1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#ifndef KFD_PRIV_H_INCLUDED
24#define KFD_PRIV_H_INCLUDED
25
26#include <linux/hashtable.h>
27#include <linux/mmu_notifier.h>
28#include <linux/mutex.h>
29#include <linux/types.h>
30#include <linux/atomic.h>
31#include <linux/workqueue.h>
32#include <linux/spinlock.h>
33#include <linux/kfd_ioctl.h>
34#include <kgd_kfd_interface.h>
35
36#define KFD_SYSFS_FILE_MODE 0444
37
38/*
39 * When working with cp scheduler we should assign the HIQ manually or via
40 * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
41 * definitions for Kaveri. In Kaveri only the first ME queues participates
42 * in the cp scheduling taking that in mind we set the HIQ slot in the
43 * second ME.
44 */
45#define KFD_CIK_HIQ_PIPE 4
46#define KFD_CIK_HIQ_QUEUE 0
47
48/* GPU ID hash width in bits */
49#define KFD_GPU_ID_HASH_WIDTH 16
50
51/* Macro for allocating structures */
52#define kfd_alloc_struct(ptr_to_struct)	\
53	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
54
55#define KFD_MAX_NUM_OF_PROCESSES 512
56#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
57
58/*
59 * Kernel module parameter to specify maximum number of supported queues per
60 * device
61 */
62extern int max_num_of_queues_per_device;
63
64#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096
65#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
66	(KFD_MAX_NUM_OF_PROCESSES *			\
67			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
68
69#define KFD_KERNEL_QUEUE_SIZE 2048
70
71/* Kernel module parameter to specify the scheduling policy */
72extern int sched_policy;
73
74/**
75 * enum kfd_sched_policy
76 *
77 * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
78 * scheduling. In this scheduling mode we're using the firmware code to
79 * schedule the user mode queues and kernel queues such as HIQ and DIQ.
80 * the HIQ queue is used as a special queue that dispatches the configuration
81 * to the cp and the user mode queues list that are currently running.
82 * the DIQ queue is a debugging queue that dispatches debugging commands to the
83 * firmware.
84 * in this scheduling mode user mode queues over subscription feature is
85 * enabled.
86 *
87 * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
88 * subscription feature disabled.
89 *
90 * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
91 * set the command processor registers and sets the queues "manually". This
92 * mode is used *ONLY* for debugging proposes.
93 *
94 */
95enum kfd_sched_policy {
96	KFD_SCHED_POLICY_HWS = 0,
97	KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
98	KFD_SCHED_POLICY_NO_HWS
99};
100
101enum cache_policy {
102	cache_policy_coherent,
103	cache_policy_noncoherent
104};
105
106enum asic_family_type {
107	CHIP_KAVERI = 0,
108	CHIP_CARRIZO
109};
110
111struct kfd_device_info {
112	unsigned int asic_family;
113	unsigned int max_pasid_bits;
114	size_t ih_ring_entry_size;
115	uint8_t num_of_watch_points;
116	uint16_t mqd_size_aligned;
117};
118
119struct kfd_mem_obj {
120	uint32_t range_start;
121	uint32_t range_end;
122	uint64_t gpu_addr;
123	uint32_t *cpu_ptr;
124};
125
126struct kfd_dev {
127	struct kgd_dev *kgd;
128
129	const struct kfd_device_info *device_info;
130	struct pci_dev *pdev;
131
132	unsigned int id;		/* topology stub index */
133
134	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
135					 * KFD. It is aligned for mapping
136					 * into user mode
137					 */
138	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
139					 * to HW doorbell, GFX reserved some
140					 * at the start)
141					 */
142	size_t doorbell_process_limit;	/* Number of processes we have doorbell
143					 * space for.
144					 */
145	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
146					   * page used by kernel queue
147					   */
148
149	struct kgd2kfd_shared_resources shared_resources;
150
151	const struct kfd2kgd_calls *kfd2kgd;
152	struct mutex doorbell_mutex;
153	unsigned long doorbell_available_index[DIV_ROUND_UP(
154		KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, BITS_PER_LONG)];
155
156	void *gtt_mem;
157	uint64_t gtt_start_gpu_addr;
158	void *gtt_start_cpu_ptr;
159	void *gtt_sa_bitmap;
160	struct mutex gtt_sa_lock;
161	unsigned int gtt_sa_chunk_size;
162	unsigned int gtt_sa_num_of_chunks;
163
164	/* QCM Device instance */
165	struct device_queue_manager *dqm;
166
167	bool init_complete;
168};
169
170/* KGD2KFD callbacks */
171void kgd2kfd_exit(void);
172struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
173			struct pci_dev *pdev, const struct kfd2kgd_calls *f2g);
174bool kgd2kfd_device_init(struct kfd_dev *kfd,
175			const struct kgd2kfd_shared_resources *gpu_resources);
176void kgd2kfd_device_exit(struct kfd_dev *kfd);
177
178enum kfd_mempool {
179	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
180	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
181	KFD_MEMPOOL_FRAMEBUFFER = 3,
182};
183
184/* Character device interface */
185int kfd_chardev_init(void);
186void kfd_chardev_exit(void);
187struct device *kfd_chardev(void);
188
189/**
190 * enum kfd_preempt_type_filter
191 *
192 * @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue.
