_pte_encode;
2485		else if (IS_HASWELL(dev))
2486			gtt->base.pte_encode = hsw_pte_encode;
2487		else if (IS_VALLEYVIEW(dev))
2488			gtt->base.pte_encode = byt_pte_encode;
2489		else if (INTEL_INFO(dev)->gen >= 7)
2490			gtt->base.pte_encode = ivb_pte_encode;
2491		else
2492			gtt->base.pte_encode = snb_pte_encode;
2493	} else {
2494		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2495		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2496	}
2497
2498	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2499			     &gtt->mappable_base, &gtt->mappable_end);
2500	if (ret)
2501		return ret;
2502
2503	gtt->base.dev = dev;
2504
2505	/* GMADR is the PCI mmio aperture into the global GTT. */
2506	DRM_INFO("Memory usable by graphics device = %zdM\n",
2507		 gtt->base.total >> 20);
2508	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2509	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2510#ifdef CONFIG_INTEL_IOMMU
2511	if (intel_iommu_gfx_mapped)
2512		DRM_INFO("VT-d active for gfx access\n");
2513#endif
2514	/*
2515	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2516	 * user's requested state against the hardware/driver capabilities.  We
2517	 * do this now so that we can print out any log messages once rather
2518	 * than every time we check intel_enable_ppgtt().
2519	 */
2520	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2521	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2522
2523	return 0;
2524}
2525
2526static struct i915_vma *
2527__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2528		      struct i915_address_space *vm,
2529		      const struct i915_ggtt_view *ggtt_view)
2530{
2531	struct i915_vma *vma;
2532
2533	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2534		return ERR_PTR(-EINVAL);
2535	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2536	if (vma == NULL)
2537		return ERR_PTR(-ENOMEM);
2538
2539	INIT_LIST_HEAD(&vma->vma_link);
2540	INIT_LIST_HEAD(&vma->mm_list);
2541	INIT_LIST_HEAD(&vma->exec_list);
2542	vma->vm = vm;
2543	vma->obj = obj;
2544
2545	if (INTEL_INFO(vm->dev)->gen >= 6) {
2546		if (i915_is_ggtt(vm)) {
2547			vma->ggtt_view = *ggtt_view;
2548
2549			vma->unbind_vma = ggtt_unbind_vma;
2550			vma->bind_vma = ggtt_bind_vma;
2551		} else {
2552			vma->unbind_vma = ppgtt_unbind_vma;
2553			vma->bind_vma = ppgtt_bind_vma;
2554		}
2555	} else {
2556		BUG_ON(!i915_is_ggtt(vm));
2557		vma->ggtt_view = *ggtt_view;
2558		vma->unbind_vma = i915_ggtt_unbind_vma;
2559		vma->bind_vma = i915_ggtt_bind_vma;
2560	}
2561
2562	list_add_tail(&vma->vma_link, &obj->vma_list);
2563	if (!i915_is_ggtt(vm))
2564		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2565
2566	return vma;
2567}
2568
2569struct i915_vma *
2570i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2571				  struct i915_address_space *vm)
2572{
2573	struct i915_vma *vma;
2574
2575	vma = i915_gem_obj_to_vma(obj, vm);
2576	if (!vma)
2577		vma = __i915_gem_vma_create(obj, vm,
2578					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2579
2580	return vma;
2581}
2582
2583struct i915_vma *
2584i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2585				       const struct i915_ggtt_view *view)
2586{
2587	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2588	struct i915_vma *vma;
2589
2590	if (WARN_ON(!view))
2591		return ERR_PTR(-EINVAL);
2592
2593	vma = i915_gem_obj_to_ggtt_view(obj, view);
2594
2595	if (IS_ERR(vma))
2596		return vma;
2597
2598	if (!vma)
2599		vma = __i915_gem_vma_create(obj, ggtt, view);
2600
2601	return vma;
2602
2603}
2604
2605static void
2606rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2607	     struct sg_table *st)
2608{
2609	unsigned int column, row;
2610	unsigned int src_idx;
2611	struct scatterlist *sg = st->sgl;
2612
2613	st->nents = 0;
2614
2615	for (column = 0; column < width; column++) {
2616		src_idx = width * (height - 1) + column;
2617		for (row = 0; row < height; row++) {
2618			st->nents++;
2619			/* We don't need the pages, but need to initialize
2620			 * the entries so the sg list can be happily traversed.
