1/*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bitops.h>
22#include <linux/bug.h>
23#include <linux/compiler.h>
24#include <linux/delay.h>
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/firewire.h>
28#include <linux/firewire-constants.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/io.h>
32#include <linux/kernel.h>
33#include <linux/list.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/mutex.h>
38#include <linux/pci.h>
39#include <linux/pci_ids.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
43#include <linux/time.h>
44#include <linux/vmalloc.h>
45#include <linux/workqueue.h>
46
47#include <asm/byteorder.h>
48#include <asm/page.h>
49
50#ifdef CONFIG_PPC_PMAC
51#include <asm/pmac_feature.h>
52#endif
53
54#include "core.h"
55#include "ohci.h"
56
57#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
58#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
59#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
60
61#define DESCRIPTOR_OUTPUT_MORE		0
62#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
63#define DESCRIPTOR_INPUT_MORE		(2 << 12)
64#define DESCRIPTOR_INPUT_LAST		(3 << 12)
65#define DESCRIPTOR_STATUS		(1 << 11)
66#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
67#define DESCRIPTOR_PING			(1 << 7)
68#define DESCRIPTOR_YY			(1 << 6)
69#define DESCRIPTOR_NO_IRQ		(0 << 4)
70#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
71#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
72#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
73#define DESCRIPTOR_WAIT			(3 << 0)
74
75#define DESCRIPTOR_CMD			(0xf << 12)
76
77struct descriptor {
78	__le16 req_count;
79	__le16 control;
80	__le32 data_address;
81	__le32 branch_address;
82	__le16 res_count;
83	__le16 transfer_status;
84} __attribute__((aligned(16)));
85
86#define CONTROL_SET(regs)	(regs)
87#define CONTROL_CLEAR(regs)	((regs) + 4)
88#define COMMAND_PTR(regs)	((regs) + 12)
89#define CONTEXT_MATCH(regs)	((regs) + 16)
90
91#define AR_BUFFER_SIZE	(32*1024)
92#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93/* we need at least two pages for proper list management */
94#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
95
96#define MAX_ASYNC_PAYLOAD	4096
97#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
98#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99
100struct ar_context {
101	struct fw_ohci *ohci;
102	struct page *pages[AR_BUFFERS];
103	void *buffer;
104	struct descriptor *descriptors;
105	dma_addr_t descriptors_bus;
106	void *pointer;
107	unsigned int last_buffer_index;
108	u32 regs;
109	struct tasklet_struct tasklet;
110};
111
112struct context;
113
114typedef int (*descriptor_callback_t)(struct context *ctx,
115				     struct descriptor *d,
116				     struct descriptor *last);
117
118/*
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
121 */
122struct descriptor_buffer {
123	struct list_head list;
124	dma_addr_t buffer_bus;
125	size_t buffer_size;
126	size_t used;
127	struct descriptor buffer[0];
128};
129
130struct context {
131	struct fw_ohci *ohci;
132	u32 regs;
133	int total_allocation;
134	u32 current_bus;
135	bool running;
136	bool flushing;
137
138	/*
139	 * List of page-sized buffers for storing DMA descriptors.
140	 * Head of list contains buffers in use and tail of list contains
141	 * free buffers.
142	 */
143	struct list_head buffer_list;
144
145	/*
146	 * Pointer to a buffer inside buffer_list that contains the tail
147	 * end of the current DMA program.
148	 */
149	struct descriptor_buffer *buffer_tail;
150
151	/*
152	 * The descriptor containing the branch address of the first
153	 * descriptor that has not yet been filled by the device.
154	 */
155	struct descriptor *last;
156
157	/*
158	 * The last descriptor block in the DMA program. It contains the branch
159	 * address that must be updated upon appending a new descriptor.
160	 */
161	struct descriptor *prev;
162	int prev_z;
163
164	descriptor_callback_t callback;
165
166	struct tasklet_struct tasklet;
167};
168
169#define IT_HEADER_SY(v)          ((v) <<  0)
170#define IT_HEADER_TCODE(v)       ((v) <<  4)
171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
172#define IT_HEADER_TAG(v)         ((v) << 14)
173#define IT_HEADER_SPEED(v)       ((v) << 16)
174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175
176struct iso_context {
177	struct fw_iso_context base;
178	struct context context;
179	void *header;
180	size_t header_length;
181	unsigned long flushing_completions;
182	u32 mc_buffer_bus;
183	u16 mc_completed;
184	u16 last_timestamp;
185	u8 sync;
186	u8 tags;
187};
188
189#define CONFIG_ROM_SIZE 1024
190
191struct fw_ohci {
192	struct fw_card card;
193
194	__iomem char *registers;
195	int node_id;
196	int generation;
197	int request_generation;	/* for timestamping incoming requests */
198	unsigned quirks;
199	unsigned int pri_req_max;
200	u32 bus_time;
201	bool bus_time_running;
202	bool is_root;
203	bool csr_state_setclear_abdicate;
204	int n_ir;
205	int n_it;
206	/*
207	 * Spinlock for accessing fw_ohci data.  Never call out of
208	 * this driver with this lock held.
209	 */
210	spinlock_t lock;
211
212	struct mutex phy_reg_mutex;
213
214	void *misc_buffer;
215	dma_addr_t misc_buffer_bus;
216
217	struct ar_context ar_request_ctx;
218	struct ar_context ar_response_ctx;
219	struct context at_request_ctx;
220	struct context at_response_ctx;
221
222	u32 it_context_support;
223	u32 it_context_mask;     /* unoccupied IT contexts */
224	struct iso_context *it_context_list;
225	u64 ir_context_channels; /* unoccupied channels */
226	u32 ir_context_support;
227	u32 ir_context_mask;     /* unoccupied IR contexts */
228	struct iso_context *ir_context_list;
229	u64 mc_channels; /* channels in use by the multichannel IR context */
230	bool mc_allocated;
231
232	__be32    *config_rom;
233	dma_addr_t config_rom_bus;
234	__be32    *next_config_rom;
235	dma_addr_t next_config_rom_bus;
236	__be32     next_header;
237
238	__le32    *self_id;
239	dma_addr_t self_id_bus;
240	struct work_struct bus_reset_work;
241
242	u32 self_id_buffer[512];
243};
244
245static struct workqueue_struct *selfid_workqueue;
246
247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
248{
249	return container_of(card, struct fw_ohci, card);
250}
251
252#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
253#define IR_CONTEXT_BUFFER_FILL		0x80000000
254#define IR_CONTEXT_ISOCH_HEADER		0x40000000
255#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
256#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
257#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
258
259#define CONTEXT_RUN	0x8000
260#define CONTEXT_WAKE	0x1000
261#define CONTEXT_DEAD	0x0800
262#define CONTEXT_ACTIVE	0x0400
263
264#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
265#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
266#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
267
268#define OHCI1394_REGISTER_SIZE		0x800
269#define OHCI1394_PCI_HCI_Control	0x40
270#define SELF_ID_BUF_SIZE		0x800
271#define OHCI_TCODE_PHY_PACKET		0x0e
272#define OHCI_VERSION_1_1		0x010010
273
274static char ohci_driver_name[] = KBUILD_MODNAME;
275
276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
277#define PCI_DEVICE_ID_AGERE_FW643	0x5901
278#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
280#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
281#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
282#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
283#define PCI_DEVICE_ID_VIA_VT630X	0x3044
284#define PCI_REV_ID_VIA_VT6306		0x46
285#define PCI_DEVICE_ID_VIA_VT6315	0x3403
286
287#define QUIRK_CYCLE_TIMER		0x1
288#define QUIRK_RESET_PACKET		0x2
289#define QUIRK_BE_HEADERS		0x4
290#define QUIRK_NO_1394A			0x8
291#define QUIRK_NO_MSI			0x10
292#define QUIRK_TI_SLLZ059		0x20
293#define QUIRK_IR_WAKE			0x40
294
295/* In case of multiple matches in ohci_quirks[], only the first one is used. */
296static const struct {
297	unsigned short vendor, device, revision, flags;
298} ohci_quirks[] = {
299	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
300		QUIRK_CYCLE_TIMER},
301
302	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
303		QUIRK_BE_HEADERS},
304
305	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
306		QUIRK_NO_MSI},
307
308	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
309		QUIRK_RESET_PACKET},
310
311	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
312		QUIRK_NO_MSI},
313
314	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
315		QUIRK_CYCLE_TIMER},
316
317	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
318		QUIRK_NO_MSI},
319
320	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
321		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
322
323	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
324		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
325
326	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
327		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
328
329	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
330		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
331
332	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
333		QUIRK_RESET_PACKET},
334
335	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
336		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
337
338	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
339		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
340
341	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
342		QUIRK_NO_MSI},
343
344	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
345		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
346};
347
348/* This overrides anything that was found in ohci_quirks[]. */
349static int param_quirks;
350module_param_named(quirks, param_quirks, int, 0644);
351MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
352	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
353	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
354	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
355	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
356	", disable MSI = "		__stringify(QUIRK_NO_MSI)
357	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
358	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
359	")");
360
361#define OHCI_PARAM_DEBUG_AT_AR		1
362#define OHCI_PARAM_DEBUG_SELFIDS	2
363#define OHCI_PARAM_DEBUG_IRQS		4
364#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
365
366static int param_debug;
367module_param_named(debug, param_debug, int, 0644);
368MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
369	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
370	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
371	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
372	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
373	", or a combination, or all = -1)");
374
375static bool param_remote_dma;
376module_param_named(remote_dma, param_remote_dma, bool, 0444);
377MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
378
379static void log_irqs(struct fw_ohci *ohci, u32 evt)
380{
381	if (likely(!(param_debug &
382			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
383		return;
384
385	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
386	    !(evt & OHCI1394_busReset))
387		return;
388
389	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
390	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
391	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
392	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
393	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
394	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
395	    evt & OHCI1394_isochRx		? " IR"			: "",
396	    evt & OHCI1394_isochTx		? " IT"			: "",
397	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
398	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
399	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
400	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
401	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
402	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
403	    evt & OHCI1394_busReset		? " busReset"		: "",
404	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
405		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
406		    OHCI1394_respTxComplete | OHCI1394_isochRx |
407		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
408		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
409		    OHCI1394_cycleInconsistent |
410		    OHCI1394_regAccessFail | OHCI1394_busReset)
411						? " ?"			: "");
412}
413
414static const char *speed[] = {
415	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
416};
417static const char *power[] = {
418	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
419	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
420};
421static const char port[] = { '.', '-', 'p', 'c', };
422
423static char _p(u32 *s, int shift)
424{
425	return port[*s >> shift & 3];
426}
427
428static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
429{
430	u32 *s;
431
432	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
433		return;
434
435	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
436		    self_id_count, generation, ohci->node_id);
437
438	for (s = ohci->self_id_buffer; self_id_count--; ++s)
439		if ((*s & 1 << 23) == 0)
440			ohci_notice(ohci,
441			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
442			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
443			    speed[*s >> 14 & 3], *s >> 16 & 63,
444			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
445			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
446		else
447			ohci_notice(ohci,
448			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
449			    *s, *s >> 24 & 63,
450			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
451			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
452}
453
454static const char *evts[] = {
455	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
456	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
457	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
458	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
459	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
460	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
461	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
462	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
463	[0x10] = "-reserved-",		[0x11] = "ack_complete",
464	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
465	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
466	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
467	[0x18] = "-reserved-",		[0x19] = "-reserved-",
468	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
469	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
470	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
471	[0x20] = "pending/cancelled",
472};
473static const char *tcodes[] = {
474	[0x0] = "QW req",		[0x1] = "BW req",
475	[0x2] = "W resp",		[0x3] = "-reserved-",
476	[0x4] = "QR req",		[0x5] = "BR req",
477	[0x6] = "QR resp",		[0x7] = "BR resp",
478	[0x8] = "cycle start",		[0x9] = "Lk req",
479	[0xa] = "async stream packet",	[0xb] = "Lk resp",
480	[0xc] = "-reserved-",		[0xd] = "-reserved-",
481	[0xe] = "link internal",	[0xf] = "-reserved-",
482};
483
484static void log_ar_at_event(struct fw_ohci *ohci,
485			    char dir, int speed, u32 *header, int evt)
486{
487	int tcode = header[0] >> 4 & 0xf;
488	char specific[12];
489
490	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
491		return;
492
493	if (unlikely(evt >= ARRAY_SIZE(evts)))
494			evt = 0x1f;
495
496	if (evt == OHCI1394_evt_bus_reset) {
497		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
498			    dir, (header[2] >> 16) & 0xff);
499		return;
500	}
501
502	switch (tcode) {
503	case 0x0: case 0x6: case 0x8:
504		snprintf(specific, sizeof(specific), " = %08x",
505			 be32_to_cpu((__force __be32)header[3]));
506		break;
507	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
508		snprintf(specific, sizeof(specific), " %x,%x",
509			 header[3] >> 16, header[3] & 0xffff);
510		break;
511	default:
512		specific[0] = '\0';
513	}
514
515	switch (tcode) {
516	case 0xa:
517		ohci_notice(ohci, "A%c %s, %s\n",
518			    dir, evts[evt], tcodes[tcode]);
519		break;
520	case 0xe:
521		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
522			    dir, evts[evt], header[1], header[2]);
523		break;
524	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
525		ohci_notice(ohci,
526			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
527			    dir, speed, header[0] >> 10 & 0x3f,
528			    header[1] >> 16, header[0] >> 16, evts[evt],
529			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
530		break;
531	default:
532		ohci_notice(ohci,
533			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
534			    dir, speed, header[0] >> 10 & 0x3f,
535			    header[1] >> 16, header[0] >> 16, evts[evt],
536			    tcodes[tcode], specific);
537	}
538}
539
540static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
541{
542	writel(data, ohci->registers + offset);
543}
544
545static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
546{
547	return readl(ohci->registers + offset);
548}
549
550static inline void flush_writes(const struct fw_ohci *ohci)
551{
552	/* Do a dummy read to flush writes. */
553	reg_read(ohci, OHCI1394_Version);
554}
555
556/*
557 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
560 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
561 */
562static int read_phy_reg(struct fw_ohci *ohci, int addr)
563{
564	u32 val;
565	int i;
566
567	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
568	for (i = 0; i < 3 + 100; i++) {
569		val = reg_read(ohci, OHCI1394_PhyControl);
570		if (!~val)
571			return -ENODEV; /* Card was ejected. */
572
573		if (val & OHCI1394_PhyControl_ReadDone)
574			return OHCI1394_PhyControl_ReadData(val);
575
576		/*
577		 * Try a few times without waiting.  Sleeping is necessary
578		 * only when the link/PHY interface is busy.
