1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/module.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include "psb_drv.h"
35#include "psb_intel_drv.h"
36#include "psb_intel_reg.h"
37#include "gma_display.h"
38#include <drm/drm_dp_helper.h>
39
40/**
41 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
42 * 				 aux algorithm
43 * @running: set by the algo indicating whether an i2c is ongoing or whether
44 * 	     the i2c bus is quiescent
45 * @address: i2c target address for the currently ongoing transfer
46 * @aux_ch: driver callback to transfer a single byte of the i2c payload
47 */
48struct i2c_algo_dp_aux_data {
49	bool running;
50	u16 address;
51	int (*aux_ch) (struct i2c_adapter *adapter,
52		       int mode, uint8_t write_byte,
53		       uint8_t *read_byte);
54};
55
56/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
57static int
58i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
59			    uint8_t write_byte, uint8_t *read_byte)
60{
61	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
62	int ret;
63
64	ret = (*algo_data->aux_ch)(adapter, mode,
65				   write_byte, read_byte);
66	return ret;
67}
68
69/*
70 * I2C over AUX CH
71 */
72
73/*
74 * Send the address. If the I2C link is running, this 'restarts'
75 * the connection with the new address, this is used for doing
76 * a write followed by a read (as needed for DDC)
77 */
78static int
79i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
80{
81	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
82	int mode = MODE_I2C_START;
83	int ret;
84
85	if (reading)
86		mode |= MODE_I2C_READ;
87	else
88		mode |= MODE_I2C_WRITE;
89	algo_data->address = address;
90	algo_data->running = true;
91	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
92	return ret;
93}
94
95/*
96 * Stop the I2C transaction. This closes out the link, sending
97 * a bare address packet with the MOT bit turned off
98 */
99static void
100i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
101{
102	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
103	int mode = MODE_I2C_STOP;
104
105	if (reading)
106		mode |= MODE_I2C_READ;
107	else
108		mode |= MODE_I2C_WRITE;
109	if (algo_data->running) {
110		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
111		algo_data->running = false;
112	}
113}
114
115/*
116 * Write a single byte to the current I2C address, the
117 * the I2C link must be running or this returns -EIO
118 */
119static int
120i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
121{
122	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
123	int ret;
124
125	if (!algo_data->running)
126		return -EIO;
127
128	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
129	return ret;
130}
131
132/*
133 * Read a single byte from the current I2C address, the
134 * I2C link must be running or this returns -EIO
135 */
136static int
137i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138{
139	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140	int ret;
141
142	if (!algo_data->running)
143		return -EIO;
144
145	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
146	return ret;
147}
148
149static int
150i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
151		     struct i2c_msg *msgs,
152		     int num)
153{
154	int ret = 0;
155	bool reading = false;
156	int m;
157	int b;
158
159	for (m = 0; m < num; m++) {
160		u16 len = msgs[m].len;
161		u8 *buf = msgs[m].buf;
162		reading = (msgs[m].flags & I2C_M_RD) != 0;
163		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
164		if (ret < 0)
165			break;
166		if (reading) {
167			for (b = 0; b < len; b++) {
168				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
169				if (ret < 0)
170					break;
171			}
172		} else {
173			for (b = 0; b < len; b++) {
174				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
175				if (ret < 0)
176					break;
177			}
178		}
179		if (ret < 0)
180			break;
181	}
182	if (ret >= 0)
183		ret = num;
184	i2c_algo_dp_aux_stop(adapter, reading);
185	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
186	return ret;
187}
188
189static u32
190i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
191{
192	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
193	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
194	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
195	       I2C_FUNC_10BIT_ADDR;
196}
197
198static const struct i2c_algorithm i2c_dp_aux_algo = {
199	.master_xfer	= i2c_algo_dp_aux_xfer,
200	.functionality	= i2c_algo_dp_aux_functionality,
201};
202
203static void
204i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
205{
206	(void) i2c_algo_dp_aux_address(adapter, 0, false);
207	(void) i2c_algo_dp_aux_stop(adapter, false);
208}
209
210static int
211i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
212{
213	adapter->algo = &i2c_dp_aux_algo;
214	adapter->retries = 3;
215	i2c_dp_aux_reset_bus(adapter);
216	return 0;
217}
218
219/*
220 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
221 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
222 */
223static int __deprecated
224i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
225{
226	int error;
227
228	error = i2c_dp_aux_prepare_bus(adapter);
229	if (error)
230		return error;
231	error = i2c_add_adapter(adapter);
232	return error;
233}
234
235#define _wait_for(COND, MS, W) ({ \
236        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
237        int ret__ = 0;                                                  \
238        while (! (COND)) {                                              \
239                if (time_after(jiffies, timeout__)) {                   \
240                        ret__ = -ETIMEDOUT;                             \
241                        break;                                          \
242                }                                                       \
243                if (W && !in_dbg_master()) msleep(W);                   \
244        }                                                               \
245        ret__;                                                          \
246})
247
248#define wait_for(COND, MS) _wait_for(COND, MS, 1)
249
250#define DP_LINK_STATUS_SIZE	6
251#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
252
253#define DP_LINK_CONFIGURATION_SIZE	9
254
255#define CDV_FAST_LINK_TRAIN	1
256
257struct cdv_intel_dp {
258	uint32_t output_reg;
259	uint32_t DP;
260	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
261	bool has_audio;
262	int force_audio;
263	uint32_t color_range;
264	uint8_t link_bw;
265	uint8_t lane_count;
266	uint8_t dpcd[4];
267	struct gma_encoder *encoder;
268	struct i2c_adapter adapter;
269	struct i2c_algo_dp_aux_data algo;
270	uint8_t	train_set[4];
271	uint8_t link_status[DP_LINK_STATUS_SIZE];
272	int panel_power_up_delay;
273	int panel_power_down_delay;
274	int panel_power_cycle_delay;
275	int backlight_on_delay;
276	int backlight_off_delay;
277	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
278	bool panel_on;
279};
280
281struct ddi_regoff {
282	uint32_t	PreEmph1;
283	uint32_t	PreEmph2;
284	uint32_t	VSwing1;
285	uint32_t	VSwing2;
286	uint32_t	VSwing3;
287	uint32_t	VSwing4;
288	uint32_t	VSwing5;
289};
290
291static struct ddi_regoff ddi_DP_train_table[] = {
292	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
293	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
294	.VSwing5 = 0x8158,},
295	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
296	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
297	.VSwing5 = 0x8258,},
298};
299
300static uint32_t dp_vswing_premph_table[] = {
301        0x55338954,	0x4000,
302        0x554d8954,	0x2000,
303        0x55668954,	0,
304        0x559ac0d4,	0x6000,
305};
306/**
307 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
308 * @intel_dp: DP struct
309 *
310 * If a CPU or PCH DP output is attached to an eDP panel, this function
311 * will return true, and false otherwise.
