1/*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 *	The entire API were re-written, and ported to use struct device
12 *
13 */
14
15#include <linux/ctype.h>
16#include <linux/slab.h>
17#include <linux/edac.h>
18#include <linux/bug.h>
19#include <linux/pm_runtime.h>
20#include <linux/uaccess.h>
21
22#include "edac_core.h"
23#include "edac_module.h"
24
25/* MC EDAC Controls, setable by module parameter, and sysfs */
26static int edac_mc_log_ue = 1;
27static int edac_mc_log_ce = 1;
28static int edac_mc_panic_on_ue;
29static int edac_mc_poll_msec = 1000;
30
31/* Getter functions for above */
32int edac_mc_get_log_ue(void)
33{
34	return edac_mc_log_ue;
35}
36
37int edac_mc_get_log_ce(void)
38{
39	return edac_mc_log_ce;
40}
41
42int edac_mc_get_panic_on_ue(void)
43{
44	return edac_mc_panic_on_ue;
45}
46
47/* this is temporary */
48int edac_mc_get_poll_msec(void)
49{
50	return edac_mc_poll_msec;
51}
52
53static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54{
55	unsigned long l;
56	int ret;
57
58	if (!val)
59		return -EINVAL;
60
61	ret = kstrtoul(val, 0, &l);
62	if (ret)
63		return ret;
64
65	if (l < 1000)
66		return -EINVAL;
67
68	*((unsigned long *)kp->arg) = l;
69
70	/* notify edac_mc engine to reset the poll period */
71	edac_mc_reset_delay_period(l);
72
73	return 0;
74}
75
76/* Parameter declarations for above */
77module_param(edac_mc_panic_on_ue, int, 0644);
78MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79module_param(edac_mc_log_ue, int, 0644);
80MODULE_PARM_DESC(edac_mc_log_ue,
81		 "Log uncorrectable error to console: 0=off 1=on");
82module_param(edac_mc_log_ce, int, 0644);
83MODULE_PARM_DESC(edac_mc_log_ce,
84		 "Log correctable error to console: 0=off 1=on");
85module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86		  &edac_mc_poll_msec, 0644);
87MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89static struct device *mci_pdev;
90
91/*
92 * various constants for Memory Controllers
93 */
94static const char * const mem_types[] = {
95	[MEM_EMPTY] = "Empty",
96	[MEM_RESERVED] = "Reserved",
97	[MEM_UNKNOWN] = "Unknown",
98	[MEM_FPM] = "FPM",
99	[MEM_EDO] = "EDO",
100	[MEM_BEDO] = "BEDO",
101	[MEM_SDR] = "Unbuffered-SDR",
102	[MEM_RDR] = "Registered-SDR",
103	[MEM_DDR] = "Unbuffered-DDR",
104	[MEM_RDDR] = "Registered-DDR",
105	[MEM_RMBS] = "RMBS",
106	[MEM_DDR2] = "Unbuffered-DDR2",
107	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
108	[MEM_RDDR2] = "Registered-DDR2",
109	[MEM_XDR] = "XDR",
110	[MEM_DDR3] = "Unbuffered-DDR3",
111	[MEM_RDDR3] = "Registered-DDR3",
112	[MEM_DDR4] = "Unbuffered-DDR4",
113	[MEM_RDDR4] = "Registered-DDR4"
114};
115
116static const char * const dev_types[] = {
117	[DEV_UNKNOWN] = "Unknown",
118	[DEV_X1] = "x1",
119	[DEV_X2] = "x2",
120	[DEV_X4] = "x4",
121	[DEV_X8] = "x8",
122	[DEV_X16] = "x16",
123	[DEV_X32] = "x32",
124	[DEV_X64] = "x64"
125};
126
127static const char * const edac_caps[] = {
128	[EDAC_UNKNOWN] = "Unknown",
129	[EDAC_NONE] = "None",
130	[EDAC_RESERVED] = "Reserved",
131	[EDAC_PARITY] = "PARITY",
132	[EDAC_EC] = "EC",
133	[EDAC_SECDED] = "SECDED",
134	[EDAC_S2ECD2ED] = "S2ECD2ED",
135	[EDAC_S4ECD4ED] = "S4ECD4ED",
136	[EDAC_S8ECD8ED] = "S8ECD8ED",
137	[EDAC_S16ECD16ED] = "S16ECD16ED"
138};
139
140#ifdef CONFIG_EDAC_LEGACY_SYSFS
141/*
142 * EDAC sysfs CSROW data structures and methods
143 */
144
145#define to_csrow(k) container_of(k, struct csrow_info, dev)
146
147/*
148 * We need it to avoid namespace conflicts between the legacy API
149 * and the per-dimm/per-rank one
150 */
151#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153
154struct dev_ch_attribute {
155	struct device_attribute attr;
156	int channel;
157};
158
159#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160	static struct dev_ch_attribute dev_attr_legacy_##_name = \
161		{ __ATTR(_name, _mode, _show, _store), (_var) }
162