193 *
194 * @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the
195 *						running queues list.
196 *
197 * @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to
198 *						specific process.
199 *
200 */
201enum kfd_preempt_type_filter {
202	KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE,
203	KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES,
204	KFD_PREEMPT_TYPE_FILTER_BY_PASID
205};
206
207enum kfd_preempt_type {
208	KFD_PREEMPT_TYPE_WAVEFRONT,
209	KFD_PREEMPT_TYPE_WAVEFRONT_RESET
210};
211
212/**
213 * enum kfd_queue_type
214 *
215 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
216 *
217 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
218 *
219 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
220 *
221 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
222 */
223enum kfd_queue_type  {
224	KFD_QUEUE_TYPE_COMPUTE,
225	KFD_QUEUE_TYPE_SDMA,
226	KFD_QUEUE_TYPE_HIQ,
227	KFD_QUEUE_TYPE_DIQ
228};
229
230enum kfd_queue_format {
231	KFD_QUEUE_FORMAT_PM4,
232	KFD_QUEUE_FORMAT_AQL
233};
234
235/**
236 * struct queue_properties
237 *
238 * @type: The queue type.
239 *
240 * @queue_id: Queue identifier.
241 *
242 * @queue_address: Queue ring buffer address.
243 *
244 * @queue_size: Queue ring buffer size.
245 *
246 * @priority: Defines the queue priority relative to other queues in the
247 * process.
248 * This is just an indication and HW scheduling may override the priority as
249 * necessary while keeping the relative prioritization.
250 * the priority granularity is from 0 to f which f is the highest priority.
251 * currently all queues are initialized with the highest priority.
252 *
253 * @queue_percent: This field is partially implemented and currently a zero in
254 * this field defines that the queue is non active.
255 *
256 * @read_ptr: User space address which points to the number of dwords the
257 * cp read from the ring buffer. This field updates automatically by the H/W.
258 *
259 * @write_ptr: Defines the number of dwords written to the ring buffer.
260 *
261 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
262 * the queue ring buffer. This field should be similar to write_ptr and the user
263 * should update this field after he updated the write_ptr.
264 *
265 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
266 *
267 * @is_interop: Defines if this is a interop queue. Interop queue means that the
268 * queue can access both graphics and compute resources.
269 *
270 * @is_active: Defines if the queue is active or not.
271 *
272 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
273 * of the queue.
274 *
275 * This structure represents the queue properties for each queue no matter if
276 * it's user mode or kernel mode queue.
277 *
278 */
279struct queue_properties {
280	enum kfd_queue_type type;
281	enum kfd_queue_format format;
282	unsigned int queue_id;
283	uint64_t queue_address;
284	uint64_t  queue_size;
285	uint32_t priority;
286	uint32_t queue_percent;
287	uint32_t *read_ptr;
288	uint32_t *write_ptr;
289	uint32_t __iomem *doorbell_ptr;
290	uint32_t doorbell_off;
291	bool is_interop;
292	bool is_active;
293	/* Not relevant for user mode queues in cp scheduling */
294	unsigned int vmid;
295	/* Relevant only for sdma queues*/
296	uint32_t sdma_engine_id;
297	uint32_t sdma_queue_id;
298	uint32_t sdma_vm_addr;
299	/* Relevant only for VI */
300	uint64_t eop_ring_buffer_address;
301	uint32_t eop_ring_buffer_size;
302	uint64_t ctx_save_restore_area_address;
303	uint32_t ctx_save_restore_area_size;
304};
305
306/**
307 * struct queue
308 *
309 * @list: Queue linked list.
310 *
311 * @mqd: The queue MQD.
312 *
313 * @mqd_mem_obj: The MQD local gpu memory object.
314 *
315 * @gart_mqd_addr: The MQD gart mc address.
316 *
317 * @properties: The queue properties.
318 *
319 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
320 * that the queue should be execute on.
321 *
322 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe id.
323 *
324 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
325 *
326 * @process: The kfd process that created this queue.