312 */
313static bool is_edp(struct gma_encoder *encoder)
314{
315	return encoder->type == INTEL_OUTPUT_EDP;
316}
317
318
319static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
320static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
321static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
322
323static int
324cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
325{
326	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
327	int max_lane_count = 4;
328
329	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
330		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
331		switch (max_lane_count) {
332		case 1: case 2: case 4:
333			break;
334		default:
335			max_lane_count = 4;
336		}
337	}
338	return max_lane_count;
339}
340
341static int
342cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
343{
344	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
345	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
346
347	switch (max_link_bw) {
348	case DP_LINK_BW_1_62:
349	case DP_LINK_BW_2_7:
350		break;
351	default:
352		max_link_bw = DP_LINK_BW_1_62;
353		break;
354	}
355	return max_link_bw;
356}
357
358static int
359cdv_intel_dp_link_clock(uint8_t link_bw)
360{
361	if (link_bw == DP_LINK_BW_2_7)
362		return 270000;
363	else
364		return 162000;
365}
366
367static int
368cdv_intel_dp_link_required(int pixel_clock, int bpp)
369{
370	return (pixel_clock * bpp + 7) / 8;
371}
372
373static int
374cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
375{
376	return (max_link_clock * max_lanes * 19) / 20;
377}
378
379static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
380{
381	struct drm_device *dev = intel_encoder->base.dev;
382	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
383	u32 pp;
384
385	if (intel_dp->panel_on) {
386		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
387		return;
388	}
389	DRM_DEBUG_KMS("\n");
390
391	pp = REG_READ(PP_CONTROL);
392
393	pp |= EDP_FORCE_VDD;
394	REG_WRITE(PP_CONTROL, pp);
395	REG_READ(PP_CONTROL);
396	msleep(intel_dp->panel_power_up_delay);
397}
398
399static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
400{
401	struct drm_device *dev = intel_encoder->base.dev;
402	u32 pp;
403
404	DRM_DEBUG_KMS("\n");
405	pp = REG_READ(PP_CONTROL);
406
407	pp &= ~EDP_FORCE_VDD;
408	REG_WRITE(PP_CONTROL, pp);
409	REG_READ(PP_CONTROL);
410
411}
412
413/* Returns true if the panel was already on when called */
414static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
415{
416	struct drm_device *dev = intel_encoder->base.dev;
417	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
418	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
419
420	if (intel_dp->panel_on)
421		return true;
422
423	DRM_DEBUG_KMS("\n");
424	pp = REG_READ(PP_CONTROL);
425	pp &= ~PANEL_UNLOCK_MASK;
426
427	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
428	REG_WRITE(PP_CONTROL, pp);
429	REG_READ(PP_CONTROL);
430
431	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
432		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
433		intel_dp->panel_on = false;
434	} else
435		intel_dp->panel_on = true;
436	msleep(intel_dp->panel_power_up_delay);
437
438	return false;
439}
440
441static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
442{
443	struct drm_device *dev = intel_encoder->base.dev;
444	u32 pp, idle_off_mask = PP_ON ;
445	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
446
447	DRM_DEBUG_KMS("\n");
448
449	pp = REG_READ(PP_CONTROL);
450
451	if ((pp & POWER_TARGET_ON) == 0)
452		return;
453
454	intel_dp->panel_on = false;
455	pp &= ~PANEL_UNLOCK_MASK;
456	/* ILK workaround: disable reset around power sequence */
457
458	pp &= ~POWER_TARGET_ON;
459	pp &= ~EDP_FORCE_VDD;
460	pp &= ~EDP_BLC_ENABLE;
461	REG_WRITE(PP_CONTROL, pp);
462	REG_READ(PP_CONTROL);
463	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
464
465	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
466		DRM_DEBUG_KMS("Error in turning off Panel\n");
467	}
468
469	msleep(intel_dp->panel_power_cycle_delay);
470	DRM_DEBUG_KMS("Over\n");
471}
472
473static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
474{
475	struct drm_device *dev = intel_encoder->base.dev;
476	u32 pp;
477
478	DRM_DEBUG_KMS("\n");
479	/*
480	 * If we enable the backlight right away following a panel power
481	 * on, we may see slight flicker as the panel syncs with the eDP
482	 * link.  So delay a bit to make sure the image is solid before
483	 * allowing it to appear.
484	 */
485	msleep(300);
486	pp = REG_READ(PP_CONTROL);
487
488	pp |= EDP_BLC_ENABLE;
489	REG_WRITE(PP_CONTROL, pp);
490	gma_backlight_enable(dev);
491}
492
493static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
494{
495	struct drm_device *dev = intel_encoder->base.dev;
496	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
497	u32 pp;
498
499	DRM_DEBUG_KMS("\n");
500	gma_backlight_disable(dev);
501	msleep(10);
502	pp = REG_READ(PP_CONTROL);
503
504	pp &= ~EDP_BLC_ENABLE;
505	REG_WRITE(PP_CONTROL, pp);
506	msleep(intel_dp->backlight_off_delay);
507}
508
509static int
510cdv_intel_dp_mode_valid(struct drm_connector *connector,
511		    struct drm_display_mode *mode)
512{
513	struct gma_encoder *encoder = gma_attached_encoder(connector);
514	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
515	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
516	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
517	struct drm_psb_private *dev_priv = connector->dev->dev_private;
518
519	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
520		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
521			return MODE_PANEL;
522		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
523			return MODE_PANEL;
524	}
525
526	/* only refuse the mode on non eDP since we have seen some weird eDP panels
527	   which are outside spec tolerances but somehow work by magic */
528	if (!is_edp(encoder) &&
529	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
530	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
531		return MODE_CLOCK_HIGH;
532
533	if (is_edp(encoder)) {
534	    if (cdv_intel_dp_link_required(mode->clock, 24)
535	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
536		return MODE_CLOCK_HIGH;
537
538	}
539	if (mode->clock < 10000)
540		return MODE_CLOCK_LOW;
541
542	return MODE_OK;
543}
544
545static uint32_t
546pack_aux(uint8_t *src, int src_bytes)
547{
548	int	i;
549	uint32_t v = 0;
550
551	if (src_bytes > 4)
552		src_bytes = 4;
553	for (i = 0; i < src_bytes; i++)
554		v |= ((uint32_t) src[i]) << ((3-i) * 8);
555	return v;
556}
557
558static void
559unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
560{
561	int i;
562	if (dst_bytes > 4)
563		dst_bytes = 4;
564	for (i = 0; i < dst_bytes; i++)
565		dst[i] = src >> ((3-i) * 8);
566}
567
568static int
569cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
570		uint8_t *send, int send_bytes,
571		uint8_t *recv, int recv_size)
572{
573	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
574	uint32_t output_reg = intel_dp->output_reg;
575	struct drm_device *dev = encoder->base.dev;
576	uint32_t ch_ctl = output_reg + 0x10;
577	uint32_t ch_data = ch_ctl + 4;
578	int i;
579	int recv_bytes;
580	uint32_t status;
581	uint32_t aux_clock_divider;
582	int try, precharge;
583
584	/* The clock divider is based off the hrawclk,
585	 * and would like to run at 2MHz. So, take the
586	 * hrawclk value and divide by 2 and use that
587	 * On CDV platform it uses 200MHz as hrawclk.