163#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164
165/* Set of more default csrow<id> attribute show/store functions */
166static ssize_t csrow_ue_count_show(struct device *dev,
167				   struct device_attribute *mattr, char *data)
168{
169	struct csrow_info *csrow = to_csrow(dev);
170
171	return sprintf(data, "%u\n", csrow->ue_count);
172}
173
174static ssize_t csrow_ce_count_show(struct device *dev,
175				   struct device_attribute *mattr, char *data)
176{
177	struct csrow_info *csrow = to_csrow(dev);
178
179	return sprintf(data, "%u\n", csrow->ce_count);
180}
181
182static ssize_t csrow_size_show(struct device *dev,
183			       struct device_attribute *mattr, char *data)
184{
185	struct csrow_info *csrow = to_csrow(dev);
186	int i;
187	u32 nr_pages = 0;
188
189	for (i = 0; i < csrow->nr_channels; i++)
190		nr_pages += csrow->channels[i]->dimm->nr_pages;
191	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192}
193
194static ssize_t csrow_mem_type_show(struct device *dev,
195				   struct device_attribute *mattr, char *data)
196{
197	struct csrow_info *csrow = to_csrow(dev);
198
199	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200}
201
202static ssize_t csrow_dev_type_show(struct device *dev,
203				   struct device_attribute *mattr, char *data)
204{
205	struct csrow_info *csrow = to_csrow(dev);
206
207	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208}
209
210static ssize_t csrow_edac_mode_show(struct device *dev,
211				    struct device_attribute *mattr,
212				    char *data)
213{
214	struct csrow_info *csrow = to_csrow(dev);
215
216	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217}
218
219/* show/store functions for DIMM Label attributes */
220static ssize_t channel_dimm_label_show(struct device *dev,
221				       struct device_attribute *mattr,
222				       char *data)
223{
224	struct csrow_info *csrow = to_csrow(dev);
225	unsigned chan = to_channel(mattr);
226	struct rank_info *rank = csrow->channels[chan];
227
228	/* if field has not been initialized, there is nothing to send */
229	if (!rank->dimm->label[0])
230		return 0;
231
232	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
233			rank->dimm->label);
234}
235
236static ssize_t channel_dimm_label_store(struct device *dev,
237					struct device_attribute *mattr,
238					const char *data, size_t count)
239{
240	struct csrow_info *csrow = to_csrow(dev);
241	unsigned chan = to_channel(mattr);
242	struct rank_info *rank = csrow->channels[chan];
243
244	ssize_t max_size = 0;
245
246	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
247	strncpy(rank->dimm->label, data, max_size);
248	rank->dimm->label[max_size] = '\0';
249
250	return max_size;
251}
252
253/* show function for dynamic chX_ce_count attribute */
254static ssize_t channel_ce_count_show(struct device *dev,
255				     struct device_attribute *mattr, char *data)
256{
257	struct csrow_info *csrow = to_csrow(dev);
258	unsigned chan = to_channel(mattr);
259	struct rank_info *rank = csrow->channels[chan];
260
261	return sprintf(data, "%u\n", rank->ce_count);
262}
263
264/* cwrow<id>/attribute files */
265DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
266DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
267DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
268DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
269DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
270DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
271
272/* default attributes of the CSROW<id> object */
273static struct attribute *csrow_attrs[] = {
274	&dev_attr_legacy_dev_type.attr,
275	&dev_attr_legacy_mem_type.attr,
276	&dev_attr_legacy_edac_mode.attr,
277	&dev_attr_legacy_size_mb.attr,
278	&dev_attr_legacy_ue_count.attr,
279	&dev_attr_legacy_ce_count.attr,
280	NULL,
281};
282
283static struct attribute_group csrow_attr_grp = {
284	.attrs	= csrow_attrs,