2621			 * The only thing we need are DMA addresses.
2622			 */
2623			sg_set_page(sg, NULL, PAGE_SIZE, 0);
2624			sg_dma_address(sg) = in[src_idx];
2625			sg_dma_len(sg) = PAGE_SIZE;
2626			sg = sg_next(sg);
2627			src_idx -= width;
2628		}
2629	}
2630}
2631
2632static struct sg_table *
2633intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2634			  struct drm_i915_gem_object *obj)
2635{
2636	struct drm_device *dev = obj->base.dev;
2637	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2638	unsigned long size, pages, rot_pages;
2639	struct sg_page_iter sg_iter;
2640	unsigned long i;
2641	dma_addr_t *page_addr_list;
2642	struct sg_table *st;
2643	unsigned int tile_pitch, tile_height;
2644	unsigned int width_pages, height_pages;
2645	int ret = -ENOMEM;
2646
2647	pages = obj->base.size / PAGE_SIZE;
2648
2649	/* Calculate tiling geometry. */
2650	tile_height = intel_tile_height(dev, rot_info->pixel_format,
2651					rot_info->fb_modifier);
2652	tile_pitch = PAGE_SIZE / tile_height;
2653	width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2654	height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2655	rot_pages = width_pages * height_pages;
2656	size = rot_pages * PAGE_SIZE;
2657
2658	/* Allocate a temporary list of source pages for random access. */
2659	page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2660	if (!page_addr_list)
2661		return ERR_PTR(ret);
2662
2663	/* Allocate target SG list. */
2664	st = kmalloc(sizeof(*st), GFP_KERNEL);
2665	if (!st)
2666		goto err_st_alloc;
2667
2668	ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2669	if (ret)
2670		goto err_sg_alloc;
2671
2672	/* Populate source page list from the object. */
2673	i = 0;
2674	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2675		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2676		i++;
2677	}
2678
2679	/* Rotate the pages. */
2680	rotate_pages(page_addr_list, width_pages, height_pages, st);
2681
2682	DRM_DEBUG_KMS(
2683		      "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2684		      size, rot_info->pitch, rot_info->height,
2685		      rot_info->pixel_format, width_pages, height_pages,
2686		      rot_pages);
2687
2688	drm_free_large(page_addr_list);
2689
2690	return st;
2691
2692err_sg_alloc:
2693	kfree(st);
2694err_st_alloc:
2695	drm_free_large(page_addr_list);
2696
2697	DRM_DEBUG_KMS(
2698		      "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2699		      size, ret, rot_info->pitch, rot_info->height,
2700		      rot_info->pixel_format, width_pages, height_pages,
2701		      rot_pages);
2702	return ERR_PTR(ret);
2703}
2704
2705static inline int
2706i915_get_ggtt_vma_pages(struct i915_vma *vma)
2707{
2708	int ret = 0;
2709
2710	if (vma->ggtt_view.pages)
2711		return 0;
2712
2713	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2714		vma->ggtt_view.pages = vma->obj->pages;
2715	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2716		vma->ggtt_view.pages =
2717			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2718	else
2719		WARN_ONCE(1, "GGTT view %u not implemented!\n",
2720			  vma->ggtt_view.type);
2721
2722	if (!vma->ggtt_view.pages) {
2723		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2724			  vma->ggtt_view.type);
2725		ret = -EINVAL;
2726	} else if (IS_ERR(vma->ggtt_view.pages)) {
2727		ret = PTR_ERR(vma->ggtt_view.pages);
2728		vma->ggtt_view.pages = NULL;
2729		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2730			  vma->ggtt_view.type, ret);
2731	}
2732
2733	return ret;
2734}
2735
2736/**
2737 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2738 * @vma: VMA to map
2739 * @cache_level: mapping cache level
2740 * @flags: flags like global or local mapping
2741 *
2742 * DMA addresses are taken from the scatter-gather table of this object (or of
2743 * this VMA in case of non-default GGTT views) and PTE entries set up.
2744 * Note that DMA addresses are also the only part of the SG table we care about.
2745 */
2746int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2747		  u32 flags)
2748{
2749	if (i915_is_ggtt(vma->vm)) {
2750		int ret = i915_get_ggtt_vma_pages(vma);
2751
2752		if (ret)
2753			return ret;
2754	}
2755
2756	vma->bind_vma(vma, cache_level, flags);
2757
2758	return 0;
2759}
2760