1/* 2 * Copyright (C) 2012 CERN (www.cern.ch) 3 * Author: Alessandro Rubini <rubini@gnudd.com> 4 * 5 * Released according to the GNU GPL, version 2 or any later version. 6 * 7 * This work is part of the White Rabbit project, a research effort led 8 * by CERN, the European Institute for Nuclear Research. 9 */ 10#include <linux/module.h> 11#include <linux/slab.h> 12#include <linux/fmc.h> 13#include <linux/sdb.h> 14#include <linux/err.h> 15#include <linux/fmc-sdb.h> 16#include <asm/byteorder.h> 17 18static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address, 19 int convert) 20{ 21 uint32_t res = fmc_readl(fmc, address); 22 if (convert) 23 return __be32_to_cpu(res); 24 return res; 25} 26 27static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc, 28 unsigned long sdb_addr, 29 unsigned long reg_base, int level) 30{ 31 uint32_t onew; 32 int i, j, n, convert = 0; 33 struct sdb_array *arr, *sub; 34 35 onew = fmc_readl(fmc, sdb_addr); 36 if (onew == SDB_MAGIC) { 37 /* Uh! If we are little-endian, we must convert */ 38 if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC)) 39 convert = 1; 40 } else if (onew == __be32_to_cpu(SDB_MAGIC)) { 41 /* ok, don't convert */ 42 } else { 43 return ERR_PTR(-ENOENT); 44 } 45 /* So, the magic was there: get the count from offset 4*/ 46 onew = __sdb_rd(fmc, sdb_addr + 4, convert); 47 n = __be16_to_cpu(*(uint16_t *)&onew); 48 arr = kzalloc(sizeof(*arr), GFP_KERNEL); 49 if (!arr) 50 return ERR_PTR(-ENOMEM); 51 arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL); 52 arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL); 53 if (!arr->record || !arr->subtree) { 54 kfree(arr->record); 55 kfree(arr->subtree); 56 kfree(arr); 57 return ERR_PTR(-ENOMEM); 58 } 59 60 arr->len = n; 61 arr->level = level; 62 arr->fmc = fmc; 63 for (i = 0; i < n; i++) { 64 union sdb_record *r; 65 66 for (j = 0; j < sizeof(arr->record[0]); j += 4) { 67 *(uint32_t *)((void *)(arr->record + i) + j) = 68 __sdb_rd(fmc, sdb_addr + (i * 64) + j, convert); 69 } 70 r = &arr->record[i]; 71 arr->subtree[i] = ERR_PTR(-ENODEV); 72 if (r->empty.record_type == sdb_type_bridge) { 73 struct sdb_component *c = &r->bridge.sdb_component; 74 uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child); 75 uint64_t newbase = __be64_to_cpu(c->addr_first); 76 77 subaddr += reg_base; 78 newbase += reg_base; 79 sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase, 80 level + 1); 81 arr->subtree[i] = sub; /* may be error */ 82 if (IS_ERR(sub)) 83 continue; 84 sub->parent = arr; 85 sub->baseaddr = newbase; 86 } 87 } 88 return arr; 89} 90 91int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address) 92{ 93 struct sdb_array *ret; 94 if (fmc->sdb) 95 return -EBUSY; 96 ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0); 97 if (IS_ERR(ret)) 98 return PTR_ERR(ret); 99 fmc->sdb = ret; 100 return 0; 101} 102EXPORT_SYMBOL(fmc_scan_sdb_tree); 103 104static void __fmc_sdb_free(struct sdb_array *arr) 105{ 106 int i, n; 107 108 if (!arr) 109 return; 110 n = arr->len; 111 for (i = 0; i < n; i++) { 112 if (IS_ERR(arr->subtree[i])) 113 continue; 114 __fmc_sdb_free(arr->subtree[i]); 115 } 116 kfree(arr->record); 117 kfree(arr->subtree); 118 kfree(arr); 119} 120 121int fmc_free_sdb_tree(struct fmc_device *fmc) 122{ 123 __fmc_sdb_free(fmc->sdb); 124 fmc->sdb = NULL; 125 return 0; 126} 127EXPORT_SYMBOL(fmc_free_sdb_tree); 128 129/* This helper calls reprogram and inizialized sdb as well */ 130int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw, 131 int sdb_entry) 132{ 133 int ret; 134 135 ret = fmc->op->reprogram(fmc, d, gw); 136 if (ret < 0) 137 return ret; 138 if (sdb_entry < 0) 139 return ret; 140 141 /* We are required to find SDB at a given offset */ 142 ret = fmc_scan_sdb_tree(fmc, sdb_entry); 143 if (ret < 0) { 144 dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n", 145 sdb_entry); 146 return -ENODEV; 147 } 148 fmc_dump_sdb(fmc); 149 