285};
286
287static const struct attribute_group *csrow_attr_groups[] = {
288	&csrow_attr_grp,
289	NULL
290};
291
292static void csrow_attr_release(struct device *dev)
293{
294	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
295
296	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
297	kfree(csrow);
298}
299
300static struct device_type csrow_attr_type = {
301	.groups		= csrow_attr_groups,
302	.release	= csrow_attr_release,
303};
304
305/*
306 * possible dynamic channel DIMM Label attribute files
307 *
308 */
309
310#define EDAC_NR_CHANNELS	6
311
312DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
313	channel_dimm_label_show, channel_dimm_label_store, 0);
314DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
315	channel_dimm_label_show, channel_dimm_label_store, 1);
316DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
317	channel_dimm_label_show, channel_dimm_label_store, 2);
318DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
319	channel_dimm_label_show, channel_dimm_label_store, 3);
320DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
321	channel_dimm_label_show, channel_dimm_label_store, 4);
322DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
323	channel_dimm_label_show, channel_dimm_label_store, 5);
324
325/* Total possible dynamic DIMM Label attribute file table */
326static struct attribute *dynamic_csrow_dimm_attr[] = {
327	&dev_attr_legacy_ch0_dimm_label.attr.attr,
328	&dev_attr_legacy_ch1_dimm_label.attr.attr,
329	&dev_attr_legacy_ch2_dimm_label.attr.attr,
330	&dev_attr_legacy_ch3_dimm_label.attr.attr,
331	&dev_attr_legacy_ch4_dimm_label.attr.attr,
332	&dev_attr_legacy_ch5_dimm_label.attr.attr,
333	NULL
334};
335
336/* possible dynamic channel ce_count attribute files */
337DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
338		   channel_ce_count_show, NULL, 0);
339DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
340		   channel_ce_count_show, NULL, 1);
341DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
342		   channel_ce_count_show, NULL, 2);
343DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
344		   channel_ce_count_show, NULL, 3);
345DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
346		   channel_ce_count_show, NULL, 4);
347DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
348		   channel_ce_count_show, NULL, 5);
349
350/* Total possible dynamic ce_count attribute file table */
351static struct attribute *dynamic_csrow_ce_count_attr[] = {
352	&dev_attr_legacy_ch0_ce_count.attr.attr,
353	&dev_attr_legacy_ch1_ce_count.attr.attr,
354	&dev_attr_legacy_ch2_ce_count.attr.attr,
355	&dev_attr_legacy_ch3_ce_count.attr.attr,
356	&dev_attr_legacy_ch4_ce_count.attr.attr,
357	&dev_attr_legacy_ch5_ce_count.attr.attr,
358	NULL
359};
360
361static umode_t csrow_dev_is_visible(struct kobject *kobj,
362				    struct attribute *attr, int idx)
363{
364	struct device *dev = kobj_to_dev(kobj);
365	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
366
367	if (idx >= csrow->nr_channels)
368		return 0;
369	/* Only expose populated DIMMs */
370	if (!csrow->channels[idx]->dimm->nr_pages)
371		return 0;
372	return attr->mode;
373}
374
375
376static const struct attribute_group csrow_dev_dimm_group = {
377	.attrs = dynamic_csrow_dimm_attr,
378	.is_visible = csrow_dev_is_visible,
379};
380
381static const struct attribute_group csrow_dev_ce_count_group = {
382	.attrs = dynamic_csrow_ce_count_attr,
383	.is_visible = csrow_dev_is_visible,
384};
385
386static const struct attribute_group *csrow_dev_groups[] = {
387	&csrow_dev_dimm_group,
388	&csrow_dev_ce_count_group,
389	NULL
390};
391
392static inline int nr_pages_per_csrow(struct csrow_info *csrow)
393{
394	int chan, nr_pages = 0;
395
396	for (chan = 0; chan < csrow->nr_channels; chan++)
397		nr_pages += csrow->channels[chan]->dimm->nr_pages;
398
399	return nr_pages;
400}
