1/*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 *	http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
28#include <linux/ctype.h>
29#include <linux/edac.h>
30#include <linux/bitops.h>
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
34#include "edac_core.h"
35#include "edac_module.h"
36#include <ras/ras_event.h>
37
38/* lock to memory controller's control array */
39static DEFINE_MUTEX(mem_ctls_mutex);
40static LIST_HEAD(mc_devices);
41
42/*
43 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
44 *	apei/ghes and i7core_edac to be used at the same time.
45 */
46static void const *edac_mc_owner;
47
48static struct bus_type mc_bus[EDAC_MAX_MCS];
49
50unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
51			         unsigned len)
52{
53	struct mem_ctl_info *mci = dimm->mci;
54	int i, n, count = 0;
55	char *p = buf;
56
57	for (i = 0; i < mci->n_layers; i++) {
58		n = snprintf(p, len, "%s %d ",
59			      edac_layer_name[mci->layers[i].type],
60			      dimm->location[i]);
61		p += n;
62		len -= n;
63		count += n;
64		if (!len)
65			break;
66	}
67
68	return count;
69}
70
71#ifdef CONFIG_EDAC_DEBUG
72
73static void edac_mc_dump_channel(struct rank_info *chan)
74{
75	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
76	edac_dbg(4, "    channel = %p\n", chan);
77	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
78	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
79}
80
81static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
82{
83	char location[80];
84
85	edac_dimm_info_location(dimm, location, sizeof(location));
86
87	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
88		 dimm->mci->csbased ? "rank" : "dimm",
89		 number, location, dimm->csrow, dimm->cschannel);
90	edac_dbg(4, "  dimm = %p\n", dimm);
91	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
92	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
93	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
94	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
95}
96
97static void edac_mc_dump_csrow(struct csrow_info *csrow)
98{
99	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
100	edac_dbg(4, "  csrow = %p\n", csrow);
101	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
102	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
103	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
104	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
105	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
106	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
107}
108
109static void edac_mc_dump_mci(struct mem_ctl_info *mci)
110{
111	edac_dbg(3, "\tmci = %p\n", mci);
112	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
113	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
114	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
115	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
116	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
117		 mci->nr_csrows, mci->csrows);
118	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
119		 mci->tot_dimms, mci->dimms);
120	edac_dbg(3, "\tdev = %p\n", mci->pdev);
121	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
122		 mci->mod_name, mci->ctl_name);
123	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
124}
125
126#endif				/* CONFIG_EDAC_DEBUG */
127
128const char * const edac_mem_types[] = {
129	[MEM_EMPTY]	= "Empty csrow",
130	[MEM_RESERVED]	= "Reserved csrow type",
131	[MEM_UNKNOWN]	= "Unknown csrow type",
132	[MEM_FPM]	= "Fast page mode RAM",
133	[MEM_EDO]	= "Extended data out RAM",
134	[MEM_BEDO]	= "Burst Extended data out RAM",
135	[MEM_SDR]	= "Single data rate SDRAM",
136	[MEM_RDR]	= "Registered single data rate SDRAM",
137	[MEM_DDR]	= "Double data rate SDRAM",
138	[MEM_RDDR]	= "Registered Double data rate SDRAM",
139	[MEM_RMBS]	= "Rambus DRAM",
140	[MEM_DDR2]	= "Unbuffered DDR2 RAM",
141	[MEM_FB_DDR2]	= "Fully buffered DDR2",
142	[MEM_RDDR2]	= "Registered DDR2 RAM",
143	[MEM_XDR]	= "Rambus XDR",
144	[MEM_DDR3]	= "Unbuffered DDR3 RAM",
145	[MEM_RDDR3]	= "Registered DDR3 RAM",
146	[MEM_LRDDR3]	= "Load-Reduced DDR3 RAM",
147	[MEM_DDR4]	= "Unbuffered DDR4 RAM",
148	[MEM_RDDR4]	= "Registered DDR4 RAM",
149};
150EXPORT_SYMBOL_GPL(edac_mem_types);
151
152/**
153 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
154 * @p:		pointer to a pointer with the memory offset to be used. At
155 *		return, this will be incremented to point to the next offset
156 * @size:	Size of the data structure to be reserved
157 * @n_elems:	Number of elements that should be reserved
158 *
159 * If 'size' is a constant, the compiler will optimize this whole function
160 * down to either a no-op or the addition of a constant to the value of '*p'.