588	 *
589	 */
590	aux_clock_divider = 200 / 2;
591
592	precharge = 4;
593	if (is_edp(encoder))
594		precharge = 10;
595
596	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
597		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
598			  REG_READ(ch_ctl));
599		return -EBUSY;
600	}
601
602	/* Must try at least 3 times according to DP spec */
603	for (try = 0; try < 5; try++) {
604		/* Load the send data into the aux channel data registers */
605		for (i = 0; i < send_bytes; i += 4)
606			REG_WRITE(ch_data + i,
607				   pack_aux(send + i, send_bytes - i));
608
609		/* Send the command and wait for it to complete */
610		REG_WRITE(ch_ctl,
611			   DP_AUX_CH_CTL_SEND_BUSY |
612			   DP_AUX_CH_CTL_TIME_OUT_400us |
613			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
614			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
615			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
616			   DP_AUX_CH_CTL_DONE |
617			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
618			   DP_AUX_CH_CTL_RECEIVE_ERROR);
619		for (;;) {
620			status = REG_READ(ch_ctl);
621			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
622				break;
623			udelay(100);
624		}
625
626		/* Clear done status and any errors */
627		REG_WRITE(ch_ctl,
628			   status |
629			   DP_AUX_CH_CTL_DONE |
630			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
631			   DP_AUX_CH_CTL_RECEIVE_ERROR);
632		if (status & DP_AUX_CH_CTL_DONE)
633			break;
634	}
635
636	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
637		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
638		return -EBUSY;
639	}
640
641	/* Check for timeout or receive error.
642	 * Timeouts occur when the sink is not connected
643	 */
644	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
645		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
646		return -EIO;
647	}
648
649	/* Timeouts occur when the device isn't connected, so they're
650	 * "normal" -- don't fill the kernel log with these */
651	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
652		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
653		return -ETIMEDOUT;
654	}
655
656	/* Unload any bytes sent back from the other side */
657	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
658		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
659	if (recv_bytes > recv_size)
660		recv_bytes = recv_size;
661
662	for (i = 0; i < recv_bytes; i += 4)
663		unpack_aux(REG_READ(ch_data + i),
664			   recv + i, recv_bytes - i);
665
666	return recv_bytes;
667}
668
669/* Write data to the aux channel in native mode */
670static int
671cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
672			  uint16_t address, uint8_t *send, int send_bytes)
673{
674	int ret;
675	uint8_t	msg[20];
676	int msg_bytes;
677	uint8_t	ack;
678
679	if (send_bytes > 16)
680		return -1;
681	msg[0] = DP_AUX_NATIVE_WRITE << 4;
682	msg[1] = address >> 8;
683	msg[2] = address & 0xff;
684	msg[3] = send_bytes - 1;
685	memcpy(&msg[4], send, send_bytes);
686	msg_bytes = send_bytes + 4;
687	for (;;) {
688		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
689		if (ret < 0)
690			return ret;
691		ack >>= 4;
692		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
693			break;
694		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
695			udelay(100);
696		else
697			return -EIO;
698	}
699	return send_bytes;
700}
701
702/* Write a single byte to the aux channel in native mode */
703static int
704cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
705			    uint16_t address, uint8_t byte)
706{
707	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
708}
709
710/* read bytes from a native aux channel */
711static int
712cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
713			 uint16_t address, uint8_t *recv, int recv_bytes)
714{
715	uint8_t msg[4];
716	int msg_bytes;
717	uint8_t reply[20];
718	int reply_bytes;
719	uint8_t ack;
720	int ret;
721
722	msg[0] = DP_AUX_NATIVE_READ << 4;
723	msg[1] = address >> 8;
724	msg[2] = address & 0xff;
725	msg[3] = recv_bytes - 1;
726
727	msg_bytes = 4;
728	reply_bytes = recv_bytes + 1;
729
730	for (;;) {
731		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
732				      reply, reply_bytes);
733		if (ret == 0)
734			return -EPROTO;
735		if (ret < 0)
736			return ret;
737		ack = reply[0] >> 4;
738		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
739			memcpy(recv, reply + 1, ret - 1);
740			return ret - 1;
741		}
742		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
743			udelay(100);
744		else
745			return -EIO;
746	}
747}
748
749static int
750cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
751		    uint8_t write_byte, uint8_t *read_byte)
752{
753	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
754	struct cdv_intel_dp *intel_dp = container_of(adapter,
755						struct cdv_intel_dp,
756						adapter);
757	struct gma_encoder *encoder = intel_dp->encoder;
758	uint16_t address = algo_data->address;
759	uint8_t msg[5];
760	uint8_t reply[2];
761	unsigned retry;
762	int msg_bytes;
763	int reply_bytes;
764	int ret;
765
766	/* Set up the command byte */
767	if (mode & MODE_I2C_READ)
768		msg[0] = DP_AUX_I2C_READ << 4;
769	else
770		msg[0] = DP_AUX_I2C_WRITE << 4;
771
772	if (!(mode & MODE_I2C_STOP))
773		msg[0] |= DP_AUX_I2C_MOT << 4;
774
775	msg[1] = address >> 8;
776	msg[2] = address;
777
778	switch (mode) {
779	case MODE_I2C_WRITE:
780		msg[3] = 0;
781		msg[4] = write_byte;
782		msg_bytes = 5;
783		reply_bytes = 1;
784		break;
785	case MODE_I2C_READ:
786		msg[3] = 0;
787		msg_bytes = 4;
788		reply_bytes = 2;
789		break;
790	default:
791		msg_bytes = 3;
792		reply_bytes = 1;
793		break;
794	}
795
796	for (retry = 0; retry < 5; retry++) {
797		ret = cdv_intel_dp_aux_ch(encoder,
798				      msg, msg_bytes,
799				      reply, reply_bytes);
800		if (ret < 0) {
801			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
802			return ret;
803		}
804
805		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
806		case DP_AUX_NATIVE_REPLY_ACK:
807			/* I2C-over-AUX Reply field is only valid
808			 * when paired with AUX ACK.