401
402/* Create a CSROW object under specifed edac_mc_device */
403static int edac_create_csrow_object(struct mem_ctl_info *mci,
404				    struct csrow_info *csrow, int index)
405{
406	if (csrow->nr_channels > EDAC_NR_CHANNELS)
407		return -ENODEV;
408
409	csrow->dev.type = &csrow_attr_type;
410	csrow->dev.bus = mci->bus;
411	csrow->dev.groups = csrow_dev_groups;
412	device_initialize(&csrow->dev);
413	csrow->dev.parent = &mci->dev;
414	csrow->mci = mci;
415	dev_set_name(&csrow->dev, "csrow%d", index);
416	dev_set_drvdata(&csrow->dev, csrow);
417
418	edac_dbg(0, "creating (virtual) csrow node %s\n",
419		 dev_name(&csrow->dev));
420
421	return device_add(&csrow->dev);
422}
423
424/* Create a CSROW object under specifed edac_mc_device */
425static int edac_create_csrow_objects(struct mem_ctl_info *mci)
426{
427	int err, i;
428	struct csrow_info *csrow;
429
430	for (i = 0; i < mci->nr_csrows; i++) {
431		csrow = mci->csrows[i];
432		if (!nr_pages_per_csrow(csrow))
433			continue;
434		err = edac_create_csrow_object(mci, mci->csrows[i], i);
435		if (err < 0) {
436			edac_dbg(1,
437				 "failure: create csrow objects for csrow %d\n",
438				 i);
439			goto error;
440		}
441	}
442	return 0;
443
444error:
445	for (--i; i >= 0; i--) {
446		csrow = mci->csrows[i];
447		if (!nr_pages_per_csrow(csrow))
448			continue;
449		put_device(&mci->csrows[i]->dev);
450	}
451
452	return err;
453}
454
455static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
456{
457	int i;
458	struct csrow_info *csrow;
459
460	for (i = mci->nr_csrows - 1; i >= 0; i--) {
461		csrow = mci->csrows[i];
462		if (!nr_pages_per_csrow(csrow))
463			continue;
464		device_unregister(&mci->csrows[i]->dev);
465	}
466}
467#endif
468
469/*
470 * Per-dimm (or per-rank) devices
471 */
472
473#define to_dimm(k) container_of(k, struct dimm_info, dev)
474
475/* show/store functions for DIMM Label attributes */
476static ssize_t dimmdev_location_show(struct device *dev,
477				     struct device_attribute *mattr, char *data)
478{
479	struct dimm_info *dimm = to_dimm(dev);
480
481	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
482}
483
484static ssize_t dimmdev_label_show(struct device *dev,
485				  struct device_attribute *mattr, char *data)
486{
487	struct dimm_info *dimm = to_dimm(dev);
488
489	/* if field has not been initialized, there is nothing to send */
490	if (!dimm->label[0])
491		return 0;
492
493	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
494}
495
496static ssize_t dimmdev_label_store(struct device *dev,
497				   struct device_attribute *mattr,
498				   const char *data,
499				   size_t count)
500{
501	struct dimm_info *dimm = to_dimm(dev);
502
503	ssize_t max_size = 0;
504
505	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
506	strncpy(dimm->label, data, max_size);
507	dimm->label[max_size] = '\0';
508
509	return max_size;
510}
511
512static ssize_t dimmdev_size_show(struct device *dev,
513				 struct device_attribute *mattr, char *data)
514{
515	struct dimm_info *dimm = to_dimm(dev);
516
517	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
518}
519
520static ssize_t dimmdev_mem_type_show(struct device *dev,
521				     struct device_attribute *mattr, char *data)
522{
523	struct dimm_info *dimm = to_dimm(dev);
524
525	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
526}
527
528static ssize_t dimmdev_dev_type_show(struct device *dev,
529				     struct device_attribute *mattr, char *data)
530{
531	struct dimm_info *dimm = to_dimm(dev);
532
533	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
534}
535
536static ssize_t dimmdev_edac_mode_show(struct device *dev,
537				      struct device_attribute *mattr,
538				      char *data)
539{
540	struct dimm_info *dimm = to_dimm(dev);
541
542	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
543}
544
545/* dimm/rank attribute files */