161 *
162 * The 'p' pointer is absolutely needed to keep the proper advancing
163 * further in memory to the proper offsets when allocating the struct along
164 * with its embedded structs, as edac_device_alloc_ctl_info() does it
165 * above, for example.
166 *
167 * At return, the pointer 'p' will be incremented to be used on a next call
168 * to this function.
169 */
170void *edac_align_ptr(void **p, unsigned size, int n_elems)
171{
172	unsigned align, r;
173	void *ptr = *p;
174
175	*p += size * n_elems;
176
177	/*
178	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
179	 * 'size'.  Adjust 'p' so that its alignment is at least as
180	 * stringent as what the compiler would provide for X and return
181	 * the aligned result.
182	 * Here we assume that the alignment of a "long long" is the most
183	 * stringent alignment that the compiler will ever provide by default.
184	 * As far as I know, this is a reasonable assumption.
185	 */
186	if (size > sizeof(long))
187		align = sizeof(long long);
188	else if (size > sizeof(int))
189		align = sizeof(long);
190	else if (size > sizeof(short))
191		align = sizeof(int);
192	else if (size > sizeof(char))
193		align = sizeof(short);
194	else
195		return (char *)ptr;
196
197	r = (unsigned long)p % align;
198
199	if (r == 0)
200		return (char *)ptr;
201
202	*p += align - r;
203
204	return (void *)(((unsigned long)ptr) + align - r);
205}
206
207static void _edac_mc_free(struct mem_ctl_info *mci)
208{
209	int i, chn, row;
210	struct csrow_info *csr;
211	const unsigned int tot_dimms = mci->tot_dimms;
212	const unsigned int tot_channels = mci->num_cschannel;
213	const unsigned int tot_csrows = mci->nr_csrows;
214
215	if (mci->dimms) {
216		for (i = 0; i < tot_dimms; i++)
217			kfree(mci->dimms[i]);
218		kfree(mci->dimms);
219	}
220	if (mci->csrows) {
221		for (row = 0; row < tot_csrows; row++) {
222			csr = mci->csrows[row];
223			if (csr) {
224				if (csr->channels) {
225					for (chn = 0; chn < tot_channels; chn++)
226						kfree(csr->channels[chn]);
227					kfree(csr->channels);
228				}
229				kfree(csr);
230			}
231		}
232		kfree(mci->csrows);
233	}
234	kfree(mci);
235}
236
237/**
238 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
239 * @mc_num:		Memory controller number
240 * @n_layers:		Number of MC hierarchy layers
241 * layers:		Describes each layer as seen by the Memory Controller
242 * @size_pvt:		size of private storage needed
243 *
244 *
245 * Everything is kmalloc'ed as one big chunk - more efficient.
246 * Only can be used if all structures have the same lifetime - otherwise
247 * you have to allocate and initialize your own structures.
248 *
249 * Use edac_mc_free() to free mc structures allocated by this function.
250 *
251 * NOTE: drivers handle multi-rank memories in different ways: in some
252 * drivers, one multi-rank memory stick is mapped as one entry, while, in
253 * others, a single multi-rank memory stick would be mapped into several
254 * entries. Currently, this function will allocate multiple struct dimm_info
255 * on such scenarios, as grouping the multiple ranks require drivers change.
256 *
257 * Returns:
258 *	On failure: NULL
259 *	On success: struct mem_ctl_info pointer
260 */
261struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
262				   unsigned n_layers,
263				   struct edac_mc_layer *layers,
264				   unsigned sz_pvt)
265{
266	struct mem_ctl_info *mci;
267	struct edac_mc_layer *layer;
268	struct csrow_info *csr;
269	struct rank_info *chan;
270	struct dimm_info *dimm;
271	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
272	unsigned pos[EDAC_MAX_LAYERS];
273	unsigned size, tot_dimms = 1, count = 1;
274	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
275	void *pvt, *p, *ptr = NULL;
276	int i, j, row, chn, n, len, off;
277	bool per_rank = false;
278
279	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
280	/*
281	 * Calculate the total amount of dimms and csrows/cschannels while
282	 * in the old API emulation mode
283	 */
284	for (i = 0; i < n_layers; i++) {
285		tot_dimms *= layers[i].size;
286		if (layers[i].is_virt_csrow)
287			tot_csrows *= layers[i].size;
288		else
289			tot_channels *= layers[i].size;
290
291		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
292			per_rank = true;
293	}
294
295	/* Figure out the offsets of the various items from the start of an mc
296	 * structure.  We want the alignment of each item to be at least as
297	 * stringent as what the compiler would provide if we could simply
298	 * hardcode everything into a single struct.