809			 */
810			break;
811		case DP_AUX_NATIVE_REPLY_NACK:
812			DRM_DEBUG_KMS("aux_ch native nack\n");
813			return -EREMOTEIO;
814		case DP_AUX_NATIVE_REPLY_DEFER:
815			udelay(100);
816			continue;
817		default:
818			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
819				  reply[0]);
820			return -EREMOTEIO;
821		}
822
823		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
824		case DP_AUX_I2C_REPLY_ACK:
825			if (mode == MODE_I2C_READ) {
826				*read_byte = reply[1];
827			}
828			return reply_bytes - 1;
829		case DP_AUX_I2C_REPLY_NACK:
830			DRM_DEBUG_KMS("aux_i2c nack\n");
831			return -EREMOTEIO;
832		case DP_AUX_I2C_REPLY_DEFER:
833			DRM_DEBUG_KMS("aux_i2c defer\n");
834			udelay(100);
835			break;
836		default:
837			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
838			return -EREMOTEIO;
839		}
840	}
841
842	DRM_ERROR("too many retries, giving up\n");
843	return -EREMOTEIO;
844}
845
846static int
847cdv_intel_dp_i2c_init(struct gma_connector *connector,
848		      struct gma_encoder *encoder, const char *name)
849{
850	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
851	int ret;
852
853	DRM_DEBUG_KMS("i2c_init %s\n", name);
854
855	intel_dp->algo.running = false;
856	intel_dp->algo.address = 0;
857	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
858
859	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
860	intel_dp->adapter.owner = THIS_MODULE;
861	intel_dp->adapter.class = I2C_CLASS_DDC;
862	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
863	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
864	intel_dp->adapter.algo_data = &intel_dp->algo;
865	intel_dp->adapter.dev.parent = connector->base.kdev;
866
867	if (is_edp(encoder))
868		cdv_intel_edp_panel_vdd_on(encoder);
869	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
870	if (is_edp(encoder))
871		cdv_intel_edp_panel_vdd_off(encoder);
872
873	return ret;
874}
875
876static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
877	struct drm_display_mode *adjusted_mode)
878{
879	adjusted_mode->hdisplay = fixed_mode->hdisplay;
880	adjusted_mode->hsync_start = fixed_mode->hsync_start;
881	adjusted_mode->hsync_end = fixed_mode->hsync_end;
882	adjusted_mode->htotal = fixed_mode->htotal;
883
884	adjusted_mode->vdisplay = fixed_mode->vdisplay;
885	adjusted_mode->vsync_start = fixed_mode->vsync_start;
886	adjusted_mode->vsync_end = fixed_mode->vsync_end;
887	adjusted_mode->vtotal = fixed_mode->vtotal;
888
889	adjusted_mode->clock = fixed_mode->clock;
890
891	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
892}
893
894static bool
895cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
896		    struct drm_display_mode *adjusted_mode)
897{
898	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
899	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
900	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
901	int lane_count, clock;
902	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
903	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
904	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
905	int refclock = mode->clock;
906	int bpp = 24;
907
908	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
909		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
910		refclock = intel_dp->panel_fixed_mode->clock;
911		bpp = dev_priv->edp.bpp;
912	}
913
914	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
915		for (clock = max_clock; clock >= 0; clock--) {
916			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
917
918			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
919				intel_dp->link_bw = bws[clock];
920				intel_dp->lane_count = lane_count;
921				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
922				DRM_DEBUG_KMS("Display port link bw %02x lane "
923						"count %d clock %d\n",
924				       intel_dp->link_bw, intel_dp->lane_count,
925				       adjusted_mode->clock);
926				return true;
927			}
928		}
929	}
930	if (is_edp(intel_encoder)) {
931		/* okay we failed just pick the highest */
932		intel_dp->lane_count = max_lane_count;
933		intel_dp->link_bw = bws[max_clock];
934		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
935		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
936			      "count %d clock %d\n",
937			      intel_dp->link_bw, intel_dp->lane_count,
938			      adjusted_mode->clock);
939
940		return true;
941	}
942	return false;
943}
944
945struct cdv_intel_dp_m_n {
946	uint32_t	tu;
947	uint32_t	gmch_m;
948	uint32_t	gmch_n;
949	uint32_t	link_m;
950	uint32_t	link_n;
951};
952
953static void
954cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
955{
956	/*
957	while (*num > 0xffffff || *den > 0xffffff) {
958		*num >>= 1;
959		*den >>= 1;
960	}*/
961	uint64_t value, m;
962	m = *num;
963	value = m * (0x800000);
964	m = do_div(value, *den);
965	*num = value;
966	*den = 0x800000;
967}
968
969static void
970cdv_intel_dp_compute_m_n(int bpp,
971		     int nlanes,
972		     int pixel_clock,
973		     int link_clock,
974		     struct cdv_intel_dp_m_n *m_n)
975{
976	m_n->tu = 64;
977	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
978	m_n->gmch_n = link_clock * nlanes;
979	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
980	m_n->link_m = pixel_clock;
981	m_n->link_n = link_clock;
982	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
983}
984
985void
986cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
987		 struct drm_display_mode *adjusted_mode)
988{
989	struct drm_device *dev = crtc->dev;
990	struct drm_psb_private *dev_priv = dev->dev_private;
991	struct drm_mode_config *mode_config = &dev->mode_config;
992	struct drm_encoder *encoder;
993	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
994	int lane_count = 4, bpp = 24;
995	struct cdv_intel_dp_m_n m_n;
996	int pipe = gma_crtc->pipe;
997
998	/*
999	 * Find the lane count in the intel_encoder private
1000	 */
1001	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1002		struct gma_encoder *intel_encoder;
1003		struct cdv_intel_dp *intel_dp;
1004
1005		if (encoder->crtc != crtc)
1006			continue;
1007
1008		intel_encoder = to_gma_encoder(encoder);
1009		intel_dp = intel_encoder->dev_priv;
1010		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1011			lane_count = intel_dp->lane_count;
1012			break;
1013		} else if (is_edp(intel_encoder)) {
1014			lane_count = intel_dp->lane_count;
1015			bpp = dev_priv->edp.bpp;
1016			break;
1017		}
1018	}
1019
1020	/*
1021	 * Compute the GMCH and Link ratios. The '3' here is
1022	 * the number of bytes_per_pixel post-LUT, which we always
1023	 * set up for 8-bits of R/G/B, or 3 bytes total.
1024	 */
1025	cdv_intel_dp_compute_m_n(bpp, lane_count,
1026			     mode->clock, adjusted_mode->clock, &m_n);
1027
1028	{
1029		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1030			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1031			   m_n.gmch_m);
1032		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1033		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1034		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1035	}
1036}
1037
1038static void
1039cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1040		  struct drm_display_mode *adjusted_mode)
1041{
1042	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1043	struct drm_crtc *crtc = encoder->crtc;
1044	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1045	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1046	struct drm_device *dev = encoder->dev;
1047
1048	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1049	intel_dp->DP |= intel_dp->color_range;
1050
1051	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1052		intel_dp->DP |= DP_SYNC_HS_HIGH;
1053	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1054		intel_dp->DP |= DP_SYNC_VS_HIGH;
1055
1056	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1057
1058	switch (intel_dp->lane_count) {
1059	case 1:
1060		intel_dp->DP |= DP_PORT_WIDTH_1;
1061		break;
1062	case 2:
1063		intel_dp->DP |= DP_PORT_WIDTH_2;
1064		break;
1065	case 4:
1066		intel_dp->DP |= DP_PORT_WIDTH_4;
1067		break;
1068	}
1069	if (intel_dp->has_audio)
1070		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1071
1072	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1073	intel_dp->link_configuration[0] = intel_dp->link_bw;
1074	intel_dp->link_configuration[1] = intel_dp->lane_count;
1075
1076	/*
1077	 * Check for DPCD version > 1.1 and enhanced framing support
1078	 */
1079	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1080	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1081		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1082		intel_dp->DP |= DP_ENHANCED_FRAMING;
1083	}
1084
1085	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1086	if (gma_crtc->pipe == 1)
1087		intel_dp->DP |= DP_PIPEB_SELECT;
1088
1089	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1090	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1091	if (is_edp(intel_encoder)) {
1092		uint32_t pfit_control;
1093		cdv_intel_edp_panel_on(intel_encoder);
1094
1095		if (mode->hdisplay != adjusted_mode->hdisplay ||
1096			    mode->vdisplay != adjusted_mode->vdisplay)
1097			pfit_control = PFIT_ENABLE;
1098		else
1099			pfit_control = 0;
1100
1101		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1102
1103		REG_WRITE(PFIT_CONTROL, pfit_control);
1104	}
1105}
1106
1107
1108/* If the sink supports it, try to set the power state appropriately */
1109static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1110{
1111	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1112	int ret, i;
1113
1114	/* Should have a valid DPCD by this point */
1115	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1116		return;
1117
1118	if (mode != DRM_MODE_DPMS_ON) {
1119		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1120						  DP_SET_POWER_D3);
1121		if (ret != 1)
1122			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1123	} else {
1124		/*
1125		 * When turning on, we need to retry for 1ms to give the sink
1126		 * time to wake up.