546static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
547		   dimmdev_label_show, dimmdev_label_store);
548static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
549static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
550static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
551static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
552static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
553
554/* attributes of the dimm<id>/rank<id> object */
555static struct attribute *dimm_attrs[] = {
556	&dev_attr_dimm_label.attr,
557	&dev_attr_dimm_location.attr,
558	&dev_attr_size.attr,
559	&dev_attr_dimm_mem_type.attr,
560	&dev_attr_dimm_dev_type.attr,
561	&dev_attr_dimm_edac_mode.attr,
562	NULL,
563};
564
565static struct attribute_group dimm_attr_grp = {
566	.attrs	= dimm_attrs,
567};
568
569static const struct attribute_group *dimm_attr_groups[] = {
570	&dimm_attr_grp,
571	NULL
572};
573
574static void dimm_attr_release(struct device *dev)
575{
576	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
577
578	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
579	kfree(dimm);
580}
581
582static struct device_type dimm_attr_type = {
583	.groups		= dimm_attr_groups,
584	.release	= dimm_attr_release,
585};
586
587/* Create a DIMM object under specifed memory controller device */
588static int edac_create_dimm_object(struct mem_ctl_info *mci,
589				   struct dimm_info *dimm,
590				   int index)
591{
592	int err;
593	dimm->mci = mci;
594
595	dimm->dev.type = &dimm_attr_type;
596	dimm->dev.bus = mci->bus;
597	device_initialize(&dimm->dev);
598
599	dimm->dev.parent = &mci->dev;
600	if (mci->csbased)
601		dev_set_name(&dimm->dev, "rank%d", index);
602	else
603		dev_set_name(&dimm->dev, "dimm%d", index);
604	dev_set_drvdata(&dimm->dev, dimm);
605	pm_runtime_forbid(&mci->dev);
606
607	err =  device_add(&dimm->dev);
608
609	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
610
611	return err;
612}
613
614/*
615 * Memory controller device
616 */
617
618#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
619
620static ssize_t mci_reset_counters_store(struct device *dev,
621					struct device_attribute *mattr,
622					const char *data, size_t count)
623{
624	struct mem_ctl_info *mci = to_mci(dev);
625	int cnt, row, chan, i;
626	mci->ue_mc = 0;
627	mci->ce_mc = 0;
628	mci->ue_noinfo_count = 0;
629	mci->ce_noinfo_count = 0;
630
631	for (row = 0; row < mci->nr_csrows; row++) {
632		struct csrow_info *ri = mci->csrows[row];
633
634		ri->ue_count = 0;
635		ri->ce_count = 0;
636
637		for (chan = 0; chan < ri->nr_channels; chan++)
638			ri->channels[chan]->ce_count = 0;
639	}
640
641	cnt = 1;
642	for (i = 0; i < mci->n_layers; i++) {
643		cnt *= mci->layers[i].size;
644		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
645		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
646	}
647
648	mci->start_time = jiffies;
649	return count;
650}
651
652/* Memory scrubbing interface:
653 *
654 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
655 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
656 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
657 *
658 * Negative value still means that an error has occurred while setting
659 * the scrub rate.
660 */
661static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
662					  struct device_attribute *mattr,
663					  const char *data, size_t count)
664{
665	struct mem_ctl_info *mci = to_mci(dev);
666	unsigned long bandwidth = 0;
667	int new_bw = 0;
668
669	if (kstrtoul(data, 10, &bandwidth) < 0)
670		return -EINVAL;
671
672	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
673	if (new_bw < 0) {
674		edac_printk(KERN_WARNING, EDAC_MC,
675			    "Error setting scrub rate to: %lu\n", bandwidth);
676		return -EINVAL;
677	}
678
679	return count;
680}
681
682/*
683 * ->get_sdram_scrub_rate() return value semantics same as above.