299	 */
300	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
301	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
302	for (i = 0; i < n_layers; i++) {
303		count *= layers[i].size;
304		edac_dbg(4, "errcount layer %d size %d\n", i, count);
305		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
306		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
307		tot_errcount += 2 * count;
308	}
309
310	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
311	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
312	size = ((unsigned long)pvt) + sz_pvt;
313
314	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
315		 size,
316		 tot_dimms,
317		 per_rank ? "ranks" : "dimms",
318		 tot_csrows * tot_channels);
319
320	mci = kzalloc(size, GFP_KERNEL);
321	if (mci == NULL)
322		return NULL;
323
324	/* Adjust pointers so they point within the memory we just allocated
325	 * rather than an imaginary chunk of memory located at address 0.
326	 */
327	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
328	for (i = 0; i < n_layers; i++) {
329		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
330		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
331	}
332	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
333
334	/* setup index and various internal pointers */
335	mci->mc_idx = mc_num;
336	mci->tot_dimms = tot_dimms;
337	mci->pvt_info = pvt;
338	mci->n_layers = n_layers;
339	mci->layers = layer;
340	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
341	mci->nr_csrows = tot_csrows;
342	mci->num_cschannel = tot_channels;
343	mci->csbased = per_rank;
344
345	/*
346	 * Alocate and fill the csrow/channels structs
347	 */
348	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
349	if (!mci->csrows)
350		goto error;
351	for (row = 0; row < tot_csrows; row++) {
352		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
353		if (!csr)
354			goto error;
355		mci->csrows[row] = csr;
356		csr->csrow_idx = row;
357		csr->mci = mci;
358		csr->nr_channels = tot_channels;
359		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
360					GFP_KERNEL);
361		if (!csr->channels)
362			goto error;
363
364		for (chn = 0; chn < tot_channels; chn++) {
365			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
366			if (!chan)
367				goto error;
368			csr->channels[chn] = chan;
369			chan->chan_idx = chn;
370			chan->csrow = csr;
371		}
372	}
373
374	/*
375	 * Allocate and fill the dimm structs
376	 */
377	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
378	if (!mci->dimms)
379		goto error;
380
381	memset(&pos, 0, sizeof(pos));
382	row = 0;
383	chn = 0;
384	for (i = 0; i < tot_dimms; i++) {
385		chan = mci->csrows[row]->channels[chn];
386		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
387		if (off < 0 || off >= tot_dimms) {
388			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
389			goto error;
390		}
391
392		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
393		if (!dimm)
394			goto error;
395		mci->dimms[off] = dimm;
396		dimm->mci = mci;
397
398		/*
399		 * Copy DIMM location and initialize it.
400		 */
401		len = sizeof(dimm->label);
402		p = dimm->label;
403		n = snprintf(p, len, "mc#%u", mc_num);
404		p += n;
405		len -= n;
406		for (j = 0; j < n_layers; j++) {
407			n = snprintf(p, len, "%s#%u",
408				     edac_layer_name[layers[j].type],
409				     pos[j]);
410			p += n;
411			len -= n;
412			dimm->location[j] = pos[j];
413
414			if (len <= 0)
415				break;
416		}
417
418		/* Link it to the csrows old API data */
419		chan->dimm = dimm;
420		dimm->csrow = row;
421		dimm->cschannel = chn;
422
423		/* Increment csrow location */
424		if (layers[0].is_virt_csrow) {
425			chn++;
426			if (chn == tot_channels) {
427				chn = 0;
428				row++;
429			}
430		} else {
431			row++;
432			if (row == tot_csrows) {
433				row = 0;
434				chn++;
435			}
436		}
437
438		/* Increment dimm location */
439		for (j = n_layers - 1; j >= 0; j--) {
440			pos[j]++;
441			if (pos[j] < layers[j].size)
442				break;
443			pos[j] = 0;
444		}
445	}
446
447	mci->op_state = OP_ALLOC;
448
449	return mci;
450
451error:
452	_edac_mc_free(mci);
453
454	return NULL;
455}
456EXPORT_SYMBOL_GPL(edac_mc_alloc);
457
458/**
459 * edac_mc_free
460 *	'Free' a previously allocated 'mci' structure
461 * @mci: pointer to a struct mem_ctl_info structure
462 */
463void edac_mc_free(struct mem_ctl_info *mci)
464{
465	edac_dbg(1, "\n");
466
467	/* If we're not yet registered with sysfs free only what was allocated
468	 * in edac_mc_alloc().