579		 */
580		if (i >= 3)
581			msleep(1);
582	}
583	ohci_err(ohci, "failed to read phy reg %d\n", addr);
584	dump_stack();
585
586	return -EBUSY;
587}
588
589static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
590{
591	int i;
592
593	reg_write(ohci, OHCI1394_PhyControl,
594		  OHCI1394_PhyControl_Write(addr, val));
595	for (i = 0; i < 3 + 100; i++) {
596		val = reg_read(ohci, OHCI1394_PhyControl);
597		if (!~val)
598			return -ENODEV; /* Card was ejected. */
599
600		if (!(val & OHCI1394_PhyControl_WritePending))
601			return 0;
602
603		if (i >= 3)
604			msleep(1);
605	}
606	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
607	dump_stack();
608
609	return -EBUSY;
610}
611
612static int update_phy_reg(struct fw_ohci *ohci, int addr,
613			  int clear_bits, int set_bits)
614{
615	int ret = read_phy_reg(ohci, addr);
616	if (ret < 0)
617		return ret;
618
619	/*
620	 * The interrupt status bits are cleared by writing a one bit.
621	 * Avoid clearing them unless explicitly requested in set_bits.
622	 */
623	if (addr == 5)
624		clear_bits |= PHY_INT_STATUS_BITS;
625
626	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
627}
628
629static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
630{
631	int ret;
632
633	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
634	if (ret < 0)
635		return ret;
636
637	return read_phy_reg(ohci, addr);
638}
639
640static int ohci_read_phy_reg(struct fw_card *card, int addr)
641{
642	struct fw_ohci *ohci = fw_ohci(card);
643	int ret;
644
645	mutex_lock(&ohci->phy_reg_mutex);
646	ret = read_phy_reg(ohci, addr);
647	mutex_unlock(&ohci->phy_reg_mutex);
648
649	return ret;
650}
651
652static int ohci_update_phy_reg(struct fw_card *card, int addr,
653			       int clear_bits, int set_bits)
654{
655	struct fw_ohci *ohci = fw_ohci(card);
656	int ret;
657
658	mutex_lock(&ohci->phy_reg_mutex);
659	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
660	mutex_unlock(&ohci->phy_reg_mutex);
661
662	return ret;
663}
664
665static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
666{
667	return page_private(ctx->pages[i]);
668}
669
670static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
671{
672	struct descriptor *d;
673
674	d = &ctx->descriptors[index];
675	d->branch_address  &= cpu_to_le32(~0xf);
676	d->res_count       =  cpu_to_le16(PAGE_SIZE);
677	d->transfer_status =  0;
678
679	wmb(); /* finish init of new descriptors before branch_address update */
680	d = &ctx->descriptors[ctx->last_buffer_index];
681	d->branch_address  |= cpu_to_le32(1);
682
683	ctx->last_buffer_index = index;
684
685	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
686}
687
688static void ar_context_release(struct ar_context *ctx)
689{
690	unsigned int i;
691
692	vunmap(ctx->buffer);
693
694	for (i = 0; i < AR_BUFFERS; i++)
695		if (ctx->pages[i]) {
696			dma_unmap_page(ctx->ohci->card.device,
697				       ar_buffer_bus(ctx, i),
698				       PAGE_SIZE, DMA_FROM_DEVICE);
699			__free_page(ctx->pages[i]);
700		}
701}
702
703static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
704{
705	struct fw_ohci *ohci = ctx->ohci;
706
707	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
708		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
709		flush_writes(ohci);
710
711		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
712	}
713	/* FIXME: restart? */
714}
715
716static inline unsigned int ar_next_buffer_index(unsigned int index)
717{
718	return (index + 1) % AR_BUFFERS;
719}
720
721static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
722{
723	return ar_next_buffer_index(ctx->last_buffer_index);
724}
725
726/*
727 * We search for the buffer that contains the last AR packet DMA data written
728 * by the controller.
729 */
730static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
731						 unsigned int *buffer_offset)
732{
733	unsigned int i, next_i, last = ctx->last_buffer_index;
734	__le16 res_count, next_res_count;
735
736	i = ar_first_buffer_index(ctx);
737	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
738
739	/* A buffer that is not yet completely filled must be the last one. */
740	while (i != last && res_count == 0) {
741
742		/* Peek at the next descriptor. */
743		next_i = ar_next_buffer_index(i);
744		rmb(); /* read descriptors in order */
745		next_res_count = ACCESS_ONCE(
746				ctx->descriptors[next_i].res_count);
747		/*
748		 * If the next descriptor is still empty, we must stop at this
749		 * descriptor.
750		 */
751		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
752			/*
753			 * The exception is when the DMA data for one packet is
754			 * split over three buffers; in this case, the middle
755			 * buffer's descriptor might be never updated by the
756			 * controller and look still empty, and we have to peek
757			 * at the third one.
758			 */
759			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
760				next_i = ar_next_buffer_index(next_i);
761				rmb();
762				next_res_count = ACCESS_ONCE(
763					ctx->descriptors[next_i].res_count);
764				if (next_res_count != cpu_to_le16(PAGE_SIZE))
765					goto next_buffer_is_active;
766			}
767
768			break;
769		}
770
771next_buffer_is_active:
772		i = next_i;
773		res_count = next_res_count;
774	}
775
776	rmb(); /* read res_count before the DMA data */
777
778	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
779	if (*buffer_offset > PAGE_SIZE) {
780		*buffer_offset = 0;
781		ar_context_abort(ctx, "corrupted descriptor");
782	}
783
784	return i;
785}
786
787static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
788				    unsigned int end_buffer_index,
789				    unsigned int end_buffer_offset)
790{
791	unsigned int i;
792
793	i = ar_first_buffer_index(ctx);
794	while (i != end_buffer_index) {
795		dma_sync_single_for_cpu(ctx->ohci->card.device,
796					ar_buffer_bus(ctx, i),
797					PAGE_SIZE, DMA_FROM_DEVICE);
798		i = ar_next_buffer_index(i);
799	}
800	if (end_buffer_offset > 0)
801		dma_sync_single_for_cpu(ctx->ohci->card.device,
802					ar_buffer_bus(ctx, i),
803					end_buffer_offset, DMA_FROM_DEVICE);
804}
805
806#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
807#define cond_le32_to_cpu(v) \
808	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
809#else
810#define cond_le32_to_cpu(v) le32_to_cpu(v)
811#endif
812
813static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
814{
815	struct fw_ohci *ohci = ctx->ohci;
816	struct fw_packet p;
817	u32 status, length, tcode;
818	int evt;
819
820	p.header[0] = cond_le32_to_cpu(buffer[0]);
821	p.header[1] = cond_le32_to_cpu(buffer[1]);
822	p.header[2] = cond_le32_to_cpu(buffer[2]);
823
824	tcode = (p.header[0] >> 4) & 0x0f;
825	switch (tcode) {
826	case TCODE_WRITE_QUADLET_REQUEST:
827	case TCODE_READ_QUADLET_RESPONSE:
828		p.header[3] = (__force __u32) buffer[3];
829		p.header_length = 16;
830		p.payload_length = 0;
831		break;
832
833	case TCODE_READ_BLOCK_REQUEST :
834		p.header[3] = cond_le32_to_cpu(buffer[3]);
835		p.header_length = 16;
836		p.payload_length = 0;
837		break;
838
839	case TCODE_WRITE_BLOCK_REQUEST:
840	case TCODE_READ_BLOCK_RESPONSE:
841	case TCODE_LOCK_REQUEST:
842	case TCODE_LOCK_RESPONSE:
843		p.header[3] = cond_le32_to_cpu(buffer[3]);
844		p.header_length = 16;
845		p.payload_length = p.header[3] >> 16;
846		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
847			ar_context_abort(ctx, "invalid packet length");
848			return NULL;
849		}
850		break;
851
852	case TCODE_WRITE_RESPONSE:
853	case TCODE_READ_QUADLET_REQUEST:
854	case OHCI_TCODE_PHY_PACKET:
855		p.header_length = 12;
856		p.payload_length = 0;
857		break;
858
859	default:
860		ar_context_abort(ctx, "invalid tcode");
861		return NULL;
862	}
863
864	p.payload = (void *) buffer + p.header_length;
865
866	/* FIXME: What to do about evt_* errors? */
867	length = (p.header_length + p.payload_length + 3) / 4;
868	status = cond_le32_to_cpu(buffer[length]);
869	evt    = (status >> 16) & 0x1f;
870
871	p.ack        = evt - 16;
872	p.speed      = (status >> 21) & 0x7;
873	p.timestamp  = status & 0xffff;
874	p.generation = ohci->request_generation;
875
876	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
877
878	/*
879	 * Several controllers, notably from NEC and VIA, forget to
880	 * write ack_complete status at PHY packet reception.
881	 */
882	if (evt == OHCI1394_evt_no_status &&
883	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
884		p.ack = ACK_COMPLETE;
885
886	/*
887	 * The OHCI bus reset handler synthesizes a PHY packet with
888	 * the new generation number when a bus reset happens (see
889	 * section 8.4.2.3).  This helps us determine when a request
890	 * was received and make sure we send the response in the same
891	 * generation.  We only need this for requests; for responses
892	 * we use the unique tlabel for finding the matching
893	 * request.
894	 *
895	 * Alas some chips sometimes emit bus reset packets with a
896	 * wrong generation.  We set the correct generation for these
897	 * at a slightly incorrect time (in bus_reset_work).
898	 */
899	if (evt == OHCI1394_evt_bus_reset) {
900		if (!(ohci->quirks & QUIRK_RESET_PACKET))
901			ohci->request_generation = (p.header[2] >> 16) & 0xff;
902	} else if (ctx == &ohci->ar_request_ctx) {
903		fw_core_handle_request(&ohci->card, &p);
904	} else {
905		fw_core_handle_response(&ohci->card, &p);
906	}
907
908	return buffer + length + 1;
909}
910
911static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
912{
913	void *next;
914
915	while (p < end) {
916		next = handle_ar_packet(ctx, p);
917		if (!next)
918			return p;
919		p = next;
920	}
921
922	return p;
923}
924
925static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
926{
927	unsigned int i;
928
929	i = ar_first_buffer_index(ctx);
930	while (i != end_buffer) {
931		dma_sync_single_for_device(ctx->ohci->card.device,
932					   ar_buffer_bus(ctx, i),
933					   PAGE_SIZE, DMA_FROM_DEVICE);
934		ar_context_link_page(ctx, i);
935		i = ar_next_buffer_index(i);
936	}
937}
938
939static void ar_context_tasklet(unsigned long data)
940{
941	struct ar_context *ctx = (struct ar_context *)data;
942	unsigned int end_buffer_index, end_buffer_offset;
943	void *p, *end;
944
945	p = ctx->pointer;
946	if (!p)
947		return;
948
949	end_buffer_index = ar_search_last_active_buffer(ctx,
950							&end_buffer_offset);
951	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
952	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
953
954	if (end_buffer_index < ar_first_buffer_index(ctx)) {
955		/*
956		 * The filled part of the overall buffer wraps around; handle
957		 * all packets up to the buffer end here.  If the last packet
958		 * wraps around, its tail will be visible after the buffer end
959		 * because the buffer start pages are mapped there again.
960		 */
961		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
962		p = handle_ar_packets(ctx, p, buffer_end);
963		if (p < buffer_end)
964			goto error;
965		/* adjust p to point back into the actual buffer */
966		p -= AR_BUFFERS * PAGE_SIZE;
967	}
968
969	p = handle_ar_packets(ctx, p, end);
970	if (p != end) {
971		if (p > end)
972			ar_context_abort(ctx, "inconsistent descriptor");
973		goto error;
974	}
975
976	ctx->pointer = p;
977	ar_recycle_buffers(ctx, end_buffer_index);
978
979	return;
980
981error:
982	ctx->pointer = NULL;
983}
984
985static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
986			   unsigned int descriptors_offset, u32 regs)
987{
988	unsigned int i;
989	dma_addr_t dma_addr;
990	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
991	struct descriptor *d;
992
993	ctx->regs        = regs;
994	ctx->ohci        = ohci;
995	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
996
997	for (i = 0; i < AR_BUFFERS; i++) {
998		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
999		if (!ctx->pages[i])
1000			goto out_of_memory;
1001		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1002					0, PAGE_SIZE, DMA_FROM_DEVICE);
1003		if (dma_mapping_error(ohci->card.device, dma_addr)) {
1004			__free_page(ctx->pages[i]);
1005			ctx->pages[i] = NULL;
1006			goto out_of_memory;
1007		}
1008		set_page_private(ctx->pages[i], dma_addr);
1009	}
1010
1011	for (i = 0; i < AR_BUFFERS; i++)
1012		pages[i]              = ctx->pages[i];
1013	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1014		pages[AR_BUFFERS + i] = ctx->pages[i];
1015	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1016	if (!ctx->buffer)
1017		goto out_of_memory;
1018
1019	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1020	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1021
1022	for (i = 0; i < AR_BUFFERS; i++) {
1023		d = &ctx->descriptors[i];
1024		d->req_count      = cpu_to_le16(PAGE_SIZE);
1025		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1026						DESCRIPTOR_STATUS |
1027						DESCRIPTOR_BRANCH_ALWAYS);
1028		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1029		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1030			ar_next_buffer_index(i) * sizeof(struct descriptor));
1031	}
1032
1033	return 0;
1034
1035out_of_memory:
1036	ar_context_release(ctx);
1037
1038	return -ENOMEM;
1039}
1040
1041static void ar_context_run(struct ar_context *ctx)
1042{
1043	unsigned int i;
1044
1045	for (i = 0; i < AR_BUFFERS; i++)
1046		ar_context_link_page(ctx, i);
1047
1048	ctx->pointer = ctx->buffer;
1049
1050	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1051	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1052}
1053
1054static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1055{
1056	__le16 branch;
1057
1058	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1059
1060	/* figure out which descriptor the branch address goes in */
1061	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1062		return d;
1063	else
1064		return d + z - 1;
1065}
1066
1067static void context_tasklet(unsigned long data)
1068{
1069	struct context *ctx = (struct context *) data;
1070	struct descriptor *d, *last;
1071	u32 address;
1072	int z;
1073	struct descriptor_buffer *desc;
1074
1075	desc = list_entry(ctx->buffer_list.next,
1076			struct descriptor_buffer, list);
1077	last = ctx->last;
1078	while (last->branch_address != 0) {
1079		struct descriptor_buffer *old_desc = desc;
1080		address = le32_to_cpu(last->branch_address);
1081		z = address & 0xf;
1082		address &= ~0xf;
1083		ctx->current_bus = address;
1084
1085		/* If the branch address points to a buffer outside of the
1086		 * current buffer, advance to the next buffer. */
1087		if (address < desc->buffer_bus ||
1088				address >= desc->buffer_bus + desc->used)
1089			desc = list_entry(desc->list.next,
1090					struct descriptor_buffer, list);
1091		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1092		last = find_branch_descriptor(d, z);
1093
1094		if (!ctx->callback(ctx, d, last))
1095			break;
1096
1097		if (old_desc != desc) {
1098			/* If we've advanced to the next buffer, move the
1099			 * previous buffer to the free list. */
1100			unsigned long flags;
1101			old_desc->used = 0;
1102			spin_lock_irqsave(&ctx->ohci->lock, flags);
1103			list_move_tail(&old_desc->list, &ctx->buffer_list);
1104			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1105		}
1106		ctx->last = last;
1107	}
1108}
1109
1110/*
1111 * Allocate a new buffer and add it to the list of free buffers for this
1112 * context.  Must be called with ohci->lock held.