684 */
685static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
686					 struct device_attribute *mattr,
687					 char *data)
688{
689	struct mem_ctl_info *mci = to_mci(dev);
690	int bandwidth = 0;
691
692	bandwidth = mci->get_sdram_scrub_rate(mci);
693	if (bandwidth < 0) {
694		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
695		return bandwidth;
696	}
697
698	return sprintf(data, "%d\n", bandwidth);
699}
700
701/* default attribute files for the MCI object */
702static ssize_t mci_ue_count_show(struct device *dev,
703				 struct device_attribute *mattr,
704				 char *data)
705{
706	struct mem_ctl_info *mci = to_mci(dev);
707
708	return sprintf(data, "%d\n", mci->ue_mc);
709}
710
711static ssize_t mci_ce_count_show(struct device *dev,
712				 struct device_attribute *mattr,
713				 char *data)
714{
715	struct mem_ctl_info *mci = to_mci(dev);
716
717	return sprintf(data, "%d\n", mci->ce_mc);
718}
719
720static ssize_t mci_ce_noinfo_show(struct device *dev,
721				  struct device_attribute *mattr,
722				  char *data)
723{
724	struct mem_ctl_info *mci = to_mci(dev);
725
726	return sprintf(data, "%d\n", mci->ce_noinfo_count);
727}
728
729static ssize_t mci_ue_noinfo_show(struct device *dev,
730				  struct device_attribute *mattr,
731				  char *data)
732{
733	struct mem_ctl_info *mci = to_mci(dev);
734
735	return sprintf(data, "%d\n", mci->ue_noinfo_count);
736}
737
738static ssize_t mci_seconds_show(struct device *dev,
739				struct device_attribute *mattr,
740				char *data)
741{
742	struct mem_ctl_info *mci = to_mci(dev);
743
744	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
745}
746
747static ssize_t mci_ctl_name_show(struct device *dev,
748				 struct device_attribute *mattr,
749				 char *data)
750{
751	struct mem_ctl_info *mci = to_mci(dev);
752
753	return sprintf(data, "%s\n", mci->ctl_name);
754}
755
756static ssize_t mci_size_mb_show(struct device *dev,
757				struct device_attribute *mattr,
758				char *data)
759{
760	struct mem_ctl_info *mci = to_mci(dev);
761	int total_pages = 0, csrow_idx, j;
762
763	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
764		struct csrow_info *csrow = mci->csrows[csrow_idx];
765
766		for (j = 0; j < csrow->nr_channels; j++) {
767			struct dimm_info *dimm = csrow->channels[j]->dimm;
768
769			total_pages += dimm->nr_pages;
770		}
771	}
772
773	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
774}
775
776static ssize_t mci_max_location_show(struct device *dev,
777				     struct device_attribute *mattr,
778				     char *data)
779{
780	struct mem_ctl_info *mci = to_mci(dev);
781	int i;
782	char *p = data;
783
784	for (i = 0; i < mci->n_layers; i++) {
785		p += sprintf(p, "%s %d ",
786			     edac_layer_name[mci->layers[i].type],
787			     mci->layers[i].size - 1);
788	}
789
790	return p - data;
791}
792
793#ifdef CONFIG_EDAC_DEBUG
794static ssize_t edac_fake_inject_write(struct file *file,
795				      const char __user *data,
796				      size_t count, loff_t *ppos)
797{
798	struct device *dev = file->private_data;
799	struct mem_ctl_info *mci = to_mci(dev);
800	static enum hw_event_mc_err_type type;
801	u16 errcount = mci->fake_inject_count;
802
803	if (!errcount)
804		errcount = 1;
805
806	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
807				   : HW_EVENT_ERR_CORRECTED;
808
809	printk(KERN_DEBUG
810	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
811		errcount,
812		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
813		errcount > 1 ? "s" : "",
814		mci->fake_inject_layer[0],
815		mci->fake_inject_layer[1],
816		mci->fake_inject_layer[2]
817	       );
818	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
819			     mci->fake_inject_layer[0],
820			     mci->fake_inject_layer[1],
821			     mci->fake_inject_layer[2],
822			     "FAKE ERROR", "for EDAC testing only");
823
824	return count;
825}
826
827static const struct file_operations debug_fake_inject_fops = {
828	.open = simple_open,
829	.write = edac_fake_inject_write,
830	.llseek = generic_file_llseek,
831};
832#endif