469	 */
470	if (!device_is_registered(&mci->dev)) {
471		_edac_mc_free(mci);
472		return;
473	}
474
475	/* the mci instance is freed here, when the sysfs object is dropped */
476	edac_unregister_sysfs(mci);
477}
478EXPORT_SYMBOL_GPL(edac_mc_free);
479
480
481/**
482 * find_mci_by_dev
483 *
484 *	scan list of controllers looking for the one that manages
485 *	the 'dev' device
486 * @dev: pointer to a struct device related with the MCI
487 */
488struct mem_ctl_info *find_mci_by_dev(struct device *dev)
489{
490	struct mem_ctl_info *mci;
491	struct list_head *item;
492
493	edac_dbg(3, "\n");
494
495	list_for_each(item, &mc_devices) {
496		mci = list_entry(item, struct mem_ctl_info, link);
497
498		if (mci->pdev == dev)
499			return mci;
500	}
501
502	return NULL;
503}
504EXPORT_SYMBOL_GPL(find_mci_by_dev);
505
506/*
507 * handler for EDAC to check if NMI type handler has asserted interrupt
508 */
509static int edac_mc_assert_error_check_and_clear(void)
510{
511	int old_state;
512
513	if (edac_op_state == EDAC_OPSTATE_POLL)
514		return 1;
515
516	old_state = edac_err_assert;
517	edac_err_assert = 0;
518
519	return old_state;
520}
521
522/*
523 * edac_mc_workq_function
524 *	performs the operation scheduled by a workq request
525 */
526static void edac_mc_workq_function(struct work_struct *work_req)
527{
528	struct delayed_work *d_work = to_delayed_work(work_req);
529	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
530
531	mutex_lock(&mem_ctls_mutex);
532
533	/* if this control struct has movd to offline state, we are done */
534	if (mci->op_state == OP_OFFLINE) {
535		mutex_unlock(&mem_ctls_mutex);
536		return;
537	}
538
539	/* Only poll controllers that are running polled and have a check */
540	if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
541		mci->edac_check(mci);
542
543	mutex_unlock(&mem_ctls_mutex);
544
545	/* Reschedule */
546	queue_delayed_work(edac_workqueue, &mci->work,
547			msecs_to_jiffies(edac_mc_get_poll_msec()));
548}
549
550/*
551 * edac_mc_workq_setup
552 *	initialize a workq item for this mci
553 *	passing in the new delay period in msec
554 *
555 *	locking model:
556 *
557 *		called with the mem_ctls_mutex held
558 */
559static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
560				bool init)
561{
562	edac_dbg(0, "\n");
563
564	/* if this instance is not in the POLL state, then simply return */
565	if (mci->op_state != OP_RUNNING_POLL)
566		return;
567
568	if (init)
569		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
570
571	mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572}
573
574/*
575 * edac_mc_workq_teardown
576 *	stop the workq processing on this mci
577 *
578 *	locking model:
579 *
580 *		called WITHOUT lock held
581 */
582static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583{
584	mci->op_state = OP_OFFLINE;
585
586	cancel_delayed_work_sync(&mci->work);
587	flush_workqueue(edac_workqueue);
588}
589
590/*
591 * edac_mc_reset_delay_period(unsigned long value)
592 *
593 *	user space has updated our poll period value, need to
594 *	reset our workq delays
595 */
596void edac_mc_reset_delay_period(unsigned long value)
597{
598	struct mem_ctl_info *mci;
599	struct list_head *item;
600
601	mutex_lock(&mem_ctls_mutex);
602
603	list_for_each(item, &mc_devices) {
604		mci = list_entry(item, struct mem_ctl_info, link);
605
606		edac_mc_workq_setup(mci, value, false);
607	}
608
609	mutex_unlock(&mem_ctls_mutex);
610}
611
612
613
614/* Return 0 on success, 1 on failure.
615 * Before calling this function, caller must
616 * assign a unique value to mci->mc_idx.