1127		 */
1128		for (i = 0; i < 3; i++) {
1129			ret = cdv_intel_dp_aux_native_write_1(encoder,
1130							  DP_SET_POWER,
1131							  DP_SET_POWER_D0);
1132			if (ret == 1)
1133				break;
1134			udelay(1000);
1135		}
1136	}
1137}
1138
1139static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1140{
1141	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1142	int edp = is_edp(intel_encoder);
1143
1144	if (edp) {
1145		cdv_intel_edp_backlight_off(intel_encoder);
1146		cdv_intel_edp_panel_off(intel_encoder);
1147		cdv_intel_edp_panel_vdd_on(intel_encoder);
1148        }
1149	/* Wake up the sink first */
1150	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1151	cdv_intel_dp_link_down(intel_encoder);
1152	if (edp)
1153		cdv_intel_edp_panel_vdd_off(intel_encoder);
1154}
1155
1156static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1157{
1158	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1159	int edp = is_edp(intel_encoder);
1160
1161	if (edp)
1162		cdv_intel_edp_panel_on(intel_encoder);
1163	cdv_intel_dp_start_link_train(intel_encoder);
1164	cdv_intel_dp_complete_link_train(intel_encoder);
1165	if (edp)
1166		cdv_intel_edp_backlight_on(intel_encoder);
1167}
1168
1169static void
1170cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1171{
1172	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1173	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1174	struct drm_device *dev = encoder->dev;
1175	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1176	int edp = is_edp(intel_encoder);
1177
1178	if (mode != DRM_MODE_DPMS_ON) {
1179		if (edp) {
1180			cdv_intel_edp_backlight_off(intel_encoder);
1181			cdv_intel_edp_panel_vdd_on(intel_encoder);
1182		}
1183		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1184		cdv_intel_dp_link_down(intel_encoder);
1185		if (edp) {
1186			cdv_intel_edp_panel_vdd_off(intel_encoder);
1187			cdv_intel_edp_panel_off(intel_encoder);
1188		}
1189	} else {
1190        	if (edp)
1191			cdv_intel_edp_panel_on(intel_encoder);
1192		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1193		if (!(dp_reg & DP_PORT_EN)) {
1194			cdv_intel_dp_start_link_train(intel_encoder);
1195			cdv_intel_dp_complete_link_train(intel_encoder);
1196		}
1197		if (edp)
1198        		cdv_intel_edp_backlight_on(intel_encoder);
1199	}
1200}
1201
1202/*
1203 * Native read with retry for link status and receiver capability reads for
1204 * cases where the sink may still be asleep.
1205 */
1206static bool
1207cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1208			       uint8_t *recv, int recv_bytes)
1209{
1210	int ret, i;
1211
1212	/*
1213	 * Sinks are *supposed* to come up within 1ms from an off state,
1214	 * but we're also supposed to retry 3 times per the spec.
1215	 */
1216	for (i = 0; i < 3; i++) {
1217		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1218					       recv_bytes);
1219		if (ret == recv_bytes)
1220			return true;
1221		udelay(1000);
1222	}
1223
1224	return false;
1225}
1226
1227/*
1228 * Fetch AUX CH registers 0x202 - 0x207 which contain
1229 * link status information
1230 */
1231static bool
1232cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1233{
1234	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1235	return cdv_intel_dp_aux_native_read_retry(encoder,
1236					      DP_LANE0_1_STATUS,
1237					      intel_dp->link_status,
1238					      DP_LINK_STATUS_SIZE);
1239}
1240
1241static uint8_t
1242cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1243		     int r)
1244{
1245	return link_status[r - DP_LANE0_1_STATUS];
1246}
1247
1248static uint8_t
1249cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1250				 int lane)
1251{
1252	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1253	int	    s = ((lane & 1) ?
1254			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1255			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1256	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1257
1258	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1259}
1260
1261static uint8_t
1262cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1263				      int lane)
1264{
1265	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1266	int	    s = ((lane & 1) ?
1267			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1268			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1269	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1270
1271	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1272}
1273
1274
1275#if 0
1276static char	*voltage_names[] = {
1277	"0.4V", "0.6V", "0.8V", "1.2V"
1278};
1279static char	*pre_emph_names[] = {
1280	"0dB", "3.5dB", "6dB", "9.5dB"
1281};
1282static char	*link_train_names[] = {
1283	"pattern 1", "pattern 2", "idle", "off"
1284};
1285#endif
1286
1287#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1288/*
1289static uint8_t
1290cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1291{
1292	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1293	case DP_TRAIN_VOLTAGE_SWING_400:
1294		return DP_TRAIN_PRE_EMPHASIS_6;
1295	case DP_TRAIN_VOLTAGE_SWING_600:
1296		return DP_TRAIN_PRE_EMPHASIS_6;
1297	case DP_TRAIN_VOLTAGE_SWING_800:
1298		return DP_TRAIN_PRE_EMPHASIS_3_5;
1299	case DP_TRAIN_VOLTAGE_SWING_1200:
1300	default:
1301		return DP_TRAIN_PRE_EMPHASIS_0;
1302	}
1303}
1304*/
1305static void
1306cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1307{
1308	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1309	uint8_t v = 0;
1310	uint8_t p = 0;
1311	int lane;
1312
1313	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1314		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1315		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1316
1317		if (this_v > v)
1318			v = this_v;
1319		if (this_p > p)
1320			p = this_p;
1321	}
1322
1323	if (v >= CDV_DP_VOLTAGE_MAX)
1324		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1325
1326	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1327		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1328
1329	for (lane = 0; lane < 4; lane++)
1330		intel_dp->train_set[lane] = v | p;
1331}
1332
1333
1334static uint8_t
1335cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1336		      int lane)
1337{
1338	int i = DP_LANE0_1_STATUS + (lane >> 1);
1339	int s = (lane & 1) * 4;
1340	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1341
1342	return (l >> s) & 0xf;
1343}
1344
1345/* Check for clock recovery is done on all channels */
1346static bool
1347cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1348{
1349	int lane;
1350	uint8_t lane_status;
1351
1352	for (lane = 0; lane < lane_count; lane++) {
1353		lane_status = cdv_intel_get_lane_status(link_status, lane);
1354		if ((lane_status & DP_LANE_CR_DONE) == 0)
1355			return false;
1356	}
1357	return true;
1358}
1359
1360/* Check to see if channel eq is done on all channels */
1361#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1362			 DP_LANE_CHANNEL_EQ_DONE|\
1363			 DP_LANE_SYMBOL_LOCKED)
1364static bool
1365cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1366{
1367	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1368	uint8_t lane_align;
1369	uint8_t lane_status;
1370	int lane;
1371
1372	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1373					  DP_LANE_ALIGN_STATUS_UPDATED);
1374	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1375		return false;
1376	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1377		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1378		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1379			return false;
1380	}
1381	return true;
1382}
1383
1384static bool
1385cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1386			uint32_t dp_reg_value,
1387			uint8_t dp_train_pat)
1388{
1389
1390	struct drm_device *dev = encoder->base.dev;
1391	int ret;
1392	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1393
1394	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1395	REG_READ(intel_dp->output_reg);
1396
1397	ret = cdv_intel_dp_aux_native_write_1(encoder,
1398				    DP_TRAINING_PATTERN_SET,
1399				    dp_train_pat);
1400
1401	if (ret != 1) {
1402		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1403				dp_train_pat);
1404		return false;
1405	}
1406
1407	return true;
1408}
1409
1410
1411static bool
1412cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1413			uint8_t dp_train_pat)
1414{
1415
1416	int ret;
1417	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1418
1419	ret = cdv_intel_dp_aux_native_write(encoder,
1420					DP_TRAINING_LANE0_SET,
1421					intel_dp->train_set,
1422					intel_dp->lane_count);
1423
1424	if (ret != intel_dp->lane_count) {
1425		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1426				intel_dp->train_set[0], intel_dp->lane_count);
1427		return false;
1428	}
1429	return true;
1430}
1431
1432static void