return 0; 150} 151EXPORT_SYMBOL(fmc_reprogram); 152 153static char *__strip_trailing_space(char *buf, char *str, int len) 154{ 155 int i = len - 1; 156 157 memcpy(buf, str, len); 158 while(i >= 0 && buf[i] == ' ') 159 buf[i--] = '\0'; 160 return buf; 161} 162 163#define __sdb_string(buf, field) ({ \ 164 BUILD_BUG_ON(sizeof(buf) < sizeof(field)); \ 165 __strip_trailing_space(buf, (void *)(field), sizeof(field)); \ 166 }) 167 168static void __fmc_show_sdb_tree(const struct fmc_device *fmc, 169 const struct sdb_array *arr) 170{ 171 unsigned long base = arr->baseaddr; 172 int i, j, n = arr->len, level = arr->level; 173 char buf[64]; 174 175 for (i = 0; i < n; i++) { 176 union sdb_record *r; 177 struct sdb_product *p; 178 struct sdb_component *c; 179 r = &arr->record[i]; 180 c = &r->dev.sdb_component; 181 p = &c->product; 182 183 dev_info(&fmc->dev, "SDB: "); 184 185 for (j = 0; j < level; j++) 186 printk(KERN_CONT " "); 187 switch (r->empty.record_type) { 188 case sdb_type_interconnect: 189 printk(KERN_CONT "%08llx:%08x %.19s\n", 190 __be64_to_cpu(p->vendor_id), 191 __be32_to_cpu(p->device_id), 192 p->name); 193 break; 194 case sdb_type_device: 195 printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n", 196 __be64_to_cpu(p->vendor_id), 197 __be32_to_cpu(p->device_id), 198 p->name, 199 __be64_to_cpu(c->addr_first) + base, 200 __be64_to_cpu(c->addr_last) + base); 201 break; 202 case sdb_type_bridge: 203 printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n", 204 __be64_to_cpu(p->vendor_id), 205 __be32_to_cpu(p->device_id), 206 p->name, 207 __be64_to_cpu(c->addr_first) + base); 208 if (IS_ERR(arr->subtree[i])) { 209 dev_info(&fmc->dev, "SDB: (bridge error %li)\n", 210 PTR_ERR(arr->subtree[i])); 211 break; 212 } 213 __fmc_show_sdb_tree(fmc, arr->subtree[i]); 214 break; 215 case sdb_type_integration: 216 printk(KERN_CONT "integration\n"); 217 break; 218 case sdb_type_repo_url: 219 printk(KERN_CONT "Synthesis repository: %s\n", 220 __sdb_string(buf, r->repo_url.repo_url)); 221 break; 222 case sdb_type_synthesis: 223 printk(KERN_CONT "Bitstream '%s' ", 224 __sdb_string(buf, r->synthesis.syn_name)); 225 printk(KERN_CONT "synthesized %08x by %s ", 226 __be32_to_cpu(r->synthesis.date), 227 __sdb_string(buf, r->synthesis.user_name)); 228 printk(KERN_CONT "(%s version %x), ", 229 __sdb_string(buf, r->synthesis.tool_name), 230 __be32_to_cpu(r->synthesis.tool_version)); 231 printk(KERN_CONT "commit %pm\n", 232 r->synthesis.commit_id); 233 break; 234 case sdb_type_empty: 235 printk(KERN_CONT "empty\n"); 236 break; 237 default: 238 printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n", 239 r->empty.record_type); 240 break; 241 } 242 } 243} 244 245void fmc_show_sdb_tree(const struct fmc_device *fmc) 246{ 247 if (!fmc->sdb) 248 return; 249 __fmc_show_sdb_tree(fmc, fmc->sdb); 250} 251EXPORT_SYMBOL(fmc_show_sdb_tree); 252 253signed long fmc_find_sdb_device(struct sdb_array *tree, 254 uint64_t vid, uint32_t did, unsigned long *sz) 255{ 256 signed long res = -ENODEV; 257 union sdb_record *r; 258 struct sdb_product *p; 259 struct sdb_component *c; 260 int i, n = tree->len; 261 uint64_t last, first; 262 263 /* FIXME: what if the first interconnect is not at zero? */ 264 for (i = 0; i < n; i++) { 265 r = &tree->record[i]; 266 c = &r->dev.sdb_component; 267 p = &c->product; 268 269 if (!IS_ERR(tree->subtree[i])) 270 res = fmc_find_sdb_device(tree->subtree[i], 271 vid, did, sz); 272 if (res >= 0) 273 return res + tree->baseaddr; 274 if (r->empty.record_type != sdb_type_device) 275 continue; 276 if (__be64_to_cpu(p->vendor_id) != vid) 277 continue; 278 if (__be32_to_cpu(p->device_id) != did) 279 continue; 280 /* found */ 281 last = __be64_to_cpu(c->addr_last); 282 first = __be64_to_cpu(c->addr_first); 283 if (sz) 284 *sz = (typeof(*sz))(last + 1 - first); 285 return first + tree->baseaddr; 286 } 287 return res; 288} 289EXPORT_SYMBOL(fmc_find_sdb_device); 290