617 *
618 *	locking model:
619 *
620 *		called with the mem_ctls_mutex lock held
621 */
622static int add_mc_to_global_list(struct mem_ctl_info *mci)
623{
624	struct list_head *item, *insert_before;
625	struct mem_ctl_info *p;
626
627	insert_before = &mc_devices;
628
629	p = find_mci_by_dev(mci->pdev);
630	if (unlikely(p != NULL))
631		goto fail0;
632
633	list_for_each(item, &mc_devices) {
634		p = list_entry(item, struct mem_ctl_info, link);
635
636		if (p->mc_idx >= mci->mc_idx) {
637			if (unlikely(p->mc_idx == mci->mc_idx))
638				goto fail1;
639
640			insert_before = item;
641			break;
642		}
643	}
644
645	list_add_tail_rcu(&mci->link, insert_before);
646	atomic_inc(&edac_handlers);
647	return 0;
648
649fail0:
650	edac_printk(KERN_WARNING, EDAC_MC,
651		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
652		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
653	return 1;
654
655fail1:
656	edac_printk(KERN_WARNING, EDAC_MC,
657		"bug in low-level driver: attempt to assign\n"
658		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
659	return 1;
660}
661
662static int del_mc_from_global_list(struct mem_ctl_info *mci)
663{
664	int handlers = atomic_dec_return(&edac_handlers);
665	list_del_rcu(&mci->link);
666
667	/* these are for safe removal of devices from global list while
668	 * NMI handlers may be traversing list
669	 */
670	synchronize_rcu();
671	INIT_LIST_HEAD(&mci->link);
672
673	return handlers;
674}
675
676/**
677 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
678 *
679 * If found, return a pointer to the structure.
680 * Else return NULL.
681 *
682 * Caller must hold mem_ctls_mutex.
683 */
684struct mem_ctl_info *edac_mc_find(int idx)
685{
686	struct list_head *item;
687	struct mem_ctl_info *mci;
688
689	list_for_each(item, &mc_devices) {
690		mci = list_entry(item, struct mem_ctl_info, link);
691
692		if (mci->mc_idx >= idx) {
693			if (mci->mc_idx == idx)
694				return mci;
695
696			break;
697		}
698	}
699
700	return NULL;
701}
702EXPORT_SYMBOL(edac_mc_find);
703
704/**
705 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
706 *	global list and create sysfs entries associated with mci structure
707 * @mci: pointer to the mci structure to be added to the list
708 * @groups: optional attribute groups for the driver-specific sysfs entries
709 *
710 * Return:
711 *	0	Success
712 *	!0	Failure
713 */
714
715/* FIXME - should a warning be printed if no error detection? correction? */
716int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
717			       const struct attribute_group **groups)
718{
719	int ret = -EINVAL;
720	edac_dbg(0, "\n");
721
722	if (mci->mc_idx >= EDAC_MAX_MCS) {
723		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
724		return -ENODEV;
725	}
726
727#ifdef CONFIG_EDAC_DEBUG
728	if (edac_debug_level >= 3)
729		edac_mc_dump_mci(mci);
730
731	if (edac_debug_level >= 4) {
732		int i;
733
734		for (i = 0; i < mci->nr_csrows; i++) {
735			struct csrow_info *csrow = mci->csrows[i];
736			u32 nr_pages = 0;
737			int j;
738
739			for (j = 0; j < csrow->nr_channels; j++)
740				nr_pages += csrow->channels[j]->dimm->nr_pages;
741			if (!nr_pages)
742				continue;
743			edac_mc_dump_csrow(csrow);
744			for (j = 0; j < csrow->nr_channels; j++)
745				if (csrow->channels[j]->dimm->nr_pages)
746					edac_mc_dump_channel(csrow->channels[j]);
747		}
748		for (i = 0; i < mci->tot_dimms; i++)
749			if (mci->dimms[i]->nr_pages)
750				edac_mc_dump_dimm(mci->dimms[i], i);
751	}
752#endif
753	mutex_lock(&mem_ctls_mutex);
754
755	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
756		ret = -EPERM;
757		goto fail0;
758	}
759
760	if (add_mc_to_global_list(mci))
761		goto fail0;
762
763	/* set load time so that error rate can be tracked */
764	mci->start_time = jiffies;
765
766	mci->bus = &mc_bus[mci->mc_idx];
767
768	if (edac_create_sysfs_mci_device(mci, groups)) {
769		edac_mc_printk(mci, KERN_WARNING,
770			"failed to create sysfs device\n");
771		goto fail1;
772	}
773
774	/* If there IS a check routine, then we are running POLLED */
775	if (mci->edac_check != NULL) {
776		/* This instance is NOW RUNNING */
777		mci->op_state = OP_RUNNING_POLL;
778
779		edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
780	} else {
781		mci->op_state = OP_RUNNING_INTERRUPT;
782	}
783
784	/* Report action taken */
785	edac_mc_printk(mci, KERN_INFO,
786		"Giving out device to module %s controller %s: DEV %s (%s)\n",
787		mci->mod_name, mci->ctl_name, mci->dev_name,
788		edac_op_state_to_string(mci->op_state));
789
790	edac_mc_owner = mci->mod_name;
791
792	mutex_unlock(&mem_ctls_mutex);
793	return 0;
794
795fail1:
796	del_mc_from_global_list(mci);
797
798fail0:
799	mutex_unlock(&mem_ctls_mutex);
800	return ret;
801}
802EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
803
804/**
805 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
806 *                 remove mci structure from global list
807 * @pdev: Pointer to 'struct device' representing mci structure to remove.