1113 */
1114static int context_add_buffer(struct context *ctx)
1115{
1116	struct descriptor_buffer *desc;
1117	dma_addr_t uninitialized_var(bus_addr);
1118	int offset;
1119
1120	/*
1121	 * 16MB of descriptors should be far more than enough for any DMA
1122	 * program.  This will catch run-away userspace or DoS attacks.
1123	 */
1124	if (ctx->total_allocation >= 16*1024*1024)
1125		return -ENOMEM;
1126
1127	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1128			&bus_addr, GFP_ATOMIC);
1129	if (!desc)
1130		return -ENOMEM;
1131
1132	offset = (void *)&desc->buffer - (void *)desc;
1133	desc->buffer_size = PAGE_SIZE - offset;
1134	desc->buffer_bus = bus_addr + offset;
1135	desc->used = 0;
1136
1137	list_add_tail(&desc->list, &ctx->buffer_list);
1138	ctx->total_allocation += PAGE_SIZE;
1139
1140	return 0;
1141}
1142
1143static int context_init(struct context *ctx, struct fw_ohci *ohci,
1144			u32 regs, descriptor_callback_t callback)
1145{
1146	ctx->ohci = ohci;
1147	ctx->regs = regs;
1148	ctx->total_allocation = 0;
1149
1150	INIT_LIST_HEAD(&ctx->buffer_list);
1151	if (context_add_buffer(ctx) < 0)
1152		return -ENOMEM;
1153
1154	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1155			struct descriptor_buffer, list);
1156
1157	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1158	ctx->callback = callback;
1159
1160	/*
1161	 * We put a dummy descriptor in the buffer that has a NULL
1162	 * branch address and looks like it's been sent.  That way we
1163	 * have a descriptor to append DMA programs to.
1164	 */
1165	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1166	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1167	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1168	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1169	ctx->last = ctx->buffer_tail->buffer;
1170	ctx->prev = ctx->buffer_tail->buffer;
1171	ctx->prev_z = 1;
1172
1173	return 0;
1174}
1175
1176static void context_release(struct context *ctx)
1177{
1178	struct fw_card *card = &ctx->ohci->card;
1179	struct descriptor_buffer *desc, *tmp;
1180
1181	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1182		dma_free_coherent(card->device, PAGE_SIZE, desc,
1183			desc->buffer_bus -
1184			((void *)&desc->buffer - (void *)desc));
1185}
1186
1187/* Must be called with ohci->lock held */
1188static struct descriptor *context_get_descriptors(struct context *ctx,
1189						  int z, dma_addr_t *d_bus)
1190{
1191	struct descriptor *d = NULL;
1192	struct descriptor_buffer *desc = ctx->buffer_tail;
1193
1194	if (z * sizeof(*d) > desc->buffer_size)
1195		return NULL;
1196
1197	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1198		/* No room for the descriptor in this buffer, so advance to the
1199		 * next one. */
1200
1201		if (desc->list.next == &ctx->buffer_list) {
1202			/* If there is no free buffer next in the list,
1203			 * allocate one. */
1204			if (context_add_buffer(ctx) < 0)
1205				return NULL;
1206		}
1207		desc = list_entry(desc->list.next,
1208				struct descriptor_buffer, list);
1209		ctx->buffer_tail = desc;
1210	}
1211
1212	d = desc->buffer + desc->used / sizeof(*d);
1213	memset(d, 0, z * sizeof(*d));
1214	*d_bus = desc->buffer_bus + desc->used;
1215
1216	return d;
1217}
1218
1219static void context_run(struct context *ctx, u32 extra)
1220{
1221	struct fw_ohci *ohci = ctx->ohci;
1222
1223	reg_write(ohci, COMMAND_PTR(ctx->regs),
1224		  le32_to_cpu(ctx->last->branch_address));
1225	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1226	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1227	ctx->running = true;
1228	flush_writes(ohci);
1229}
1230
1231static void context_append(struct context *ctx,
1232			   struct descriptor *d, int z, int extra)
1233{
1234	dma_addr_t d_bus;
1235	struct descriptor_buffer *desc = ctx->buffer_tail;
1236	struct descriptor *d_branch;
1237
1238	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1239
1240	desc->used += (z + extra) * sizeof(*d);
1241
1242	wmb(); /* finish init of new descriptors before branch_address update */
1243
1244	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1245	d_branch->branch_address = cpu_to_le32(d_bus | z);
1246
1247	/*
1248	 * VT6306 incorrectly checks only the single descriptor at the
1249	 * CommandPtr when the wake bit is written, so if it's a
1250	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1251	 * the branch address in the first descriptor.
1252	 *
1253	 * Not doing this for transmit contexts since not sure how it interacts
1254	 * with skip addresses.
1255	 */
1256	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1257	    d_branch != ctx->prev &&
1258	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1259	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1260		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1261	}
1262
1263	ctx->prev = d;
1264	ctx->prev_z = z;
1265}
1266
1267static void context_stop(struct context *ctx)
1268{
1269	struct fw_ohci *ohci = ctx->ohci;
1270	u32 reg;
1271	int i;
1272
1273	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1274	ctx->running = false;
1275
1276	for (i = 0; i < 1000; i++) {
1277		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1278		if ((reg & CONTEXT_ACTIVE) == 0)
1279			return;
1280
1281		if (i)
1282			udelay(10);
1283	}
1284	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1285}
1286
1287struct driver_data {
1288	u8 inline_data[8];
1289	struct fw_packet *packet;
1290};
1291
1292/*
1293 * This function apppends a packet to the DMA queue for transmission.
1294 * Must always be called with the ochi->lock held to ensure proper
1295 * generation handling and locking around packet queue manipulation.
1296 */
1297static int at_context_queue_packet(struct context *ctx,
1298				   struct fw_packet *packet)
1299{
1300	struct fw_ohci *ohci = ctx->ohci;
1301	dma_addr_t d_bus, uninitialized_var(payload_bus);
1302	struct driver_data *driver_data;
1303	struct descriptor *d, *last;
1304	__le32 *header;
1305	int z, tcode;
1306
1307	d = context_get_descriptors(ctx, 4, &d_bus);
1308	if (d == NULL) {
1309		packet->ack = RCODE_SEND_ERROR;
1310		return -1;
1311	}
1312
1313	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1314	d[0].res_count = cpu_to_le16(packet->timestamp);
1315
1316	/*
1317	 * The DMA format for asynchronous link packets is different
1318	 * from the IEEE1394 layout, so shift the fields around
1319	 * accordingly.
1320	 */
1321
1322	tcode = (packet->header[0] >> 4) & 0x0f;
1323	header = (__le32 *) &d[1];
1324	switch (tcode) {
1325	case TCODE_WRITE_QUADLET_REQUEST:
1326	case TCODE_WRITE_BLOCK_REQUEST:
1327	case TCODE_WRITE_RESPONSE:
1328	case TCODE_READ_QUADLET_REQUEST:
1329	case TCODE_READ_BLOCK_REQUEST:
1330	case TCODE_READ_QUADLET_RESPONSE:
1331	case TCODE_READ_BLOCK_RESPONSE:
1332	case TCODE_LOCK_REQUEST:
1333	case TCODE_LOCK_RESPONSE:
1334		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1335					(packet->speed << 16));
1336		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1337					(packet->header[0] & 0xffff0000));
1338		header[2] = cpu_to_le32(packet->header[2]);
1339
1340		if (TCODE_IS_BLOCK_PACKET(tcode))
1341			header[3] = cpu_to_le32(packet->header[3]);
1342		else
1343			header[3] = (__force __le32) packet->header[3];
1344
1345		d[0].req_count = cpu_to_le16(packet->header_length);
1346		break;
1347
1348	case TCODE_LINK_INTERNAL:
1349		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1350					(packet->speed << 16));
1351		header[1] = cpu_to_le32(packet->header[1]);
1352		header[2] = cpu_to_le32(packet->header[2]);
1353		d[0].req_count = cpu_to_le16(12);
1354
1355		if (is_ping_packet(&packet->header[1]))
1356			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1357		break;
1358
1359	case TCODE_STREAM_DATA:
1360		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1361					(packet->speed << 16));
1362		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1363		d[0].req_count = cpu_to_le16(8);
1364		break;
1365
1366	default:
1367		/* BUG(); */
1368		packet->ack = RCODE_SEND_ERROR;
1369		return -1;
1370	}
1371
1372	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1373	driver_data = (struct driver_data *) &d[3];
1374	driver_data->packet = packet;
1375	packet->driver_data = driver_data;
1376
1377	if (packet->payload_length > 0) {
1378		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1379			payload_bus = dma_map_single(ohci->card.device,
1380						     packet->payload,
1381						     packet->payload_length,
1382						     DMA_TO_DEVICE);
1383			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1384				packet->ack = RCODE_SEND_ERROR;
1385				return -1;
1386			}
1387			packet->payload_bus	= payload_bus;
1388			packet->payload_mapped	= true;
1389		} else {
1390			memcpy(driver_data->inline_data, packet->payload,
1391			       packet->payload_length);
1392			payload_bus = d_bus + 3 * sizeof(*d);
1393		}
1394
1395		d[2].req_count    = cpu_to_le16(packet->payload_length);
1396		d[2].data_address = cpu_to_le32(payload_bus);
1397		last = &d[2];
1398		z = 3;
1399	} else {
1400		last = &d[0];
1401		z = 2;
1402	}
1403
1404	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1405				     DESCRIPTOR_IRQ_ALWAYS |
1406				     DESCRIPTOR_BRANCH_ALWAYS);
1407
1408	/* FIXME: Document how the locking works. */
1409	if (ohci->generation != packet->generation) {
1410		if (packet->payload_mapped)
1411			dma_unmap_single(ohci->card.device, payload_bus,
1412					 packet->payload_length, DMA_TO_DEVICE);
1413		packet->ack = RCODE_GENERATION;
1414		return -1;
1415	}
1416
1417	context_append(ctx, d, z, 4 - z);
1418
1419	if (ctx->running)
1420		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1421	else
1422		context_run(ctx, 0);
1423
1424	return 0;
1425}
1426
1427static void at_context_flush(struct context *ctx)
1428{
1429	tasklet_disable(&ctx->tasklet);
1430
1431	ctx->flushing = true;
1432	context_tasklet((unsigned long)ctx);
1433	ctx->flushing = false;
1434
1435	tasklet_enable(&ctx->tasklet);
1436}
1437
1438static int handle_at_packet(struct context *context,
1439			    struct descriptor *d,
1440			    struct descriptor *last)
1441{
1442	struct driver_data *driver_data;
1443	struct fw_packet *packet;
1444	struct fw_ohci *ohci = context->ohci;
1445	int evt;
1446
1447	if (last->transfer_status == 0 && !context->flushing)
1448		/* This descriptor isn't done yet, stop iteration. */
1449		return 0;
1450
1451	driver_data = (struct driver_data *) &d[3];
1452	packet = driver_data->packet;
1453	if (packet == NULL)
1454		/* This packet was cancelled, just continue. */
1455		return 1;
1456
1457	if (packet->payload_mapped)
1458		dma_unmap_single(ohci->card.device, packet->payload_bus,
1459				 packet->payload_length, DMA_TO_DEVICE);
1460
1461	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1462	packet->timestamp = le16_to_cpu(last->res_count);
1463
1464	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1465
1466	switch (evt) {
1467	case OHCI1394_evt_timeout:
1468		/* Async response transmit timed out. */
1469		packet->ack = RCODE_CANCELLED;
1470		break;
1471
1472	case OHCI1394_evt_flushed:
1473		/*
1474		 * The packet was flushed should give same error as
1475		 * when we try to use a stale generation count.
1476		 */
1477		packet->ack = RCODE_GENERATION;
1478		break;
1479
1480	case OHCI1394_evt_missing_ack:
1481		if (context->flushing)
1482			packet->ack = RCODE_GENERATION;
1483		else {
1484			/*
1485			 * Using a valid (current) generation count, but the
1486			 * node is not on the bus or not sending acks.