327 *
328 * @device: The kfd device that created this queue.
329 *
330 * This structure represents user mode compute queues.
331 * It contains all the necessary data to handle such queues.
332 *
333 */
334
335struct queue {
336	struct list_head list;
337	void *mqd;
338	struct kfd_mem_obj *mqd_mem_obj;
339	uint64_t gart_mqd_addr;
340	struct queue_properties properties;
341
342	uint32_t mec;
343	uint32_t pipe;
344	uint32_t queue;
345
346	unsigned int sdma_id;
347
348	struct kfd_process	*process;
349	struct kfd_dev		*device;
350};
351
352/*
353 * Please read the kfd_mqd_manager.h description.
354 */
355enum KFD_MQD_TYPE {
356	KFD_MQD_TYPE_COMPUTE = 0,	/* for no cp scheduling */
357	KFD_MQD_TYPE_HIQ,		/* for hiq */
358	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
359	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
360	KFD_MQD_TYPE_MAX
361};
362
363struct scheduling_resources {
364	unsigned int vmid_mask;
365	enum kfd_queue_type type;
366	uint64_t queue_mask;
367	uint64_t gws_mask;
368	uint32_t oac_mask;
369	uint32_t gds_heap_base;
370	uint32_t gds_heap_size;
371};
372
373struct process_queue_manager {
374	/* data */
375	struct kfd_process	*process;
376	unsigned int		num_concurrent_processes;
377	struct list_head	queues;
378	unsigned long		*queue_slot_bitmap;
379};
380
381struct qcm_process_device {
382	/* The Device Queue Manager that owns this data */
383	struct device_queue_manager *dqm;
384	struct process_queue_manager *pqm;
385	/* Queues list */
386	struct list_head queues_list;
387	struct list_head priv_queue_list;
388
389	unsigned int queue_count;
390	unsigned int vmid;
391	bool is_debug;
392	/*
393	 * All the memory management data should be here too
394	 */
395	uint64_t gds_context_area;
396	uint32_t sh_mem_config;
397	uint32_t sh_mem_bases;
398	uint32_t sh_mem_ape1_base;
399	uint32_t sh_mem_ape1_limit;
400	uint32_t page_table_base;
401	uint32_t gds_size;
402	uint32_t num_gws;
403	uint32_t num_oac;
404};
405
406/* Data that is per-process-per device. */
407struct kfd_process_device {
408	/*
409	 * List of all per-device data for a process.
410	 * Starts from kfd_process.per_device_data.
411	 */
412	struct list_head per_device_list;
413
414	/* The device that owns this data. */
415	struct kfd_dev *dev;
416
417
418	/* per-process-per device QCM data structure */
419	struct qcm_process_device qpd;
420
421	/*Apertures*/
422	uint64_t lds_base;
423	uint64_t lds_limit;
424	uint64_t gpuvm_base;
425	uint64_t gpuvm_limit;
426	uint64_t scratch_base;
427	uint64_t scratch_limit;
428
429	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
430	bool bound;
431};
432
433#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
434
435/* Process data */
436struct kfd_process {
437	/*
438	 * kfd_process are stored in an mm_struct*->kfd_process*
439	 * hash table (kfd_processes in kfd_process.c)
440	 */
441	struct hlist_node kfd_processes;
442
443	struct mm_struct *mm;
444
445	struct mutex mutex;
446
447	/*
448	 * In any process, the thread that started main() is the lead
449	 * thread and outlives the rest.
450	 * It is here because amd_iommu_bind_pasid wants a task_struct.
451	 */
452	struct task_struct *lead_thread;
453
454	/* We want to receive a notification when the mm_struct is destroyed */
455	struct mmu_notifier mmu_notifier;
456
457	/* Use for delayed freeing of kfd_process structure */
458	struct rcu_head	rcu;
459
460	unsigned int pasid;
461
462	/*
463	 * List of kfd_process_device structures,
464	 * one for each device the process is using.
465	 */
466	struct list_head per_device_data;
467
468	struct process_queue_manager pqm;
469
470	/* The process's queues. */
471	size_t queue_array_size;
472
473	/* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */
474	struct kfd_queue **queues;
475
476	unsigned long allocated_queue_bitmap[DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, BITS_PER_LONG)];
477
478	/*Is the user space process 32 bit?*/
479	bool is_32bit_user_mode;
480};
481
482/**
483 * Ioctl function type.
484 *
485 * \param filep pointer to file structure.
486 * \param p amdkfd process pointer.
487 * \param data pointer to arg that was copied from user.