1433cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1434{
1435	struct drm_device *dev = encoder->base.dev;
1436	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1437	struct ddi_regoff *ddi_reg;
1438	int vswing, premph, index;
1439
1440	if (intel_dp->output_reg == DP_B)
1441		ddi_reg = &ddi_DP_train_table[0];
1442	else
1443		ddi_reg = &ddi_DP_train_table[1];
1444
1445	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1446	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1447				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1448
1449	if (vswing + premph > 3)
1450		return;
1451#ifdef CDV_FAST_LINK_TRAIN
1452	return;
1453#endif
1454	DRM_DEBUG_KMS("Test2\n");
1455	//return ;
1456	cdv_sb_reset(dev);
1457	/* ;Swing voltage programming
1458        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1459	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1460
1461	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1462	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1463
1464	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1465	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1466	 */
1467	index = (vswing + premph) * 2;
1468	if (premph == 1 && vswing == 1) {
1469		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1470	} else
1471		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1472
1473	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1474	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1475		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1476	else
1477		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1478
1479	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1480	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1481
1482	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1483	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1484
1485	/* ;Pre emphasis programming
1486	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1487	 */
1488	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1489
1490	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1491	index = 2 * premph + 1;
1492	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1493	return;
1494}
1495
1496
1497/* Enable corresponding port and start training pattern 1 */
1498static void
1499cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1500{
1501	struct drm_device *dev = encoder->base.dev;
1502	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1503	int i;
1504	uint8_t voltage;
1505	bool clock_recovery = false;
1506	int tries;
1507	u32 reg;
1508	uint32_t DP = intel_dp->DP;
1509
1510	DP |= DP_PORT_EN;
1511	DP &= ~DP_LINK_TRAIN_MASK;
1512
1513	reg = DP;
1514	reg |= DP_LINK_TRAIN_PAT_1;
1515	/* Enable output, wait for it to become active */
1516	REG_WRITE(intel_dp->output_reg, reg);
1517	REG_READ(intel_dp->output_reg);
1518	gma_wait_for_vblank(dev);
1519
1520	DRM_DEBUG_KMS("Link config\n");
1521	/* Write the link configuration data */
1522	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1523				  intel_dp->link_configuration,
1524				  2);
1525
1526	memset(intel_dp->train_set, 0, 4);
1527	voltage = 0;
1528	tries = 0;
1529	clock_recovery = false;
1530
1531	DRM_DEBUG_KMS("Start train\n");
1532		reg = DP | DP_LINK_TRAIN_PAT_1;
1533
1534
1535	for (;;) {
1536		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1537		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1538				intel_dp->train_set[0],
1539				intel_dp->link_configuration[0],
1540				intel_dp->link_configuration[1]);
1541
1542		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1543			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1544		}
1545		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1546		/* Set training pattern 1 */
1547
1548		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1549
1550		udelay(200);
1551		if (!cdv_intel_dp_get_link_status(encoder))
1552			break;
1553
1554		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1555				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1556				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1557
1558		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1559			DRM_DEBUG_KMS("PT1 train is done\n");
1560			clock_recovery = true;
1561			break;
1562		}
1563
1564		/* Check to see if we've tried the max voltage */
1565		for (i = 0; i < intel_dp->lane_count; i++)
1566			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1567				break;
1568		if (i == intel_dp->lane_count)
1569			break;
1570
1571		/* Check to see if we've tried the same voltage 5 times */
1572		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1573			++tries;
1574			if (tries == 5)
1575				break;
1576		} else
1577			tries = 0;
1578		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1579
1580		/* Compute new intel_dp->train_set as requested by target */
1581		cdv_intel_get_adjust_train(encoder);
1582
1583	}
1584
1585	if (!clock_recovery) {
1586		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1587	}
1588
1589	intel_dp->DP = DP;
1590}
1591
1592static void
1593cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1594{
1595	struct drm_device *dev = encoder->base.dev;
1596	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1597	bool channel_eq = false;
1598	int tries, cr_tries;
1599	u32 reg;
1600	uint32_t DP = intel_dp->DP;
1601
1602	/* channel equalization */
1603	tries = 0;
1604	cr_tries = 0;
1605	channel_eq = false;
1606
1607	DRM_DEBUG_KMS("\n");
1608		reg = DP | DP_LINK_TRAIN_PAT_2;
1609
1610	for (;;) {
1611
1612		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1613				intel_dp->train_set[0],
1614				intel_dp->link_configuration[0],
1615				intel_dp->link_configuration[1]);
1616        	/* channel eq pattern */
1617
1618		if (!cdv_intel_dp_set_link_train(encoder, reg,
1619					     DP_TRAINING_PATTERN_2)) {
1620			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1621		}
1622		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1623
1624		if (cr_tries > 5) {
1625			DRM_ERROR("failed to train DP, aborting\n");
1626			cdv_intel_dp_link_down(encoder);
1627			break;
1628		}
1629
1630		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1631
1632		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1633
1634		udelay(1000);
1635		if (!cdv_intel_dp_get_link_status(encoder))
1636			break;
1637
1638		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1639				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1640				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1641
1642		/* Make sure clock is still ok */
1643		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1644			cdv_intel_dp_start_link_train(encoder);
1645			cr_tries++;
1646			continue;
1647		}
1648
1649		if (cdv_intel_channel_eq_ok(encoder)) {
1650			DRM_DEBUG_KMS("PT2 train is done\n");
1651			channel_eq = true;
1652			break;
1653		}
1654
1655		/* Try 5 times, then try clock recovery if that fails */
1656		if (tries > 5) {
1657			cdv_intel_dp_link_down(encoder);
1658			cdv_intel_dp_start_link_train(encoder);
1659			tries = 0;
1660			cr_tries++;
1661			continue;
1662		}
1663
1664		/* Compute new intel_dp->train_set as requested by target */
1665		cdv_intel_get_adjust_train(encoder);
1666		++tries;
1667
1668	}
1669
1670	reg = DP | DP_LINK_TRAIN_OFF;
1671
1672	REG_WRITE(intel_dp->output_reg, reg);
1673	REG_READ(intel_dp->output_reg);
1674	cdv_intel_dp_aux_native_write_1(encoder,
1675				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1676}
1677
1678static void
1679cdv_intel_dp_link_down(struct gma_encoder *encoder)
1680{
1681	struct drm_device *dev = encoder->base.dev;
1682	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1683	uint32_t DP = intel_dp->DP;
1684
1685	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1686		return;
1687
1688	DRM_DEBUG_KMS("\n");
1689
1690
1691	{
1692		DP &= ~DP_LINK_TRAIN_MASK;
1693		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1694	}
1695	REG_READ(intel_dp->output_reg);
1696
1697	msleep(17);
1698
1699	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1700	REG_READ(intel_dp->output_reg);
1701}
1702
1703static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1704{
1705	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1706	enum drm_connector_status status;
1707
1708	status = connector_status_disconnected;
1709	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1710				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1711	{
1712		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1713			status = connector_status_connected;
1714	}
1715	if (status == connector_status_connected)
1716		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1717			intel_dp->dpcd[0], intel_dp->dpcd[1],
1718			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1719	return status;
1720}
1721
1722/**
1723 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1724 *
1725 * \return true if DP port is connected.