1487			 */
1488			packet->ack = RCODE_NO_ACK;
1489		}
1490		break;
1491
1492	case ACK_COMPLETE + 0x10:
1493	case ACK_PENDING + 0x10:
1494	case ACK_BUSY_X + 0x10:
1495	case ACK_BUSY_A + 0x10:
1496	case ACK_BUSY_B + 0x10:
1497	case ACK_DATA_ERROR + 0x10:
1498	case ACK_TYPE_ERROR + 0x10:
1499		packet->ack = evt - 0x10;
1500		break;
1501
1502	case OHCI1394_evt_no_status:
1503		if (context->flushing) {
1504			packet->ack = RCODE_GENERATION;
1505			break;
1506		}
1507		/* fall through */
1508
1509	default:
1510		packet->ack = RCODE_SEND_ERROR;
1511		break;
1512	}
1513
1514	packet->callback(packet, &ohci->card, packet->ack);
1515
1516	return 1;
1517}
1518
1519#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1520#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1521#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1522#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1523#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1524
1525static void handle_local_rom(struct fw_ohci *ohci,
1526			     struct fw_packet *packet, u32 csr)
1527{
1528	struct fw_packet response;
1529	int tcode, length, i;
1530
1531	tcode = HEADER_GET_TCODE(packet->header[0]);
1532	if (TCODE_IS_BLOCK_PACKET(tcode))
1533		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1534	else
1535		length = 4;
1536
1537	i = csr - CSR_CONFIG_ROM;
1538	if (i + length > CONFIG_ROM_SIZE) {
1539		fw_fill_response(&response, packet->header,
1540				 RCODE_ADDRESS_ERROR, NULL, 0);
1541	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1542		fw_fill_response(&response, packet->header,
1543				 RCODE_TYPE_ERROR, NULL, 0);
1544	} else {
1545		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1546				 (void *) ohci->config_rom + i, length);
1547	}
1548
1549	fw_core_handle_response(&ohci->card, &response);
1550}
1551
1552static void handle_local_lock(struct fw_ohci *ohci,
1553			      struct fw_packet *packet, u32 csr)
1554{
1555	struct fw_packet response;
1556	int tcode, length, ext_tcode, sel, try;
1557	__be32 *payload, lock_old;
1558	u32 lock_arg, lock_data;
1559
1560	tcode = HEADER_GET_TCODE(packet->header[0]);
1561	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1562	payload = packet->payload;
1563	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1564
1565	if (tcode == TCODE_LOCK_REQUEST &&
1566	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1567		lock_arg = be32_to_cpu(payload[0]);
1568		lock_data = be32_to_cpu(payload[1]);
1569	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1570		lock_arg = 0;
1571		lock_data = 0;
1572	} else {
1573		fw_fill_response(&response, packet->header,
1574				 RCODE_TYPE_ERROR, NULL, 0);
1575		goto out;
1576	}
1577
1578	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1579	reg_write(ohci, OHCI1394_CSRData, lock_data);
1580	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1581	reg_write(ohci, OHCI1394_CSRControl, sel);
1582
1583	for (try = 0; try < 20; try++)
1584		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1585			lock_old = cpu_to_be32(reg_read(ohci,
1586							OHCI1394_CSRData));
1587			fw_fill_response(&response, packet->header,
1588					 RCODE_COMPLETE,
1589					 &lock_old, sizeof(lock_old));
1590			goto out;
1591		}
1592
1593	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1594	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1595
1596 out:
1597	fw_core_handle_response(&ohci->card, &response);
1598}
1599
1600static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1601{
1602	u64 offset, csr;
1603
1604	if (ctx == &ctx->ohci->at_request_ctx) {
1605		packet->ack = ACK_PENDING;
1606		packet->callback(packet, &ctx->ohci->card, packet->ack);
1607	}
1608
1609	offset =
1610		((unsigned long long)
1611		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1612		packet->header[2];
1613	csr = offset - CSR_REGISTER_BASE;
1614
1615	/* Handle config rom reads. */
1616	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1617		handle_local_rom(ctx->ohci, packet, csr);
1618	else switch (csr) {
1619	case CSR_BUS_MANAGER_ID:
1620	case CSR_BANDWIDTH_AVAILABLE:
1621	case CSR_CHANNELS_AVAILABLE_HI:
1622	case CSR_CHANNELS_AVAILABLE_LO:
1623		handle_local_lock(ctx->ohci, packet, csr);
1624		break;
1625	default:
1626		if (ctx == &ctx->ohci->at_request_ctx)
1627			fw_core_handle_request(&ctx->ohci->card, packet);
1628		else
1629			fw_core_handle_response(&ctx->ohci->card, packet);
1630		break;
1631	}
1632
1633	if (ctx == &ctx->ohci->at_response_ctx) {
1634		packet->ack = ACK_COMPLETE;
1635		packet->callback(packet, &ctx->ohci->card, packet->ack);
1636	}
1637}
1638
1639static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1640{
1641	unsigned long flags;
1642	int ret;
1643
1644	spin_lock_irqsave(&ctx->ohci->lock, flags);
1645
1646	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1647	    ctx->ohci->generation == packet->generation) {
1648		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1649		handle_local_request(ctx, packet);
1650		return;
1651	}
1652
1653	ret = at_context_queue_packet(ctx, packet);
1654	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1655
1656	if (ret < 0)
1657		packet->callback(packet, &ctx->ohci->card, packet->ack);
1658
1659}
1660
1661static void detect_dead_context(struct fw_ohci *ohci,
1662				const char *name, unsigned int regs)
1663{
1664	u32 ctl;
1665
1666	ctl = reg_read(ohci, CONTROL_SET(regs));
1667	if (ctl & CONTEXT_DEAD)
1668		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1669			name, evts[ctl & 0x1f]);
1670}
1671
1672static void handle_dead_contexts(struct fw_ohci *ohci)
1673{
1674	unsigned int i;
1675	char name[8];
1676
1677	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1678	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1679	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1680	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1681	for (i = 0; i < 32; ++i) {
1682		if (!(ohci->it_context_support & (1 << i)))
1683			continue;
1684		sprintf(name, "IT%u", i);
1685		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1686	}
1687	for (i = 0; i < 32; ++i) {
1688		if (!(ohci->ir_context_support & (1 << i)))
1689			continue;
1690		sprintf(name, "IR%u", i);
1691		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1692	}
1693	/* TODO: maybe try to flush and restart the dead contexts */
1694}
1695
1696static u32 cycle_timer_ticks(u32 cycle_timer)
1697{
1698	u32 ticks;
1699
1700	ticks = cycle_timer & 0xfff;
1701	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1702	ticks += (3072 * 8000) * (cycle_timer >> 25);
1703
1704	return ticks;
1705}
1706
1707/*
1708 * Some controllers exhibit one or more of the following bugs when updating the
1709 * iso cycle timer register:
1710 *  - When the lowest six bits are wrapping around to zero, a read that happens
1711 *    at the same time will return garbage in the lowest ten bits.
1712 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1713 *    not incremented for about 60 ns.
1714 *  - Occasionally, the entire register reads zero.
1715 *
1716 * To catch these, we read the register three times and ensure that the
1717 * difference between each two consecutive reads is approximately the same, i.e.
1718 * less than twice the other.  Furthermore, any negative difference indicates an
1719 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1720 * execute, so we have enough precision to compute the ratio of the differences.)
1721 */
1722static u32 get_cycle_time(struct fw_ohci *ohci)
1723{
1724	u32 c0, c1, c2;
1725	u32 t0, t1, t2;
1726	s32 diff01, diff12;
1727	int i;
1728
1729	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1730
1731	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1732		i = 0;
1733		c1 = c2;
1734		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1735		do {
1736			c0 = c1;
1737			c1 = c2;
1738			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1739			t0 = cycle_timer_ticks(c0);
1740			t1 = cycle_timer_ticks(c1);
1741			t2 = cycle_timer_ticks(c2);
1742			diff01 = t1 - t0;
1743			diff12 = t2 - t1;
1744		} while ((diff01 <= 0 || diff12 <= 0 ||
1745			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1746			 && i++ < 20);
1747	}
1748
1749	return c2;
1750}
1751
1752/*
1753 * This function has to be called at least every 64 seconds.  The bus_time
1754 * field stores not only the upper 25 bits of the BUS_TIME register but also
1755 * the most significant bit of the cycle timer in bit 6 so that we can detect
1756 * changes in this bit.
1757 */
1758static u32 update_bus_time(struct fw_ohci *ohci)
1759{
1760	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1761
1762	if (unlikely(!ohci->bus_time_running)) {
1763		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1764		ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1765		                 (cycle_time_seconds & 0x40);
1766		ohci->bus_time_running = true;
1767	}
1768
1769	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1770		ohci->bus_time += 0x40;
1771
1772	return ohci->bus_time | cycle_time_seconds;
1773}
1774
1775static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1776{
1777	int reg;
1778
1779	mutex_lock(&ohci->phy_reg_mutex);
1780	reg = write_phy_reg(ohci, 7, port_index);
1781	if (reg >= 0)
1782		reg = read_phy_reg(ohci, 8);
1783	mutex_unlock(&ohci->phy_reg_mutex);
1784	if (reg < 0)
1785		return reg;
1786
1787	switch (reg & 0x0f) {
1788	case 0x06:
1789		return 2;	/* is child node (connected to parent node) */
1790	case 0x0e:
1791		return 3;	/* is parent node (connected to child node) */
1792	}
1793	return 1;		/* not connected */
1794}
1795
1796static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1797	int self_id_count)
1798{
1799	int i;
1800	u32 entry;
1801
1802	for (i = 0; i < self_id_count; i++) {
1803		entry = ohci->self_id_buffer[i];
1804		if ((self_id & 0xff000000) == (entry & 0xff000000))
1805			return -1;
1806		if ((self_id & 0xff000000) < (entry & 0xff000000))
1807			return i;
1808	}
1809	return i;
1810}
1811
1812static int initiated_reset(struct fw_ohci *ohci)
1813{
1814	int reg;
1815	int ret = 0;
1816
1817	mutex_lock(&ohci->phy_reg_mutex);
1818	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1819	if (reg >= 0) {
1820		reg = read_phy_reg(ohci, 8);
1821		reg |= 0x40;
1822		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1823		if (reg >= 0) {
1824			reg = read_phy_reg(ohci, 12); /* read register 12 */
1825			if (reg >= 0) {
1826				if ((reg & 0x08) == 0x08) {
1827					/* bit 3 indicates "initiated reset" */
1828					ret = 0x2;
1829				}
1830			}
1831		}
1832	}
1833	mutex_unlock(&ohci->phy_reg_mutex);
1834	return ret;
1835}
1836
1837/*
1838 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1839 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1840 * Construct the selfID from phy register contents.
1841 */
1842static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1843{
1844	int reg, i, pos, status;
1845	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1846	u32 self_id = 0x8040c800;
1847
1848	reg = reg_read(ohci, OHCI1394_NodeID);
1849	if (!(reg & OHCI1394_NodeID_idValid)) {
1850		ohci_notice(ohci,
1851			    "node ID not valid, new bus reset in progress\n");
1852		return -EBUSY;
1853	}
1854	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1855
1856	reg = ohci_read_phy_reg(&ohci->card, 4);
1857	if (reg < 0)
1858		return reg;
1859	self_id |= ((reg & 0x07) << 8); /* power class */
1860
1861	reg = ohci_read_phy_reg(&ohci->card, 1);
1862	if (reg < 0)
1863		return reg;
1864	self_id |= ((reg & 0x3f) << 16); /* gap count */
1865
1866	for (i = 0; i < 3; i++) {
1867		status = get_status_for_port(ohci, i);
1868		if (status < 0)
1869			return status;
1870		self_id |= ((status & 0x3) << (6 - (i * 2)));
1871	}
1872
1873	self_id |= initiated_reset(ohci);
1874
1875	pos = get_self_id_pos(ohci, self_id, self_id_count);
1876	if (pos >= 0) {
1877		memmove(&(ohci->self_id_buffer[pos+1]),
1878			&(ohci->self_id_buffer[pos]),
1879			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1880		ohci->self_id_buffer[pos] = self_id;
1881		self_id_count++;
1882	}
1883	return self_id_count;
1884}
1885
1886static void bus_reset_work(struct work_struct *work)
1887{
1888	struct fw_ohci *ohci =
1889		container_of(work, struct fw_ohci, bus_reset_work);
1890	int self_id_count, generation, new_generation, i, j;
1891	u32 reg;
1892	void *free_rom = NULL;
1893	dma_addr_t free_rom_bus = 0;
1894	bool is_new_root;
1895
1896	reg = reg_read(ohci, OHCI1394_NodeID);
1897	if (!(reg & OHCI1394_NodeID_idValid)) {
1898		ohci_notice(ohci,
1899			    "node ID not valid, new bus reset in progress\n");
1900		return;
1901	}
1902	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1903		ohci_notice(ohci, "malconfigured bus\n");
1904		return;
1905	}
1906	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1907			       OHCI1394_NodeID_nodeNumber);
1908
1909	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1910	if (!(ohci->is_root && is_new_root))
1911		reg_write(ohci, OHCI1394_LinkControlSet,
1912			  OHCI1394_LinkControl_cycleMaster);
1913	ohci->is_root = is_new_root;
1914
1915	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1916	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1917		ohci_notice(ohci, "self ID receive error\n");
1918		return;
1919	}
1920	/*
1921	 * The count in the SelfIDCount register is the number of
1922	 * bytes in the self ID receive buffer.  Since we also receive
1923	 * the inverted quadlets and a header quadlet, we shift one
1924	 * bit extra to get the actual number of self IDs.
1925	 */
1926	self_id_count = (reg >> 3) & 0xff;
1927
1928	if (self_id_count > 252) {
1929		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1930		return;
1931	}
1932
1933	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1934	rmb();
1935
1936	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1937		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1938		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1939
1940		if (id != ~id2) {
1941			/*
1942			 * If the invalid data looks like a cycle start packet,
1943			 * it's likely to be the result of the cycle master
1944			 * having a wrong gap count.  In this case, the self IDs
1945			 * so far are valid and should be processed so that the
1946			 * bus manager can then correct the gap count.
1947			 */
1948			if (id == 0xffff008f) {
1949				ohci_notice(ohci, "ignoring spurious self IDs\n");
1950				self_id_count = j;
1951				break;
1952			}
1953
1954			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1955				    j, self_id_count, id, id2);
1956			return;
1957		}
1958		ohci->self_id_buffer[j] = id;
1959	}
1960
1961	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1962		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1963		if (self_id_count < 0) {
1964			ohci_notice(ohci,
1965				    "could not construct local self ID\n");
1966			return;
1967		}
1968	}
1969
1970	if (self_id_count == 0) {
1971		ohci_notice(ohci, "no self IDs\n");
1972		return;
1973	}
1974	rmb();
1975
1976	/*
1977	 * Check the consistency of the self IDs we just read.  The
1978	 * problem we face is that a new bus reset can start while we
1979	 * read out the self IDs from the DMA buffer. If this happens,
1980	 * the DMA buffer will be overwritten with new self IDs and we
1981	 * will read out inconsistent data.  The OHCI specification
1982	 * (section 11.2) recommends a technique similar to
1983	 * linux/seqlock.h, where we remember the generation of the
1984	 * self IDs in the buffer before reading them out and compare
1985	 * it to the current generation after reading them out.  If
1986	 * the two generations match we know we have a consistent set
1987	 * of self IDs.
1988	 */
1989
1990	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1991	if (new_generation != generation) {
1992		ohci_notice(ohci, "new bus reset, discarding self ids\n");
1993		return;
1994	}
1995
1996	/* FIXME: Document how the locking works. */
1997	spin_lock_irq(&ohci->lock);
1998
1999	ohci->generation = -1; /* prevent AT packet queueing */
2000	context_stop(&ohci->at_request_ctx);
2001	context_stop(&ohci->at_response_ctx);
2002
2003	spin_unlock_irq(&ohci->lock);
2004
2005	/*
2006	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2007	 * packets in the AT queues and software needs to drain them.