488 */
489typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
490				void *data);
491
492struct amdkfd_ioctl_desc {
493	unsigned int cmd;
494	int flags;
495	amdkfd_ioctl_t *func;
496	unsigned int cmd_drv;
497	const char *name;
498};
499
500void kfd_process_create_wq(void);
501void kfd_process_destroy_wq(void);
502struct kfd_process *kfd_create_process(const struct task_struct *);
503struct kfd_process *kfd_get_process(const struct task_struct *);
504
505struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
506							struct kfd_process *p);
507void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid);
508struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
509							struct kfd_process *p);
510struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
511							struct kfd_process *p);
512
513/* Process device data iterator */
514struct kfd_process_device *kfd_get_first_process_device_data(struct kfd_process *p);
515struct kfd_process_device *kfd_get_next_process_device_data(struct kfd_process *p,
516						struct kfd_process_device *pdd);
517bool kfd_has_process_device_data(struct kfd_process *p);
518
519/* PASIDs */
520int kfd_pasid_init(void);
521void kfd_pasid_exit(void);
522bool kfd_set_pasid_limit(unsigned int new_limit);
523unsigned int kfd_get_pasid_limit(void);
524unsigned int kfd_pasid_alloc(void);
525void kfd_pasid_free(unsigned int pasid);
526
527/* Doorbells */
528void kfd_doorbell_init(struct kfd_dev *kfd);
529int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma);
530u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
531					unsigned int *doorbell_off);
532void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
533u32 read_kernel_doorbell(u32 __iomem *db);
534void write_kernel_doorbell(u32 __iomem *db, u32 value);
535unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
536					struct kfd_process *process,
537					unsigned int queue_id);
538
539/* GTT Sub-Allocator */
540
541int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
542			struct kfd_mem_obj **mem_obj);
543
544int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
545
546extern struct device *kfd_device;
547
548/* Topology */
549int kfd_topology_init(void);
550void kfd_topology_shutdown(void);
551int kfd_topology_add_device(struct kfd_dev *gpu);
552int kfd_topology_remove_device(struct kfd_dev *gpu);
553struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
554struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
555struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
556
557/* Interrupts */
558void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
559
560/* Power Management */
561void kgd2kfd_suspend(struct kfd_dev *kfd);
562int kgd2kfd_resume(struct kfd_dev *kfd);
563
564/* amdkfd Apertures */
565int kfd_init_apertures(struct kfd_process *process);
566
567/* Queue Context Management */
568inline uint32_t lower_32(uint64_t x);
569inline uint32_t upper_32(uint64_t x);
570struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd);
571inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m);
572
573int init_queue(struct queue **q, struct queue_properties properties);
574void uninit_queue(struct queue *q);
575void print_queue_properties(struct queue_properties *q);
576void print_queue(struct queue *q);
577
578struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
579					struct kfd_dev *dev);
580struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
581		struct kfd_dev *dev);
582struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
583		struct kfd_dev *dev);
584struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
585void device_queue_manager_uninit(struct device_queue_manager *dqm);
586struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
587					enum kfd_queue_type type);
588void kernel_queue_uninit(struct kernel_queue *kq);
589
590/* Process Queue Manager */
591struct process_queue_node {
592	struct queue *q;
593	struct kernel_queue *kq;
594	struct list_head process_queue_list;
595};
596
597int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
598void pqm_uninit(struct process_queue_manager *pqm);
599int pqm_create_queue(struct process_queue_manager *pqm,
600			    struct kfd_dev *dev,
601			    struct file *f,
602			    struct queue_properties *properties,
603			    unsigned int flags,
604			    enum kfd_queue_type type,
605			    unsigned int *qid);
606int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
607int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
608			struct queue_properties *p);
609
610/* Packet Manager */
611
612#define KFD_HIQ_TIMEOUT (500)
613
614#define KFD_FENCE_COMPLETED (100)
615#define KFD_FENCE_INIT   (10)
616#define KFD_UNMAP_LATENCY (150)
617
618struct packet_manager {
619	struct device_queue_manager *dqm;
620	struct kernel_queue *priv_queue;
621	struct mutex lock;
622	bool allocated;
623	struct kfd_mem_obj *ib_buffer_obj;
624};
625
626int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
627void pm_uninit(struct packet_manager *pm);
628int pm_send_set_resources(struct packet_manager *pm,
629				struct scheduling_resources *res);
630int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
631int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
632				uint32_t fence_value);
633
634int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
635			enum kfd_preempt_type_filter mode,
636			uint32_t filter_param, bool reset,
637			unsigned int sdma_engine);
638
639void pm_release_ib(struct packet_manager *pm);
640
641uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
642phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
643					struct kfd_process *process);
644
645#endif
646