1726 * \return false if DP port is disconnected.
1727 */
1728static enum drm_connector_status
1729cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1730{
1731	struct gma_encoder *encoder = gma_attached_encoder(connector);
1732	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1733	enum drm_connector_status status;
1734	struct edid *edid = NULL;
1735	int edp = is_edp(encoder);
1736
1737	intel_dp->has_audio = false;
1738
1739	if (edp)
1740		cdv_intel_edp_panel_vdd_on(encoder);
1741	status = cdv_dp_detect(encoder);
1742	if (status != connector_status_connected) {
1743		if (edp)
1744			cdv_intel_edp_panel_vdd_off(encoder);
1745		return status;
1746        }
1747
1748	if (intel_dp->force_audio) {
1749		intel_dp->has_audio = intel_dp->force_audio > 0;
1750	} else {
1751		edid = drm_get_edid(connector, &intel_dp->adapter);
1752		if (edid) {
1753			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1754			kfree(edid);
1755		}
1756	}
1757	if (edp)
1758		cdv_intel_edp_panel_vdd_off(encoder);
1759
1760	return connector_status_connected;
1761}
1762
1763static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1764{
1765	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1766	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1767	struct edid *edid = NULL;
1768	int ret = 0;
1769	int edp = is_edp(intel_encoder);
1770
1771
1772	edid = drm_get_edid(connector, &intel_dp->adapter);
1773	if (edid) {
1774		drm_mode_connector_update_edid_property(connector, edid);
1775		ret = drm_add_edid_modes(connector, edid);
1776		kfree(edid);
1777	}
1778
1779	if (is_edp(intel_encoder)) {
1780		struct drm_device *dev = connector->dev;
1781		struct drm_psb_private *dev_priv = dev->dev_private;
1782
1783		cdv_intel_edp_panel_vdd_off(intel_encoder);
1784		if (ret) {
1785			if (edp && !intel_dp->panel_fixed_mode) {
1786				struct drm_display_mode *newmode;
1787				list_for_each_entry(newmode, &connector->probed_modes,
1788					    head) {
1789					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1790						intel_dp->panel_fixed_mode =
1791							drm_mode_duplicate(dev, newmode);
1792						break;
1793					}
1794				}
1795			}
1796
1797			return ret;
1798		}
1799		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1800			intel_dp->panel_fixed_mode =
1801				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1802			if (intel_dp->panel_fixed_mode) {
1803				intel_dp->panel_fixed_mode->type |=
1804					DRM_MODE_TYPE_PREFERRED;
1805			}
1806		}
1807		if (intel_dp->panel_fixed_mode != NULL) {
1808			struct drm_display_mode *mode;
1809			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1810			drm_mode_probed_add(connector, mode);
1811			return 1;
1812		}
1813	}
1814
1815	return ret;
1816}
1817
1818static bool
1819cdv_intel_dp_detect_audio(struct drm_connector *connector)
1820{
1821	struct gma_encoder *encoder = gma_attached_encoder(connector);
1822	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1823	struct edid *edid;
1824	bool has_audio = false;
1825	int edp = is_edp(encoder);
1826
1827	if (edp)
1828		cdv_intel_edp_panel_vdd_on(encoder);
1829
1830	edid = drm_get_edid(connector, &intel_dp->adapter);
1831	if (edid) {
1832		has_audio = drm_detect_monitor_audio(edid);
1833		kfree(edid);
1834	}
1835	if (edp)
1836		cdv_intel_edp_panel_vdd_off(encoder);
1837
1838	return has_audio;
1839}
1840
1841static int
1842cdv_intel_dp_set_property(struct drm_connector *connector,
1843		      struct drm_property *property,
1844		      uint64_t val)
1845{
1846	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1847	struct gma_encoder *encoder = gma_attached_encoder(connector);
1848	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1849	int ret;
1850
1851	ret = drm_object_property_set_value(&connector->base, property, val);
1852	if (ret)
1853		return ret;
1854
1855	if (property == dev_priv->force_audio_property) {
1856		int i = val;
1857		bool has_audio;
1858
1859		if (i == intel_dp->force_audio)
1860			return 0;
1861
1862		intel_dp->force_audio = i;
1863
1864		if (i == 0)
1865			has_audio = cdv_intel_dp_detect_audio(connector);
1866		else
1867			has_audio = i > 0;
1868
1869		if (has_audio == intel_dp->has_audio)
1870			return 0;
1871
1872		intel_dp->has_audio = has_audio;
1873		goto done;
1874	}
1875
1876	if (property == dev_priv->broadcast_rgb_property) {
1877		if (val == !!intel_dp->color_range)
1878			return 0;
1879
1880		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1881		goto done;
1882	}
1883
1884	return -EINVAL;
1885
1886done:
1887	if (encoder->base.crtc) {
1888		struct drm_crtc *crtc = encoder->base.crtc;
1889		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1890					 crtc->x, crtc->y,
1891					 crtc->primary->fb);
1892	}
1893
1894	return 0;
1895}
1896
1897static void
1898cdv_intel_dp_destroy(struct drm_connector *connector)
1899{
1900	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1901	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1902
1903	if (is_edp(gma_encoder)) {
1904	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1905		if (intel_dp->panel_fixed_mode) {
1906			kfree(intel_dp->panel_fixed_mode);
1907			intel_dp->panel_fixed_mode = NULL;
1908		}
1909	}
1910	i2c_del_adapter(&intel_dp->adapter);
1911	drm_connector_unregister(connector);
1912	drm_connector_cleanup(connector);
1913	kfree(connector);
1914}
1915
1916static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1917{
1918	drm_encoder_cleanup(encoder);
1919}
1920
1921static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1922	.dpms = cdv_intel_dp_dpms,
1923	.mode_fixup = cdv_intel_dp_mode_fixup,
1924	.prepare = cdv_intel_dp_prepare,
1925	.mode_set = cdv_intel_dp_mode_set,
1926	.commit = cdv_intel_dp_commit,
1927};
1928
1929static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1930	.dpms = drm_helper_connector_dpms,
1931	.detect = cdv_intel_dp_detect,
1932	.fill_modes = drm_helper_probe_single_connector_modes,
1933	.set_property = cdv_intel_dp_set_property,
1934	.destroy = cdv_intel_dp_destroy,
1935};
1936
1937static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1938	.get_modes = cdv_intel_dp_get_modes,
1939	.mode_valid = cdv_intel_dp_mode_valid,
1940	.best_encoder = gma_best_encoder,
1941};
1942
1943static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1944	.destroy = cdv_intel_dp_encoder_destroy,
1945};
1946
1947
1948static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1949{
1950	cdv_intel_attach_force_audio_property(connector);
1951	cdv_intel_attach_broadcast_rgb_property(connector);
1952}
1953
1954/* check the VBT to see whether the eDP is on DP-D port */
1955static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1956{