2008	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2009	 */
2010	at_context_flush(&ohci->at_request_ctx);
2011	at_context_flush(&ohci->at_response_ctx);
2012
2013	spin_lock_irq(&ohci->lock);
2014
2015	ohci->generation = generation;
2016	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2017
2018	if (ohci->quirks & QUIRK_RESET_PACKET)
2019		ohci->request_generation = generation;
2020
2021	/*
2022	 * This next bit is unrelated to the AT context stuff but we
2023	 * have to do it under the spinlock also.  If a new config rom
2024	 * was set up before this reset, the old one is now no longer
2025	 * in use and we can free it. Update the config rom pointers
2026	 * to point to the current config rom and clear the
2027	 * next_config_rom pointer so a new update can take place.
2028	 */
2029
2030	if (ohci->next_config_rom != NULL) {
2031		if (ohci->next_config_rom != ohci->config_rom) {
2032			free_rom      = ohci->config_rom;
2033			free_rom_bus  = ohci->config_rom_bus;
2034		}
2035		ohci->config_rom      = ohci->next_config_rom;
2036		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2037		ohci->next_config_rom = NULL;
2038
2039		/*
2040		 * Restore config_rom image and manually update
2041		 * config_rom registers.  Writing the header quadlet
2042		 * will indicate that the config rom is ready, so we
2043		 * do that last.
2044		 */
2045		reg_write(ohci, OHCI1394_BusOptions,
2046			  be32_to_cpu(ohci->config_rom[2]));
2047		ohci->config_rom[0] = ohci->next_header;
2048		reg_write(ohci, OHCI1394_ConfigROMhdr,
2049			  be32_to_cpu(ohci->next_header));
2050	}
2051
2052	if (param_remote_dma) {
2053		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2054		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2055	}
2056
2057	spin_unlock_irq(&ohci->lock);
2058
2059	if (free_rom)
2060		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2061				  free_rom, free_rom_bus);
2062
2063	log_selfids(ohci, generation, self_id_count);
2064
2065	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2066				 self_id_count, ohci->self_id_buffer,
2067				 ohci->csr_state_setclear_abdicate);
2068	ohci->csr_state_setclear_abdicate = false;
2069}
2070
2071static irqreturn_t irq_handler(int irq, void *data)
2072{
2073	struct fw_ohci *ohci = data;
2074	u32 event, iso_event;
2075	int i;
2076
2077	event = reg_read(ohci, OHCI1394_IntEventClear);
2078
2079	if (!event || !~event)
2080		return IRQ_NONE;
2081
2082	/*
2083	 * busReset and postedWriteErr must not be cleared yet
2084	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2085	 */
2086	reg_write(ohci, OHCI1394_IntEventClear,
2087		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2088	log_irqs(ohci, event);
2089
2090	if (event & OHCI1394_selfIDComplete)
2091		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2092
2093	if (event & OHCI1394_RQPkt)
2094		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2095
2096	if (event & OHCI1394_RSPkt)
2097		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2098
2099	if (event & OHCI1394_reqTxComplete)
2100		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2101
2102	if (event & OHCI1394_respTxComplete)
2103		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2104
2105	if (event & OHCI1394_isochRx) {
2106		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2107		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2108
2109		while (iso_event) {
2110			i = ffs(iso_event) - 1;
2111			tasklet_schedule(
2112				&ohci->ir_context_list[i].context.tasklet);
2113			iso_event &= ~(1 << i);
2114		}
2115	}
2116
2117	if (event & OHCI1394_isochTx) {
2118		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2119		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2120
2121		while (iso_event) {
2122			i = ffs(iso_event) - 1;
2123			tasklet_schedule(
2124				&ohci->it_context_list[i].context.tasklet);
2125			iso_event &= ~(1 << i);
2126		}
2127	}
2128
2129	if (unlikely(event & OHCI1394_regAccessFail))
2130		ohci_err(ohci, "register access failure\n");
2131
2132	if (unlikely(event & OHCI1394_postedWriteErr)) {
2133		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2134		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2135		reg_write(ohci, OHCI1394_IntEventClear,
2136			  OHCI1394_postedWriteErr);
2137		if (printk_ratelimit())
2138			ohci_err(ohci, "PCI posted write error\n");
2139	}
2140
2141	if (unlikely(event & OHCI1394_cycleTooLong)) {
2142		if (printk_ratelimit())
2143			ohci_notice(ohci, "isochronous cycle too long\n");
2144		reg_write(ohci, OHCI1394_LinkControlSet,
2145			  OHCI1394_LinkControl_cycleMaster);
2146	}
2147
2148	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2149		/*
2150		 * We need to clear this event bit in order to make
2151		 * cycleMatch isochronous I/O work.  In theory we should
2152		 * stop active cycleMatch iso contexts now and restart
2153		 * them at least two cycles later.  (FIXME?)
2154		 */
2155		if (printk_ratelimit())
2156			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2157	}
2158
2159	if (unlikely(event & OHCI1394_unrecoverableError))
2160		handle_dead_contexts(ohci);
2161
2162	if (event & OHCI1394_cycle64Seconds) {
2163		spin_lock(&ohci->lock);
2164		update_bus_time(ohci);
2165		spin_unlock(&ohci->lock);
2166	} else
2167		flush_writes(ohci);
2168
2169	return IRQ_HANDLED;
2170}
2171
2172static int software_reset(struct fw_ohci *ohci)
2173{
2174	u32 val;
2175	int i;
2176
2177	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2178	for (i = 0; i < 500; i++) {
2179		val = reg_read(ohci, OHCI1394_HCControlSet);
2180		if (!~val)
2181			return -ENODEV; /* Card was ejected. */
2182
2183		if (!(val & OHCI1394_HCControl_softReset))
2184			return 0;
2185
2186		msleep(1);
2187	}
2188
2189	return -EBUSY;
2190}
2191
2192static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2193{
2194	size_t size = length * 4;
2195
2196	memcpy(dest, src, size);
2197	if (size < CONFIG_ROM_SIZE)
2198		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2199}
2200
2201static int configure_1394a_enhancements(struct fw_ohci *ohci)
2202{
2203	bool enable_1394a;
2204	int ret, clear, set, offset;
2205
2206	/* Check if the driver should configure link and PHY. */
2207	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2208	      OHCI1394_HCControl_programPhyEnable))
2209		return 0;
2210
2211	/* Paranoia: check whether the PHY supports 1394a, too. */
2212	enable_1394a = false;
2213	ret = read_phy_reg(ohci, 2);
2214	if (ret < 0)
2215		return ret;
2216	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2217		ret = read_paged_phy_reg(ohci, 1, 8);
2218		if (ret < 0)
2219			return ret;
2220		if (ret >= 1)
2221			enable_1394a = true;
2222	}
2223
2224	if (ohci->quirks & QUIRK_NO_1394A)
2225		enable_1394a = false;
2226
2227	/* Configure PHY and link consistently. */
2228	if (enable_1394a) {
2229		clear = 0;
2230		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2231	} else {
2232		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2233		set = 0;
2234	}
2235	ret = update_phy_reg(ohci, 5, clear, set);
2236	if (ret < 0)
2237		return ret;
2238
2239	if (enable_1394a)
2240		offset = OHCI1394_HCControlSet;
2241	else
2242		offset = OHCI1394_HCControlClear;
2243	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2244
2245	/* Clean up: configuration has been taken care of. */
2246	reg_write(ohci, OHCI1394_HCControlClear,
2247		  OHCI1394_HCControl_programPhyEnable);
2248
2249	return 0;
2250}
2251
2252static int probe_tsb41ba3d(struct fw_ohci *ohci)
2253{
2254	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2255	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2256	int reg, i;
2257
2258	reg = read_phy_reg(ohci, 2);
2259	if (reg < 0)
2260		return reg;
2261	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2262		return 0;
2263
2264	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2265		reg = read_paged_phy_reg(ohci, 1, i + 10);
2266		if (reg < 0)
2267			return reg;
2268		if (reg != id[i])
2269			return 0;
2270	}
2271	return 1;
2272}
2273
2274static int ohci_enable(struct fw_card *card,
2275		       const __be32 *config_rom, size_t length)
2276{
2277	struct fw_ohci *ohci = fw_ohci(card);
2278	u32 lps, version, irqs;
2279	int i, ret;
2280
2281	if (software_reset(ohci)) {
2282		ohci_err(ohci, "failed to reset ohci card\n");
2283		return -EBUSY;
2284	}
2285
2286	/*
2287	 * Now enable LPS, which we need in order to start accessing
2288	 * most of the registers.  In fact, on some cards (ALI M5251),
2289	 * accessing registers in the SClk domain without LPS enabled
2290	 * will lock up the machine.  Wait 50msec to make sure we have
2291	 * full link enabled.  However, with some cards (well, at least
2292	 * a JMicron PCIe card), we have to try again sometimes.
2293	 *
2294	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2295	 * cannot actually use the phy at that time.  These need tens of
2296	 * millisecods pause between LPS write and first phy access too.
2297	 */
2298
2299	reg_write(ohci, OHCI1394_HCControlSet,
2300		  OHCI1394_HCControl_LPS |
2301		  OHCI1394_HCControl_postedWriteEnable);
2302	flush_writes(ohci);
2303
2304	for (lps = 0, i = 0; !lps && i < 3; i++) {
2305		msleep(50);
2306		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2307		      OHCI1394_HCControl_LPS;
2308	}
2309
2310	if (!lps) {
2311		ohci_err(ohci, "failed to set Link Power Status\n");
2312		return -EIO;
2313	}
2314
2315	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2316		ret = probe_tsb41ba3d(ohci);
2317		if (ret < 0)
2318			return ret;
2319		if (ret)
2320			ohci_notice(ohci, "local TSB41BA3D phy\n");
2321		else
2322			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2323	}
2324
2325	reg_write(ohci, OHCI1394_HCControlClear,
2326		  OHCI1394_HCControl_noByteSwapData);
2327
2328	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2329	reg_write(ohci, OHCI1394_LinkControlSet,
2330		  OHCI1394_LinkControl_cycleTimerEnable |
2331		  OHCI1394_LinkControl_cycleMaster);
2332
2333	reg_write(ohci, OHCI1394_ATRetries,
2334		  OHCI1394_MAX_AT_REQ_RETRIES |
2335		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2336		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2337		  (200 << 16));
2338
2339	ohci->bus_time_running = false;
2340
2341	for (i = 0; i < 32; i++)
2342		if (ohci->ir_context_support & (1 << i))
2343			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2344				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2345
2346	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2347	if (version >= OHCI_VERSION_1_1) {
2348		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2349			  0xfffffffe);
2350		card->broadcast_channel_auto_allocated = true;
2351	}
2352
2353	/* Get implemented bits of the priority arbitration request counter. */
2354	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2355	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2356	reg_write(ohci, OHCI1394_FairnessControl, 0);
2357	card->priority_budget_implemented = ohci->pri_req_max != 0;
2358
2359	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2360	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2361	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2362
2363	ret = configure_1394a_enhancements(ohci);
2364	if (ret < 0)
2365		return ret;
2366
2367	/* Activate link_on bit and contender bit in our self ID packets.*/
2368	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2369	if (ret < 0)
2370		return ret;
2371
2372	/*
2373	 * When the link is not yet enabled, the atomic config rom
2374	 * update mechanism described below in ohci_set_config_rom()
2375	 * is not active.  We have to update ConfigRomHeader and
2376	 * BusOptions manually, and the write to ConfigROMmap takes
2377	 * effect immediately.  We tie this to the enabling of the
2378	 * link, so we have a valid config rom before enabling - the
2379	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2380	 * values before enabling.
2381	 *
2382	 * However, when the ConfigROMmap is written, some controllers
2383	 * always read back quadlets 0 and 2 from the config rom to
2384	 * the ConfigRomHeader and BusOptions registers on bus reset.
2385	 * They shouldn't do that in this initial case where the link
2386	 * isn't enabled.  This means we have to use the same
2387	 * workaround here, setting the bus header to 0 and then write
2388	 * the right values in the bus reset tasklet.
2389	 */
2390
2391	if (config_rom) {
2392		ohci->next_config_rom =
2393			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2394					   &ohci->next_config_rom_bus,
2395					   GFP_KERNEL);
2396		if (ohci->next_config_rom == NULL)
2397			return -ENOMEM;
2398
2399		copy_config_rom(ohci->next_config_rom, config_rom, length);
2400	} else {
2401		/*
2402		 * In the suspend case, config_rom is NULL, which
2403		 * means that we just reuse the old config rom.
2404		 */
2405		ohci->next_config_rom = ohci->config_rom;
2406		ohci->next_config_rom_bus = ohci->config_rom_bus;
2407	}
2408
2409	ohci->next_header = ohci->next_config_rom[0];
2410	ohci->next_config_rom[0] = 0;
2411	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2412	reg_write(ohci, OHCI1394_BusOptions,
2413		  be32_to_cpu(ohci->next_config_rom[2]));
2414	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2415
2416	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2417
2418	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2419		OHCI1394_RQPkt | OHCI1394_RSPkt |
2420		OHCI1394_isochTx | OHCI1394_isochRx |
2421		OHCI1394_postedWriteErr |
2422		OHCI1394_selfIDComplete |
2423		OHCI1394_regAccessFail |
2424		OHCI1394_cycleInconsistent |
2425		OHCI1394_unrecoverableError |
2426		OHCI1394_cycleTooLong |
2427		OHCI1394_masterIntEnable;
2428	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2429		irqs |= OHCI1394_busReset;
2430	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2431
2432	reg_write(ohci, OHCI1394_HCControlSet,
2433		  OHCI1394_HCControl_linkEnable |
2434		  OHCI1394_HCControl_BIBimageValid);
2435
2436	reg_write(ohci, OHCI1394_LinkControlSet,
2437		  OHCI1394_LinkControl_rcvSelfID |
2438		  OHCI1394_LinkControl_rcvPhyPkt);
2439
2440	ar_context_run(&ohci->ar_request_ctx);
2441	ar_context_run(&ohci->ar_response_ctx);
2442
2443	flush_writes(ohci);
2444
2445	/* We are ready to go, reset bus to finish initialization. */
2446	fw_schedule_bus_reset(&ohci->card, false, true);
2447
2448	return 0;
2449}
2450
2451static int ohci_set_config_rom(struct fw_card *card,
2452			       const __be32 *config_rom, size_t length)
2453{
2454	struct fw_ohci *ohci;
2455	__be32 *next_config_rom;
2456	dma_addr_t uninitialized_var(next_config_rom_bus);
2457
2458	ohci = fw_ohci(card);
2459
2460	/*
2461	 * When the OHCI controller is enabled, the config rom update
2462	 * mechanism is a bit tricky, but easy enough to use.  See
2463	 * section 5.5.6 in the OHCI specification.