833
834/* default Control file */
835static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
836
837/* default Attribute files */
838static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
839static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
840static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
841static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
842static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
843static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
844static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
845static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
846
847/* memory scrubber attribute file */
848DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
849	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
850
851static struct attribute *mci_attrs[] = {
852	&dev_attr_reset_counters.attr,
853	&dev_attr_mc_name.attr,
854	&dev_attr_size_mb.attr,
855	&dev_attr_seconds_since_reset.attr,
856	&dev_attr_ue_noinfo_count.attr,
857	&dev_attr_ce_noinfo_count.attr,
858	&dev_attr_ue_count.attr,
859	&dev_attr_ce_count.attr,
860	&dev_attr_max_location.attr,
861	&dev_attr_sdram_scrub_rate.attr,
862	NULL
863};
864
865static umode_t mci_attr_is_visible(struct kobject *kobj,
866				   struct attribute *attr, int idx)
867{
868	struct device *dev = kobj_to_dev(kobj);
869	struct mem_ctl_info *mci = to_mci(dev);
870	umode_t mode = 0;
871
872	if (attr != &dev_attr_sdram_scrub_rate.attr)
873		return attr->mode;
874	if (mci->get_sdram_scrub_rate)
875		mode |= S_IRUGO;
876	if (mci->set_sdram_scrub_rate)
877		mode |= S_IWUSR;
878	return mode;
879}
880
881static struct attribute_group mci_attr_grp = {
882	.attrs	= mci_attrs,
883	.is_visible = mci_attr_is_visible,
884};
885
886static const struct attribute_group *mci_attr_groups[] = {
887	&mci_attr_grp,
888	NULL
889};
890
891static void mci_attr_release(struct device *dev)
892{
893	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
894
895	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
896	kfree(mci);
897}
898
899static struct device_type mci_attr_type = {
900	.groups		= mci_attr_groups,
901	.release	= mci_attr_release,
902};
903
904#ifdef CONFIG_EDAC_DEBUG
905static struct dentry *edac_debugfs;
906
907int __init edac_debugfs_init(void)
908{
909	edac_debugfs = debugfs_create_dir("edac", NULL);
910	if (IS_ERR(edac_debugfs)) {
911		edac_debugfs = NULL;
912		return -ENOMEM;
913	}
914	return 0;
915}
916
917void edac_debugfs_exit(void)
918{
919	debugfs_remove(edac_debugfs);
920}
921
922static int edac_create_debug_nodes(struct mem_ctl_info *mci)
923{
924	struct dentry *d, *parent;
925	char name[80];
926	int i;
927
928	if (!edac_debugfs)
929		return -ENODEV;
930
931	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
932	if (!d)
933		return -ENOMEM;
934	parent = d;
935
936	for (i = 0; i < mci->n_layers; i++) {
937		sprintf(name, "fake_inject_%s",
938			     edac_layer_name[mci->layers[i].type]);
939		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
940				      &mci->fake_inject_layer[i]);
941		if (!d)
942			goto nomem;
943	}
944
945	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
946				&mci->fake_inject_ue);
947	if (!d)
948		goto nomem;
949
950	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
951				&mci->fake_inject_count);
952	if (!d)
953		goto nomem;
954
955	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
956				&mci->dev,
957				&debug_fake_inject_fops);
958	if (!d)
959		goto nomem;
960
961	mci->debugfs = parent;
962	return 0;
963nomem:
964	debugfs_remove(mci->debugfs);
965	return -ENOMEM;
966}
967#endif
968
969/*
970 * Create a new Memory Controller kobject instance,
971 *	mc<id> under the 'mc' directory
972 *
973 * Return:
974 *	0	Success
975 *	!0	Failure
976 */
977int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
978				 const struct attribute_group **groups)
979{
980	char *name;
981	int i, err;
982
983	/*
984	 * The memory controller needs its own bus, in order to avoid
985	 * namespace conflicts at /sys/bus/edac.