1957	struct drm_psb_private *dev_priv = dev->dev_private;
1958	struct child_device_config *p_child;
1959	int i;
1960
1961	if (!dev_priv->child_dev_num)
1962		return false;
1963
1964	for (i = 0; i < dev_priv->child_dev_num; i++) {
1965		p_child = dev_priv->child_dev + i;
1966
1967		if (p_child->dvo_port == PORT_IDPC &&
1968		    p_child->device_type == DEVICE_TYPE_eDP)
1969			return true;
1970	}
1971	return false;
1972}
1973
1974/* Cedarview display clock gating
1975
1976   We need this disable dot get correct behaviour while enabling
1977   DP/eDP. TODO - investigate if we can turn it back to normality
1978   after enabling */
1979static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1980{
1981	u32 reg_value;
1982	reg_value = REG_READ(DSPCLK_GATE_D);
1983
1984	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1985			DPUNIT_PIPEA_GATE_DISABLE |
1986			DPCUNIT_CLOCK_GATE_DISABLE |
1987			DPLSUNIT_CLOCK_GATE_DISABLE |
1988			DPOUNIT_CLOCK_GATE_DISABLE |
1989		 	DPIOUNIT_CLOCK_GATE_DISABLE);
1990
1991	REG_WRITE(DSPCLK_GATE_D, reg_value);
1992
1993	udelay(500);
1994}
1995
1996void
1997cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1998{
1999	struct gma_encoder *gma_encoder;
2000	struct gma_connector *gma_connector;
2001	struct drm_connector *connector;
2002	struct drm_encoder *encoder;
2003	struct cdv_intel_dp *intel_dp;
2004	const char *name = NULL;
2005	int type = DRM_MODE_CONNECTOR_DisplayPort;
2006
2007	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
2008	if (!gma_encoder)
2009		return;
2010        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
2011        if (!gma_connector)
2012                goto err_connector;
2013	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
2014	if (!intel_dp)
2015	        goto err_priv;
2016
2017	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
2018		type = DRM_MODE_CONNECTOR_eDP;
2019
2020	connector = &gma_connector->base;
2021	encoder = &gma_encoder->base;
2022
2023	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
2024	drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
2025
2026	gma_connector_attach_encoder(gma_connector, gma_encoder);
2027
2028	if (type == DRM_MODE_CONNECTOR_DisplayPort)
2029		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2030        else
2031		gma_encoder->type = INTEL_OUTPUT_EDP;
2032
2033
2034	gma_encoder->dev_priv=intel_dp;
2035	intel_dp->encoder = gma_encoder;
2036	intel_dp->output_reg = output_reg;
2037
2038	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
2039	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
2040
2041	connector->polled = DRM_CONNECTOR_POLL_HPD;
2042	connector->interlace_allowed = false;
2043	connector->doublescan_allowed = false;
2044
2045	drm_connector_register(connector);
2046
2047	/* Set up the DDC bus. */
2048	switch (output_reg) {
2049		case DP_B:
2050			name = "DPDDC-B";
2051			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2052			break;
2053		case DP_C:
2054			name = "DPDDC-C";
2055			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2056			break;
2057	}
2058
2059	cdv_disable_intel_clock_gating(dev);
2060
2061	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2062        /* FIXME:fail check */
2063	cdv_intel_dp_add_properties(connector);
2064
2065	if (is_edp(gma_encoder)) {
2066		int ret;
2067		struct edp_power_seq cur;
2068                u32 pp_on, pp_off, pp_div;
2069		u32 pwm_ctrl;
2070
2071		pp_on = REG_READ(PP_CONTROL);
2072		pp_on &= ~PANEL_UNLOCK_MASK;
2073	        pp_on |= PANEL_UNLOCK_REGS;
2074
2075		REG_WRITE(PP_CONTROL, pp_on);
2076
2077		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2078		pwm_ctrl |= PWM_PIPE_B;
2079		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2080
2081                pp_on = REG_READ(PP_ON_DELAYS);
2082                pp_off = REG_READ(PP_OFF_DELAYS);
2083                pp_div = REG_READ(PP_DIVISOR);
2084
2085		/* Pull timing values out of registers */
2086                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2087                        PANEL_POWER_UP_DELAY_SHIFT;
2088
2089                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2090                        PANEL_LIGHT_ON_DELAY_SHIFT;
2091
2092                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2093                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2094
2095                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2096                        PANEL_POWER_DOWN_DELAY_SHIFT;
2097
2098                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2099                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2100
2101                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2102                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2103
2104
2105		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2106                intel_dp->backlight_on_delay = cur.t8 / 10;
2107                intel_dp->backlight_off_delay = cur.t9 / 10;
2108                intel_dp->panel_power_down_delay = cur.t10 / 10;
2109                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2110
2111                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2112                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2113                              intel_dp->panel_power_cycle_delay);
2114
2115                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2116                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2117
2118
2119		cdv_intel_edp_panel_vdd_on(gma_encoder);
2120		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2121					       intel_dp->dpcd,
2122					       sizeof(intel_dp->dpcd));
2123		cdv_intel_edp_panel_vdd_off(gma_encoder);
2124		if (ret == 0) {
2125			/* if this fails, presume the device is a ghost */
2126			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2127			cdv_intel_dp_encoder_destroy(encoder);
2128			cdv_intel_dp_destroy(connector);
2129			goto err_priv;
2130		} else {
2131        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2132				intel_dp->dpcd[0], intel_dp->dpcd[1],
2133				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2134
2135		}
2136		/* The CDV reference driver moves pnale backlight setup into the displays that
2137		   have a backlight: this is a good idea and one we should probably adopt, however
2138		   we need to migrate all the drivers before we can do that */
2139                /*cdv_intel_panel_setup_backlight(dev); */
2140	}
2141	return;
2142
2143err_priv:
2144	kfree(gma_connector);
2145err_connector:
2146	kfree(gma_encoder);
2147}
2148