2464	 *
2465	 * The OHCI controller caches the new config rom address in a
2466	 * shadow register (ConfigROMmapNext) and needs a bus reset
2467	 * for the changes to take place.  When the bus reset is
2468	 * detected, the controller loads the new values for the
2469	 * ConfigRomHeader and BusOptions registers from the specified
2470	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2471	 * shadow register. All automatically and atomically.
2472	 *
2473	 * Now, there's a twist to this story.  The automatic load of
2474	 * ConfigRomHeader and BusOptions doesn't honor the
2475	 * noByteSwapData bit, so with a be32 config rom, the
2476	 * controller will load be32 values in to these registers
2477	 * during the atomic update, even on litte endian
2478	 * architectures.  The workaround we use is to put a 0 in the
2479	 * header quadlet; 0 is endian agnostic and means that the
2480	 * config rom isn't ready yet.  In the bus reset tasklet we
2481	 * then set up the real values for the two registers.
2482	 *
2483	 * We use ohci->lock to avoid racing with the code that sets
2484	 * ohci->next_config_rom to NULL (see bus_reset_work).
2485	 */
2486
2487	next_config_rom =
2488		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2489				   &next_config_rom_bus, GFP_KERNEL);
2490	if (next_config_rom == NULL)
2491		return -ENOMEM;
2492
2493	spin_lock_irq(&ohci->lock);
2494
2495	/*
2496	 * If there is not an already pending config_rom update,
2497	 * push our new allocation into the ohci->next_config_rom
2498	 * and then mark the local variable as null so that we
2499	 * won't deallocate the new buffer.
2500	 *
2501	 * OTOH, if there is a pending config_rom update, just
2502	 * use that buffer with the new config_rom data, and
2503	 * let this routine free the unused DMA allocation.
2504	 */
2505
2506	if (ohci->next_config_rom == NULL) {
2507		ohci->next_config_rom = next_config_rom;
2508		ohci->next_config_rom_bus = next_config_rom_bus;
2509		next_config_rom = NULL;
2510	}
2511
2512	copy_config_rom(ohci->next_config_rom, config_rom, length);
2513
2514	ohci->next_header = config_rom[0];
2515	ohci->next_config_rom[0] = 0;
2516
2517	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2518
2519	spin_unlock_irq(&ohci->lock);
2520
2521	/* If we didn't use the DMA allocation, delete it. */
2522	if (next_config_rom != NULL)
2523		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2524				  next_config_rom, next_config_rom_bus);
2525
2526	/*
2527	 * Now initiate a bus reset to have the changes take
2528	 * effect. We clean up the old config rom memory and DMA
2529	 * mappings in the bus reset tasklet, since the OHCI
2530	 * controller could need to access it before the bus reset
2531	 * takes effect.
2532	 */
2533
2534	fw_schedule_bus_reset(&ohci->card, true, true);
2535
2536	return 0;
2537}
2538
2539static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2540{
2541	struct fw_ohci *ohci = fw_ohci(card);
2542
2543	at_context_transmit(&ohci->at_request_ctx, packet);
2544}
2545
2546static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2547{
2548	struct fw_ohci *ohci = fw_ohci(card);
2549
2550	at_context_transmit(&ohci->at_response_ctx, packet);
2551}
2552
2553static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2554{
2555	struct fw_ohci *ohci = fw_ohci(card);
2556	struct context *ctx = &ohci->at_request_ctx;
2557	struct driver_data *driver_data = packet->driver_data;
2558	int ret = -ENOENT;
2559
2560	tasklet_disable(&ctx->tasklet);
2561
2562	if (packet->ack != 0)
2563		goto out;
2564
2565	if (packet->payload_mapped)
2566		dma_unmap_single(ohci->card.device, packet->payload_bus,
2567				 packet->payload_length, DMA_TO_DEVICE);
2568
2569	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2570	driver_data->packet = NULL;
2571	packet->ack = RCODE_CANCELLED;
2572	packet->callback(packet, &ohci->card, packet->ack);
2573	ret = 0;
2574 out:
2575	tasklet_enable(&ctx->tasklet);
2576
2577	return ret;
2578}
2579
2580static int ohci_enable_phys_dma(struct fw_card *card,
2581				int node_id, int generation)
2582{
2583	struct fw_ohci *ohci = fw_ohci(card);
2584	unsigned long flags;
2585	int n, ret = 0;
2586
2587	if (param_remote_dma)
2588		return 0;
2589
2590	/*
2591	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2592	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2593	 */
2594
2595	spin_lock_irqsave(&ohci->lock, flags);
2596
2597	if (ohci->generation != generation) {
2598		ret = -ESTALE;
2599		goto out;
2600	}
2601
2602	/*
2603	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2604	 * enabled for _all_ nodes on remote buses.
2605	 */
2606
2607	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2608	if (n < 32)
2609		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2610	else
2611		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2612
2613	flush_writes(ohci);
2614 out:
2615	spin_unlock_irqrestore(&ohci->lock, flags);
2616
2617	return ret;
2618}
2619
2620static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2621{
2622	struct fw_ohci *ohci = fw_ohci(card);
2623	unsigned long flags;
2624	u32 value;
2625
2626	switch (csr_offset) {
2627	case CSR_STATE_CLEAR:
2628	case CSR_STATE_SET:
2629		if (ohci->is_root &&
2630		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2631		     OHCI1394_LinkControl_cycleMaster))
2632			value = CSR_STATE_BIT_CMSTR;
2633		else
2634			value = 0;
2635		if (ohci->csr_state_setclear_abdicate)
2636			value |= CSR_STATE_BIT_ABDICATE;
2637
2638		return value;
2639
2640	case CSR_NODE_IDS:
2641		return reg_read(ohci, OHCI1394_NodeID) << 16;
2642
2643	case CSR_CYCLE_TIME:
2644		return get_cycle_time(ohci);
2645
2646	case CSR_BUS_TIME:
2647		/*
2648		 * We might be called just after the cycle timer has wrapped
2649		 * around but just before the cycle64Seconds handler, so we
2650		 * better check here, too, if the bus time needs to be updated.
2651		 */
2652		spin_lock_irqsave(&ohci->lock, flags);
2653		value = update_bus_time(ohci);
2654		spin_unlock_irqrestore(&ohci->lock, flags);
2655		return value;
2656
2657	case CSR_BUSY_TIMEOUT:
2658		value = reg_read(ohci, OHCI1394_ATRetries);
2659		return (value >> 4) & 0x0ffff00f;
2660
2661	case CSR_PRIORITY_BUDGET:
2662		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2663			(ohci->pri_req_max << 8);
2664
2665	default:
2666		WARN_ON(1);
2667		return 0;
2668	}
2669}
2670
2671static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2672{
2673	struct fw_ohci *ohci = fw_ohci(card);
2674	unsigned long flags;
2675
2676	switch (csr_offset) {
2677	case CSR_STATE_CLEAR:
2678		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2679			reg_write(ohci, OHCI1394_LinkControlClear,
2680				  OHCI1394_LinkControl_cycleMaster);
2681			flush_writes(ohci);
2682		}
2683		if (value & CSR_STATE_BIT_ABDICATE)
2684			ohci->csr_state_setclear_abdicate = false;
2685		break;
2686
2687	case CSR_STATE_SET:
2688		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2689			reg_write(ohci, OHCI1394_LinkControlSet,
2690				  OHCI1394_LinkControl_cycleMaster);
2691			flush_writes(ohci);
2692		}
2693		if (value & CSR_STATE_BIT_ABDICATE)
2694			ohci->csr_state_setclear_abdicate = true;
2695		break;
2696
2697	case CSR_NODE_IDS:
2698		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2699		flush_writes(ohci);
2700		break;
2701
2702	case CSR_CYCLE_TIME:
2703		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2704		reg_write(ohci, OHCI1394_IntEventSet,
2705			  OHCI1394_cycleInconsistent);
2706		flush_writes(ohci);
2707		break;
2708
2709	case CSR_BUS_TIME:
2710		spin_lock_irqsave(&ohci->lock, flags);
2711		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2712		                 (value & ~0x7f);
2713		spin_unlock_irqrestore(&ohci->lock, flags);
2714		break;
2715
2716	case CSR_BUSY_TIMEOUT:
2717		value = (value & 0xf) | ((value & 0xf) << 4) |
2718			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2719		reg_write(ohci, OHCI1394_ATRetries, value);
2720		flush_writes(ohci);
2721		break;
2722
2723	case CSR_PRIORITY_BUDGET:
2724		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2725		flush_writes(ohci);
2726		break;
2727
2728	default:
2729		WARN_ON(1);
2730		break;
2731	}
2732}
2733
2734static void flush_iso_completions(struct iso_context *ctx)
2735{
2736	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2737			      ctx->header_length, ctx->header,
2738			      ctx->base.callback_data);
2739	ctx->header_length = 0;
2740}
2741
2742static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2743{
2744	u32 *ctx_hdr;
2745
2746	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2747		if (ctx->base.drop_overflow_headers)
2748			return;
2749		flush_iso_completions(ctx);
2750	}
2751
2752	ctx_hdr = ctx->header + ctx->header_length;
2753	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2754
2755	/*
2756	 * The two iso header quadlets are byteswapped to little
2757	 * endian by the controller, but we want to present them
2758	 * as big endian for consistency with the bus endianness.
2759	 */
2760	if (ctx->base.header_size > 0)
2761		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2762	if (ctx->base.header_size > 4)
2763		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2764	if (ctx->base.header_size > 8)
2765		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2766	ctx->header_length += ctx->base.header_size;
2767}
2768
2769static int handle_ir_packet_per_buffer(struct context *context,
2770				       struct descriptor *d,
2771				       struct descriptor *last)
2772{
2773	struct iso_context *ctx =
2774		container_of(context, struct iso_context, context);
2775	struct descriptor *pd;
2776	u32 buffer_dma;
2777
2778	for (pd = d; pd <= last; pd++)
2779		if (pd->transfer_status)
2780			break;
2781	if (pd > last)
2782		/* Descriptor(s) not done yet, stop iteration */
2783		return 0;
2784
2785	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2786		d++;
2787		buffer_dma = le32_to_cpu(d->data_address);
2788		dma_sync_single_range_for_cpu(context->ohci->card.device,
2789					      buffer_dma & PAGE_MASK,
2790					      buffer_dma & ~PAGE_MASK,
2791					      le16_to_cpu(d->req_count),
2792					      DMA_FROM_DEVICE);
2793	}
2794
2795	copy_iso_headers(ctx, (u32 *) (last + 1));
2796
2797	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2798		flush_iso_completions(ctx);
2799
2800	return 1;
2801}
2802
2803/* d == last because each descriptor block is only a single descriptor. */
2804static int handle_ir_buffer_fill(struct context *context,
2805				 struct descriptor *d,
2806				 struct descriptor *last)
2807{
2808	struct iso_context *ctx =
2809		container_of(context, struct iso_context, context);
2810	unsigned int req_count, res_count, completed;
2811	u32 buffer_dma;
2812
2813	req_count = le16_to_cpu(last->req_count);
2814	res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2815	completed = req_count - res_count;
2816	buffer_dma = le32_to_cpu(last->data_address);
2817
2818	if (completed > 0) {
2819		ctx->mc_buffer_bus = buffer_dma;
2820		ctx->mc_completed = completed;
2821	}
2822
2823	if (res_count != 0)
2824		/* Descriptor(s) not done yet, stop iteration */
2825		return 0;
2826
2827	dma_sync_single_range_for_cpu(context->ohci->card.device,
2828				      buffer_dma & PAGE_MASK,
2829				      buffer_dma & ~PAGE_MASK,
2830				      completed, DMA_FROM_DEVICE);
2831
2832	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2833		ctx->base.callback.mc(&ctx->base,
2834				      buffer_dma + completed,
2835				      ctx->base.callback_data);
2836		ctx->mc_completed = 0;
2837	}
2838
2839	return 1;
2840}
2841
2842static void flush_ir_buffer_fill(struct iso_context *ctx)
2843{
2844	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2845				      ctx->mc_buffer_bus & PAGE_MASK,
2846				      ctx->mc_buffer_bus & ~PAGE_MASK,
2847				      ctx->mc_completed, DMA_FROM_DEVICE);
2848
2849	ctx->base.callback.mc(&ctx->base,
2850			      ctx->mc_buffer_bus + ctx->mc_completed,
2851			      ctx->base.callback_data);
2852	ctx->mc_completed = 0;
2853}
2854
2855static inline void sync_it_packet_for_cpu(struct context *context,
2856					  struct descriptor *pd)
2857{
2858	__le16 control;
2859	u32 buffer_dma;
2860
2861	/* only packets beginning with OUTPUT_MORE* have data buffers */
2862	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2863		return;
2864
2865	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2866	pd += 2;
2867
2868	/*
2869	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2870	 * data buffer is in the context program's coherent page and must not
2871	 * be synced.