986	 */
987	name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
988	if (!name)
989		return -ENOMEM;
990
991	mci->bus->name = name;
992
993	edac_dbg(0, "creating bus %s\n", mci->bus->name);
994
995	err = bus_register(mci->bus);
996	if (err < 0) {
997		kfree(name);
998		return err;
999	}
1000
1001	/* get the /sys/devices/system/edac subsys reference */
1002	mci->dev.type = &mci_attr_type;
1003	device_initialize(&mci->dev);
1004
1005	mci->dev.parent = mci_pdev;
1006	mci->dev.bus = mci->bus;
1007	mci->dev.groups = groups;
1008	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1009	dev_set_drvdata(&mci->dev, mci);
1010	pm_runtime_forbid(&mci->dev);
1011
1012	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1013	err = device_add(&mci->dev);
1014	if (err < 0) {
1015		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1016		goto fail_unregister_bus;
1017	}
1018
1019	/*
1020	 * Create the dimm/rank devices
1021	 */
1022	for (i = 0; i < mci->tot_dimms; i++) {
1023		struct dimm_info *dimm = mci->dimms[i];
1024		/* Only expose populated DIMMs */
1025		if (!dimm->nr_pages)
1026			continue;
1027
1028#ifdef CONFIG_EDAC_DEBUG
1029		edac_dbg(1, "creating dimm%d, located at ", i);
1030		if (edac_debug_level >= 1) {
1031			int lay;
1032			for (lay = 0; lay < mci->n_layers; lay++)
1033				printk(KERN_CONT "%s %d ",
1034					edac_layer_name[mci->layers[lay].type],
1035					dimm->location[lay]);
1036			printk(KERN_CONT "\n");
1037		}
1038#endif
1039		err = edac_create_dimm_object(mci, dimm, i);
1040		if (err) {
1041			edac_dbg(1, "failure: create dimm %d obj\n", i);
1042			goto fail_unregister_dimm;
1043		}
1044	}
1045
1046#ifdef CONFIG_EDAC_LEGACY_SYSFS
1047	err = edac_create_csrow_objects(mci);
1048	if (err < 0)
1049		goto fail_unregister_dimm;
1050#endif
1051
1052#ifdef CONFIG_EDAC_DEBUG
1053	edac_create_debug_nodes(mci);
1054#endif
1055	return 0;
1056
1057fail_unregister_dimm:
1058	for (i--; i >= 0; i--) {
1059		struct dimm_info *dimm = mci->dimms[i];
1060		if (!dimm->nr_pages)
1061			continue;
1062
1063		device_unregister(&dimm->dev);
1064	}
1065	device_unregister(&mci->dev);
1066fail_unregister_bus:
1067	bus_unregister(mci->bus);
1068	kfree(name);
1069
1070	return err;
1071}
1072
1073/*
1074 * remove a Memory Controller instance
1075 */
1076void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1077{
1078	int i;
1079
1080	edac_dbg(0, "\n");
1081
1082#ifdef CONFIG_EDAC_DEBUG
1083	debugfs_remove(mci->debugfs);
1084#endif
1085#ifdef CONFIG_EDAC_LEGACY_SYSFS
1086	edac_delete_csrow_objects(mci);
1087#endif
1088
1089	for (i = 0; i < mci->tot_dimms; i++) {
1090		struct dimm_info *dimm = mci->dimms[i];
1091		if (dimm->nr_pages == 0)
1092			continue;
1093		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1094		device_unregister(&dimm->dev);
1095	}
1096}
1097
1098void edac_unregister_sysfs(struct mem_ctl_info *mci)
1099{
1100	const char *name = mci->bus->name;
1101
1102	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1103	device_unregister(&mci->dev);
1104	bus_unregister(mci->bus);
1105	kfree(name);
1106}
1107
1108static void mc_attr_release(struct device *dev)
1109{
1110	/*
1111	 * There's no container structure here, as this is just the mci
1112	 * parent device, used to create the /sys/devices/mc sysfs node.
1113	 * So, there are no attributes on it.
1114	 */
1115	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1116	kfree(dev);
1117}
1118
1119static struct device_type mc_attr_type = {
1120	.release	= mc_attr_release,
1121};
1122/*
1123 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1124 */
1125int __init edac_mc_sysfs_init(void)
1126{
1127	struct bus_type *edac_subsys;
1128	int err;
1129
1130	/* get the /sys/devices/system/edac subsys reference */
1131	edac_subsys = edac_get_sysfs_subsys();
1132	if (edac_subsys == NULL) {
1133		edac_dbg(1, "no edac_subsys\n");
1134		err = -EINVAL;
1135		goto out;
1136	}
1137
1138	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1139	if (!mci_pdev) {
1140		err = -ENOMEM;
1141		goto out_put_sysfs;
1142	}
1143
1144	mci_pdev->bus = edac_subsys;
1145	mci_pdev->type = &mc_attr_type;
1146	device_initialize(mci_pdev);
1147	dev_set_name(mci_pdev, "mc");
1148
1149	err = device_add(mci_pdev);
1150	if (err < 0)
1151		goto out_dev_free;
1152
1153	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1154
1155	return 0;
1156
1157 out_dev_free:
1158	kfree(mci_pdev);
1159 out_put_sysfs:
1160	edac_put_sysfs_subsys();
1161 out:
1162	return err;
1163}
1164
1165void edac_mc_sysfs_exit(void)
1166{
1167	device_unregister(mci_pdev);
1168	edac_put_sysfs_subsys();
1169}
1170