2872	 */
2873	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2874	    (context->current_bus          & PAGE_MASK)) {
2875		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2876			return;
2877		pd++;
2878	}
2879
2880	do {
2881		buffer_dma = le32_to_cpu(pd->data_address);
2882		dma_sync_single_range_for_cpu(context->ohci->card.device,
2883					      buffer_dma & PAGE_MASK,
2884					      buffer_dma & ~PAGE_MASK,
2885					      le16_to_cpu(pd->req_count),
2886					      DMA_TO_DEVICE);
2887		control = pd->control;
2888		pd++;
2889	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2890}
2891
2892static int handle_it_packet(struct context *context,
2893			    struct descriptor *d,
2894			    struct descriptor *last)
2895{
2896	struct iso_context *ctx =
2897		container_of(context, struct iso_context, context);
2898	struct descriptor *pd;
2899	__be32 *ctx_hdr;
2900
2901	for (pd = d; pd <= last; pd++)
2902		if (pd->transfer_status)
2903			break;
2904	if (pd > last)
2905		/* Descriptor(s) not done yet, stop iteration */
2906		return 0;
2907
2908	sync_it_packet_for_cpu(context, d);
2909
2910	if (ctx->header_length + 4 > PAGE_SIZE) {
2911		if (ctx->base.drop_overflow_headers)
2912			return 1;
2913		flush_iso_completions(ctx);
2914	}
2915
2916	ctx_hdr = ctx->header + ctx->header_length;
2917	ctx->last_timestamp = le16_to_cpu(last->res_count);
2918	/* Present this value as big-endian to match the receive code */
2919	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2920			       le16_to_cpu(pd->res_count));
2921	ctx->header_length += 4;
2922
2923	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2924		flush_iso_completions(ctx);
2925
2926	return 1;
2927}
2928
2929static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2930{
2931	u32 hi = channels >> 32, lo = channels;
2932
2933	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2934	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2935	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2936	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2937	mmiowb();
2938	ohci->mc_channels = channels;
2939}
2940
2941static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2942				int type, int channel, size_t header_size)
2943{
2944	struct fw_ohci *ohci = fw_ohci(card);
2945	struct iso_context *uninitialized_var(ctx);
2946	descriptor_callback_t uninitialized_var(callback);
2947	u64 *uninitialized_var(channels);
2948	u32 *uninitialized_var(mask), uninitialized_var(regs);
2949	int index, ret = -EBUSY;
2950
2951	spin_lock_irq(&ohci->lock);
2952
2953	switch (type) {
2954	case FW_ISO_CONTEXT_TRANSMIT:
2955		mask     = &ohci->it_context_mask;
2956		callback = handle_it_packet;
2957		index    = ffs(*mask) - 1;
2958		if (index >= 0) {
2959			*mask &= ~(1 << index);
2960			regs = OHCI1394_IsoXmitContextBase(index);
2961			ctx  = &ohci->it_context_list[index];
2962		}
2963		break;
2964
2965	case FW_ISO_CONTEXT_RECEIVE:
2966		channels = &ohci->ir_context_channels;
2967		mask     = &ohci->ir_context_mask;
2968		callback = handle_ir_packet_per_buffer;
2969		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2970		if (index >= 0) {
2971			*channels &= ~(1ULL << channel);
2972			*mask     &= ~(1 << index);
2973			regs = OHCI1394_IsoRcvContextBase(index);
2974			ctx  = &ohci->ir_context_list[index];
2975		}
2976		break;
2977
2978	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2979		mask     = &ohci->ir_context_mask;
2980		callback = handle_ir_buffer_fill;
2981		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2982		if (index >= 0) {
2983			ohci->mc_allocated = true;
2984			*mask &= ~(1 << index);
2985			regs = OHCI1394_IsoRcvContextBase(index);
2986			ctx  = &ohci->ir_context_list[index];
2987		}
2988		break;
2989
2990	default:
2991		index = -1;
2992		ret = -ENOSYS;
2993	}
2994
2995	spin_unlock_irq(&ohci->lock);
2996
2997	if (index < 0)
2998		return ERR_PTR(ret);
2999
3000	memset(ctx, 0, sizeof(*ctx));
3001	ctx->header_length = 0;
3002	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3003	if (ctx->header == NULL) {
3004		ret = -ENOMEM;
3005		goto out;
3006	}
3007	ret = context_init(&ctx->context, ohci, regs, callback);
3008	if (ret < 0)
3009		goto out_with_header;
3010
3011	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3012		set_multichannel_mask(ohci, 0);
3013		ctx->mc_completed = 0;
3014	}
3015
3016	return &ctx->base;
3017
3018 out_with_header:
3019	free_page((unsigned long)ctx->header);
3020 out:
3021	spin_lock_irq(&ohci->lock);
3022
3023	switch (type) {
3024	case FW_ISO_CONTEXT_RECEIVE:
3025		*channels |= 1ULL << channel;
3026		break;
3027
3028	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3029		ohci->mc_allocated = false;
3030		break;
3031	}
3032	*mask |= 1 << index;
3033
3034	spin_unlock_irq(&ohci->lock);
3035
3036	return ERR_PTR(ret);
3037}
3038
3039static int ohci_start_iso(struct fw_iso_context *base,
3040			  s32 cycle, u32 sync, u32 tags)
3041{
3042	struct iso_context *ctx = container_of(base, struct iso_context, base);
3043	struct fw_ohci *ohci = ctx->context.ohci;
3044	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3045	int index;
3046
3047	/* the controller cannot start without any queued packets */
3048	if (ctx->context.last->branch_address == 0)
3049		return -ENODATA;
3050
3051	switch (ctx->base.type) {
3052	case FW_ISO_CONTEXT_TRANSMIT:
3053		index = ctx - ohci->it_context_list;
3054		match = 0;
3055		if (cycle >= 0)
3056			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3057				(cycle & 0x7fff) << 16;
3058
3059		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3060		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3061		context_run(&ctx->context, match);
3062		break;
3063
3064	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3065		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3066		/* fall through */
3067	case FW_ISO_CONTEXT_RECEIVE:
3068		index = ctx - ohci->ir_context_list;
3069		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3070		if (cycle >= 0) {
3071			match |= (cycle & 0x07fff) << 12;
3072			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3073		}
3074
3075		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3076		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3077		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3078		context_run(&ctx->context, control);
3079
3080		ctx->sync = sync;
3081		ctx->tags = tags;
3082
3083		break;
3084	}
3085
3086	return 0;
3087}
3088
3089static int ohci_stop_iso(struct fw_iso_context *base)
3090{
3091	struct fw_ohci *ohci = fw_ohci(base->card);
3092	struct iso_context *ctx = container_of(base, struct iso_context, base);
3093	int index;
3094
3095	switch (ctx->base.type) {
3096	case FW_ISO_CONTEXT_TRANSMIT:
3097		index = ctx - ohci->it_context_list;
3098		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3099		break;
3100
3101	case FW_ISO_CONTEXT_RECEIVE:
3102	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3103		index = ctx - ohci->ir_context_list;
3104		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3105		break;
3106	}
3107	flush_writes(ohci);
3108	context_stop(&ctx->context);
3109	tasklet_kill(&ctx->context.tasklet);
3110
3111	return 0;
3112}
3113
3114static void ohci_free_iso_context(struct fw_iso_context *base)
3115{
3116	struct fw_ohci *ohci = fw_ohci(base->card);
3117	struct iso_context *ctx = container_of(base, struct iso_context, base);
3118	unsigned long flags;
3119	int index;
3120
3121	ohci_stop_iso(base);
3122	context_release(&ctx->context);
3123	free_page((unsigned long)ctx->header);
3124
3125	spin_lock_irqsave(&ohci->lock, flags);
3126
3127	switch (base->type) {
3128	case FW_ISO_CONTEXT_TRANSMIT:
3129		index = ctx - ohci->it_context_list;
3130		ohci->it_context_mask |= 1 << index;
3131		break;
3132
3133	case FW_ISO_CONTEXT_RECEIVE:
3134		index = ctx - ohci->ir_context_list;
3135		ohci->ir_context_mask |= 1 << index;
3136		ohci->ir_context_channels |= 1ULL << base->channel;
3137		break;
3138
3139	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3140		index = ctx - ohci->ir_context_list;
3141		ohci->ir_context_mask |= 1 << index;
3142		ohci->ir_context_channels |= ohci->mc_channels;
3143		ohci->mc_channels = 0;
3144		ohci->mc_allocated = false;
3145		break;
3146	}
3147
3148	spin_unlock_irqrestore(&ohci->lock, flags);
3149}
3150
3151static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3152{
3153	struct fw_ohci *ohci = fw_ohci(base->card);
3154	unsigned long flags;
3155	int ret;
3156
3157	switch (base->type) {
3158	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3159
3160		spin_lock_irqsave(&ohci->lock, flags);
3161
3162		/* Don't allow multichannel to grab other contexts' channels. */
3163		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3164			*channels = ohci->ir_context_channels;
3165			ret = -EBUSY;
3166		} else {
3167			set_multichannel_mask(ohci, *channels);
3168			ret = 0;
3169		}
3170
3171		spin_unlock_irqrestore(&ohci->lock, flags);
3172
3173		break;
3174	default:
3175		ret = -EINVAL;
3176	}
3177
3178	return ret;
3179}
3180
3181#ifdef CONFIG_PM
3182static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3183{
3184	int i;
3185	struct iso_context *ctx;
3186
3187	for (i = 0 ; i < ohci->n_ir ; i++) {
3188		ctx = &ohci->ir_context_list[i];
3189		if (ctx->context.running)
3190			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3191	}
3192
3193	for (i = 0 ; i < ohci->n_it ; i++) {
3194		ctx = &ohci->it_context_list[i];
3195		if (ctx->context.running)
3196			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3197	}
3198}
3199#endif
3200
3201static int queue_iso_transmit(struct iso_context *ctx,
3202			      struct fw_iso_packet *packet,
3203			      struct fw_iso_buffer *buffer,
3204			      unsigned long payload)
3205{
3206	struct descriptor *d, *last, *pd;
3207	struct fw_iso_packet *p;
3208	__le32 *header;
3209	dma_addr_t d_bus, page_bus;
3210	u32 z, header_z, payload_z, irq;
3211	u32 payload_index, payload_end_index, next_page_index;
3212	int page, end_page, i, length, offset;
3213
3214	p = packet;
3215	payload_index = payload;
3216
3217	if (p->skip)
3218		z = 1;
3219	else
3220		z = 2;
3221	if (p->header_length > 0)
3222		z++;
3223
3224	/* Determine the first page the payload isn't contained in. */
3225	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3226	if (p->payload_length > 0)
3227		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3228	else
3229		payload_z = 0;
3230
3231	z += payload_z;
3232
3233	/* Get header size in number of descriptors. */
3234	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3235
3236	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3237	if (d == NULL)
3238		return -ENOMEM;
3239
3240	if (!p->skip) {
3241		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3242		d[0].req_count = cpu_to_le16(8);
3243		/*
3244		 * Link the skip address to this descriptor itself.  This causes
3245		 * a context to skip a cycle whenever lost cycles or FIFO
3246		 * overruns occur, without dropping the data.  The application
3247		 * should then decide whether this is an error condition or not.
3248		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3249		 */
3250		d[0].branch_address = cpu_to_le32(d_bus | z);
3251
3252		header = (__le32 *) &d[1];
3253		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3254					IT_HEADER_TAG(p->tag) |
3255					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3256					IT_HEADER_CHANNEL(ctx->base.channel) |
3257					IT_HEADER_SPEED(ctx->base.speed));
3258		header[1] =
3259			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3260							  p->payload_length));
3261	}
3262
3263	if (p->header_length > 0) {
3264		d[2].req_count    = cpu_to_le16(p->header_length);
3265		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3266		memcpy(&d[z], p->header, p->header_length);
3267	}
3268
3269	pd = d + z - payload_z;
3270	payload_end_index = payload_index + p->payload_length;
3271	for (i = 0; i < payload_z; i++) {
3272		page               = payload_index >> PAGE_SHIFT;
3273		offset             = payload_index & ~PAGE_MASK;
3274		next_page_index    = (page + 1) << PAGE_SHIFT;
3275		length             =
3276			min(next_page_index, payload_end_index) - payload_index;
3277		pd[i].req_count    = cpu_to_le16(length);
3278
3279		page_bus = page_private(buffer->pages[page]);
3280		pd[i].data_address = cpu_to_le32(page_bus + offset);
3281
3282		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3283						 page_bus, offset, length,
3284						 DMA_TO_DEVICE);
3285
3286		payload_index += length;
3287	}
3288
3289	if (p->interrupt)
3290		irq = DESCRIPTOR_IRQ_ALWAYS;
3291	else
3292		irq = DESCRIPTOR_NO_IRQ;
3293
3294	last = z == 2 ? d : d + z - 1;
3295	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3296				     DESCRIPTOR_STATUS |
3297				     DESCRIPTOR_BRANCH_ALWAYS |
3298				     irq);
3299
3300	context_append(&ctx->context, d, z, header_z);
3301
3302	return 0;
3303}
3304
3305static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3306				       struct fw_iso_packet *packet,
3307				       struct fw_iso_buffer *buffer,
3308				       unsigned long payload)
3309{
3310	struct device *device = ctx->context.ohci->card.device;
3311	struct descriptor *d, *pd;
3312	dma_addr_t d_bus, page_bus;
3313	u32 z, header_z, rest;
3314	int i, j, length;
3315	int page, offset, packet_count, header_size, payload_per_buffer;
3316
3317	/*
3318	 * The OHCI controller puts the isochronous header and trailer in the
3319	 * buffer, so we need at least 8 bytes.
3320	 */
3321	packet_count = packet->header_length / ctx->base.header_size;
3322	header_size  = max(ctx->base.header_size, (size_t)8);
3323
3324	/* Get header size in number of descriptors. */
3325	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3326	page     = payload >> PAGE_SHIFT;
3327	offset   = payload & ~PAGE_MASK;
3328	payload_per_buffer = packet->payload_length / packet_count;
3329
3330	for (i = 0; i < packet_count; i++) {
3331		/* d points to the header descriptor */
3332		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3333		d = context_get_descriptors(&ctx->context,
3334				z + header_z, &d_bus);
3335		if (d == NULL)
3336			return -ENOMEM;
3337
3338		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3339					      DESCRIPTOR_INPUT_MORE);
3340		if (packet->skip && i == 0)
3341			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3342		d->req_count    = cpu_to_le16(header_size);
3343		d->res_count    = d->req_count;
3344		d->transfer_status = 0;
3345		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3346
3347		rest = payload_per_buffer;
3348		pd = d;
3349		for (j = 1; j < z; j++) {
3350			pd++;
3351			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3352						  DESCRIPTOR_INPUT_MORE);
3353
3354			if (offset + rest < PAGE_SIZE)
3355				length = rest;
3356			else
3357				length = PAGE_SIZE - offset;
3358			pd->req_count = cpu_to_le16(length);
3359			pd->res_count = pd->req_count;
3360			pd->transfer_status = 0;
3361
3362			page_bus = page_private(buffer->pages[page]);
3363			pd->data_address = cpu_to_le32(page_bus + offset);
3364
3365			dma_sync_single_range_for_device(device, page_bus,
3366							 offset, length,
3367							 DMA_FROM_DEVICE);
3368
3369			offset = (offset + length) & ~PAGE_MASK;
3370			rest -= length;
3371			if (offset == 0)
3372				page++;
3373		}
3374		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3375					  DESCRIPTOR_INPUT_LAST |
3376					  DESCRIPTOR_BRANCH_ALWAYS);
3377		if (packet->interrupt && i == packet_count - 1)
3378			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3379
3380		context_append(&ctx->context, d, z, header_z);
3381	}
3382
3383	return 0;
3384}
3385
3386static int queue_iso_buffer_fill(struct iso_context *ctx,
3387				 struct fw_iso_packet *packet,
3388				 struct fw_iso_buffer *buffer,
3389				 unsigned long payload)
3390{
3391	struct descriptor *d;
3392	dma_addr_t d_bus, page_bus;
3393	int page, offset, rest, z, i, length;
3394
3395	page   = payload >> PAGE_SHIFT;
3396	offset = payload & ~PAGE_MASK;
3397	rest   = packet->payload_length;
3398
3399	/* We need one descriptor for each page in the buffer. */
3400	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3401
3402	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3403		return -EFAULT;
3404
3405	for (i = 0; i < z; i++) {
3406		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3407		if (d == NULL)
3408			return -ENOMEM;
3409
3410		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3411					 DESCRIPTOR_BRANCH_ALWAYS);
3412		if (packet->skip && i == 0)
3413			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3414		if (packet->interrupt && i == z - 1)
3415			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3416
3417		if (offset + rest < PAGE_SIZE)
3418			length = rest;
3419		else
3420			length = PAGE_SIZE - offset;
3421		d->req_count = cpu_to_le16(length);
3422		d->res_count = d->req_count;
3423		d->transfer_status = 0;
3424
3425		page_bus = page_private(buffer->pages[page]);
3426		d->data_address = cpu_to_le32(page_bus + offset);
3427
3428		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3429						 page_bus, offset, length,
3430						 DMA_FROM_DEVICE);
3431
3432		rest -= length;
3433		offset = 0;
3434		page++;
3435
3436		context_append(&ctx->context, d, 1, 0);
3437	}
3438
3439	return 0;
3440}
3441
3442static int ohci_queue_iso(struct fw_iso_context *base,
3443			  struct fw_iso_packet *packet,
3444			  struct fw_iso_buffer *buffer,
3445			  unsigned long payload)
3446{
3447	struct iso_context *ctx = container_of(base, struct iso_context, base);
3448	unsigned long flags;
3449	int ret = -ENOSYS;
3450
3451	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3452	switch (base->type) {
3453	case FW_ISO_CONTEXT_TRANSMIT:
3454		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3455		break;
3456	case FW_ISO_CONTEXT_RECEIVE:
3457		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3458		break;
3459	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3460		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3461		break;
3462	}
3463	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3464
3465	return ret;
3466}
3467
3468static void ohci_flush_queue_iso(struct fw_iso_context *base)
3469{
3470	struct context *ctx =
3471			&container_of(base, struct iso_context, base)->context;
3472
3473	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3474}
3475
3476static int ohci_flush_iso_completions(struct fw_iso_context *base)
3477{
3478	struct iso_context *ctx = container_of(base, struct iso_context, base);
3479	int ret = 0;
3480
3481	tasklet_disable(&ctx->context.tasklet);
3482
3483	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3484		context_tasklet((unsigned long)&ctx->context);
3485
3486		switch (base->type) {
3487		case FW_ISO_CONTEXT_TRANSMIT:
3488		case FW_ISO_CONTEXT_RECEIVE:
3489			if (ctx->header_length != 0)
3490				flush_iso_completions(ctx);
3491			break;
3492		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3493			if (ctx->mc_completed != 0)
3494				flush_ir_buffer_fill(ctx);
3495			break;
3496		default:
3497			ret = -ENOSYS;
3498		}
3499
3500		clear_bit_unlock(0, &ctx->flushing_completions);
3501		smp_mb__after_atomic();
3502	}
3503
3504	tasklet_enable(&ctx->context.tasklet);
3505
3506	return ret;
3507}
3508
3509static const struct fw_card_driver ohci_driver = {
3510	.enable			= ohci_enable,
3511	.read_phy_reg		= ohci_read_phy_reg,
3512	.update_phy_reg		= ohci_update_phy_reg,
3513	.set_config_rom		= ohci_set_config_rom,
3514	.send_request		= ohci_send_request,
3515	.send_response		= ohci_send_response,
3516	.cancel_packet		= ohci_cancel_packet,
3517	.enable_phys_dma	= ohci_enable_phys_dma,
3518	.read_csr		= ohci_read_csr,
3519	.write_csr		= ohci_write_csr,
3520
3521	.allocate_iso_context	= ohci_allocate_iso_context,
3522	.free_iso_context	= ohci_free_iso_context,
3523	.set_iso_channels	= ohci_set_iso_channels,
3524	.queue_iso		= ohci_queue_iso,
3525	.flush_queue_iso	= ohci_flush_queue_iso,
3526	.flush_iso_completions	= ohci_flush_iso_completions,
3527	.start_iso		= ohci_start_iso,
3528	.stop_iso		= ohci_stop_iso,
3529};
3530
3531#ifdef CONFIG_PPC_PMAC
3532static void pmac_ohci_on(struct pci_dev *dev)
3533{
3534	if (machine_is(powermac)) {
3535		struct device_node *ofn = pci_device_to_OF_node(dev);
3536
3537		if (ofn) {
3538			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3539			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3540		}
3541	}
3542}
3543
3544static void pmac_ohci_off(struct pci_dev *dev)
3545{
3546	if (machine_is(powermac)) {
3547		struct device_node *ofn = pci_device_to_OF_node(dev);
3548
3549		if (ofn) {
3550			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3551			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3552		}
3553	}
3554}
3555#else
3556static inline void pmac_ohci_on(struct pci_dev *dev) {}
3557static inline void pmac_ohci_off(struct pci_dev *dev) {}
3558#endif /* CONFIG_PPC_PMAC */
3559
3560static int pci_probe(struct pci_dev *dev,
3561			       const struct pci_device_id *ent)
3562{
3563	struct fw_ohci *ohci;
3564	u32 bus_options, max_receive, link_speed, version;
3565	u64 guid;
3566	int i, err;
3567	size_t size;
3568
3569	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3570		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3571		return -ENOSYS;
3572	}
3573
3574	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3575	if (ohci == NULL) {
3576		err = -ENOMEM;
3577		goto fail;
3578	}
3579
3580	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3581
3582	pmac_ohci_on(dev);
3583
3584	err = pci_enable_device(dev);
3585	if (err) {
3586		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3587		goto fail_free;
3588	}
3589
3590	pci_set_master(dev);
3591	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3592	pci_set_drvdata(dev, ohci);
3593
3594	spin_lock_init(&ohci->lock);
3595	mutex_init(&ohci->phy_reg_mutex);
3596
3597	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3598
3599	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3600	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3601		ohci_err(ohci, "invalid MMIO resource\n");
3602		err = -ENXIO;
3603		goto fail_disable;
3604	}
3605
3606	err = pci_request_region(dev, 0, ohci_driver_name);
3607	if (err) {
3608		ohci_err(ohci, "MMIO resource unavailable\n");
3609		goto fail_disable;
3610	}
3611
3612	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3613	if (ohci->registers == NULL) {
3614		ohci_err(ohci, "failed to remap registers\n");
3615		err = -ENXIO;
3616		goto fail_iomem;
3617	}
3618
3619	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3620		if ((ohci_quirks[i].vendor == dev->vendor) &&
3621		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3622		     ohci_quirks[i].device == dev->device) &&
3623		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3624		     ohci_quirks[i].revision >= dev->revision)) {
3625			ohci->quirks = ohci_quirks[i].flags;
3626			break;
3627		}
3628	if (param_quirks)
3629		ohci->quirks = param_quirks;
3630
3631	/*
3632	 * Because dma_alloc_coherent() allocates at least one page,
3633	 * we save space by using a common buffer for the AR request/
3634	 * response descriptors and the self IDs buffer.
3635	 */
3636	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3637	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3638	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3639					       PAGE_SIZE,
3640					       &ohci->misc_buffer_bus,
3641					       GFP_KERNEL);
3642	if (!ohci->misc_buffer) {
3643		err = -ENOMEM;
3644		goto fail_iounmap;
3645	}
3646
3647	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3648			      OHCI1394_AsReqRcvContextControlSet);
3649	if (err < 0)
3650		goto fail_misc_buf;
3651
3652	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3653			      OHCI1394_AsRspRcvContextControlSet);
3654	if (err < 0)
3655		goto fail_arreq_ctx;
3656
3657	err = context_init(&ohci->at_request_ctx, ohci,
3658			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3659	if (err < 0)
3660		goto fail_arrsp_ctx;
3661
3662	err = context_init(&ohci->at_response_ctx, ohci,
3663			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3664	if (err < 0)
3665		goto fail_atreq_ctx;
3666
3667	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3668	ohci->ir_context_channels = ~0ULL;
3669	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3670	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3671	ohci->ir_context_mask = ohci->ir_context_support;
3672	ohci->n_ir = hweight32(ohci->ir_context_mask);
3673	size = sizeof(struct iso_context) * ohci->n_ir;
3674	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3675
3676	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3677	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3678	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3679	if (!ohci->it_context_support) {
3680		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3681		ohci->it_context_support = 0xf;
3682	}
3683	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3684	ohci->it_context_mask = ohci->it_context_support;
3685	ohci->n_it = hweight32(ohci->it_context_mask);
3686	size = sizeof(struct iso_context) * ohci->n_it;
3687	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3688
3689	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3690		err = -ENOMEM;
3691		goto fail_contexts;
3692	}
3693
3694	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3695	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3696
3697	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3698	max_receive = (bus_options >> 12) & 0xf;
3699	link_speed = bus_options & 0x7;
3700	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3701		reg_read(ohci, OHCI1394_GUIDLo);
3702
3703	if (!(ohci->quirks & QUIRK_NO_MSI))
3704		pci_enable_msi(dev);
3705	if (request_irq(dev->irq, irq_handler,
3706			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3707			ohci_driver_name, ohci)) {
3708		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3709		err = -EIO;
3710		goto fail_msi;
3711	}
3712
3713	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3714	if (err)
3715		goto fail_irq;
3716
3717	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3718	ohci_notice(ohci,
3719		    "added OHCI v%x.%x device as card %d, "
3720		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3721		    version >> 16, version & 0xff, ohci->card.index,
3722		    ohci->n_ir, ohci->n_it, ohci->quirks,
3723		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3724			", physUB" : "");
3725
3726	return 0;
3727
3728 fail_irq:
3729	free_irq(dev->irq, ohci);
3730 fail_msi:
3731	pci_disable_msi(dev);
3732 fail_contexts:
3733	kfree(ohci->ir_context_list);
3734	kfree(ohci->it_context_list);
3735	context_release(&ohci->at_response_ctx);
3736 fail_atreq_ctx:
3737	context_release(&ohci->at_request_ctx);
3738 fail_arrsp_ctx:
3739	ar_context_release(&ohci->ar_response_ctx);
3740 fail_arreq_ctx:
3741	ar_context_release(&ohci->ar_request_ctx);
3742 fail_misc_buf:
3743	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3744			  ohci->misc_buffer, ohci->misc_buffer_bus);
3745 fail_iounmap:
3746	pci_iounmap(dev, ohci->registers);
3747 fail_iomem:
3748	pci_release_region(dev, 0);
3749 fail_disable:
3750	pci_disable_device(dev);
3751 fail_free:
3752	kfree(ohci);
3753	pmac_ohci_off(dev);
3754 fail:
3755	return err;
3756}
3757
3758static void pci_remove(struct pci_dev *dev)
3759{
3760	struct fw_ohci *ohci = pci_get_drvdata(dev);
3761
3762	/*
3763	 * If the removal is happening from the suspend state, LPS won't be
3764	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3765	 */
3766	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3767		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3768		flush_writes(ohci);
3769	}
3770	cancel_work_sync(&ohci->bus_reset_work);
3771	fw_core_remove_card(&ohci->card);
3772
3773	/*
3774	 * FIXME: Fail all pending packets here, now that the upper
3775	 * layers can't queue any more.
3776	 */
3777
3778	software_reset(ohci);
3779	free_irq(dev->irq, ohci);
3780
3781	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3782		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3783				  ohci->next_config_rom, ohci->next_config_rom_bus);
3784	if (ohci->config_rom)
3785		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3786				  ohci->config_rom, ohci->config_rom_bus);
3787	ar_context_release(&ohci->ar_request_ctx);
3788	ar_context_release(&ohci->ar_response_ctx);
3789	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3790			  ohci->misc_buffer, ohci->misc_buffer_bus);
3791	context_release(&ohci->at_request_ctx);
3792	context_release(&ohci->at_response_ctx);
3793	kfree(ohci->it_context_list);
3794	kfree(ohci->ir_context_list);
3795	pci_disable_msi(dev);
3796	pci_iounmap(dev, ohci->registers);
3797	pci_release_region(dev, 0);
3798	pci_disable_device(dev);
3799	kfree(ohci);
3800	pmac_ohci_off(dev);
3801
3802	dev_notice(&dev->dev, "removed fw-ohci device\n");
3803}
3804
3805#ifdef CONFIG_PM
3806static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3807{
3808	struct fw_ohci *ohci = pci_get_drvdata(dev);
3809	int err;
3810
3811	software_reset(ohci);
3812	err = pci_save_state(dev);
3813	if (err) {
3814		ohci_err(ohci, "pci_save_state failed\n");
3815		return err;
3816	}
3817	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3818	if (err)
3819		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3820	pmac_ohci_off(dev);
3821
3822	return 0;
3823}
3824
3825static int pci_resume(struct pci_dev *dev)
3826{
3827	struct fw_ohci *ohci = pci_get_drvdata(dev);
3828	int err;
3829
3830	pmac_ohci_on(dev);
3831	pci_set_power_state(dev, PCI_D0);
3832	pci_restore_state(dev);
3833	err = pci_enable_device(dev);
3834	if (err) {
3835		ohci_err(ohci, "pci_enable_device failed\n");
3836		return err;
3837	}
3838
3839	/* Some systems don't setup GUID register on resume from ram  */
3840	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3841					!reg_read(ohci, OHCI1394_GUIDHi)) {
3842		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3843		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3844	}
3845
3846	err = ohci_enable(&ohci->card, NULL, 0);
3847	if (err)
3848		return err;
3849
3850	ohci_resume_iso_dma(ohci);
3851
3852	return 0;
3853}
3854#endif
3855
3856static const struct pci_device_id pci_table[] = {
3857	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3858	{ }
3859};
3860
3861MODULE_DEVICE_TABLE(pci, pci_table);
3862
3863static struct pci_driver fw_ohci_pci_driver = {
3864	.name		= ohci_driver_name,
3865	.id_table	= pci_table,
3866	.probe		= pci_probe,
3867	.remove		= pci_remove,
3868#ifdef CONFIG_PM
3869	.resume		= pci_resume,
3870	.suspend	= pci_suspend,
3871#endif
3872};
3873
3874static int __init fw_ohci_init(void)
3875{
3876	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3877	if (!selfid_workqueue)
3878		return -ENOMEM;
3879
3880	return pci_register_driver(&fw_ohci_pci_driver);
3881}
3882
3883static void __exit fw_ohci_cleanup(void)
3884{
3885	pci_unregister_driver(&fw_ohci_pci_driver);
3886	destroy_workqueue(selfid_workqueue);
3887}
3888
3889module_init(fw_ohci_init);
3890module_exit(fw_ohci_cleanup);
3891
3892MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3893MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3894MODULE_LICENSE("GPL");
3895
3896/* Provide a module alias so root-on-sbp2 initrds don't break. */
3897MODULE_ALIAS("ohci1394");
3898