808 *
809 * Return pointer to removed mci structure, or NULL if device not found.
810 */
811struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
812{
813	struct mem_ctl_info *mci;
814
815	edac_dbg(0, "\n");
816
817	mutex_lock(&mem_ctls_mutex);
818
819	/* find the requested mci struct in the global list */
820	mci = find_mci_by_dev(dev);
821	if (mci == NULL) {
822		mutex_unlock(&mem_ctls_mutex);
823		return NULL;
824	}
825
826	if (!del_mc_from_global_list(mci))
827		edac_mc_owner = NULL;
828	mutex_unlock(&mem_ctls_mutex);
829
830	/* flush workq processes */
831	edac_mc_workq_teardown(mci);
832
833	/* marking MCI offline */
834	mci->op_state = OP_OFFLINE;
835
836	/* remove from sysfs */
837	edac_remove_sysfs_mci_device(mci);
838
839	edac_printk(KERN_INFO, EDAC_MC,
840		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
841		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
842
843	return mci;
844}
845EXPORT_SYMBOL_GPL(edac_mc_del_mc);
846
847static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
848				u32 size)
849{
850	struct page *pg;
851	void *virt_addr;
852	unsigned long flags = 0;
853
854	edac_dbg(3, "\n");
855
856	/* ECC error page was not in our memory. Ignore it. */
857	if (!pfn_valid(page))
858		return;
859
860	/* Find the actual page structure then map it and fix */
861	pg = pfn_to_page(page);
862
863	if (PageHighMem(pg))
864		local_irq_save(flags);
865
866	virt_addr = kmap_atomic(pg);
867
868	/* Perform architecture specific atomic scrub operation */
869	atomic_scrub(virt_addr + offset, size);
870
871	/* Unmap and complete */
872	kunmap_atomic(virt_addr);
873
874	if (PageHighMem(pg))
875		local_irq_restore(flags);
876}
877
878/* FIXME - should return -1 */
879int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
880{
881	struct csrow_info **csrows = mci->csrows;
882	int row, i, j, n;
883
884	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
885	row = -1;
886
887	for (i = 0; i < mci->nr_csrows; i++) {
888		struct csrow_info *csrow = csrows[i];
889		n = 0;
890		for (j = 0; j < csrow->nr_channels; j++) {
891			struct dimm_info *dimm = csrow->channels[j]->dimm;
892			n += dimm->nr_pages;
893		}
894		if (n == 0)
895			continue;
896
897		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
898			 mci->mc_idx,
899			 csrow->first_page, page, csrow->last_page,
900			 csrow->page_mask);
901
902		if ((page >= csrow->first_page) &&
903		    (page <= csrow->last_page) &&
904		    ((page & csrow->page_mask) ==
905		     (csrow->first_page & csrow->page_mask))) {
906			row = i;
907			break;
908		}
909	}
910
911	if (row == -1)
912		edac_mc_printk(mci, KERN_ERR,
913			"could not look up page error address %lx\n",
914			(unsigned long)page);
915
916	return row;
917}
918EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
919
920const char *edac_layer_name[] = {
921	[EDAC_MC_LAYER_BRANCH] = "branch",
922	[EDAC_MC_LAYER_CHANNEL] = "channel",
923	[EDAC_MC_LAYER_SLOT] = "slot",
924	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
925	[EDAC_MC_LAYER_ALL_MEM] = "memory",
926};
927EXPORT_SYMBOL_GPL(edac_layer_name);
928
929static void edac_inc_ce_error(struct mem_ctl_info *mci,
930			      bool enable_per_layer_report,
931			      const int pos[EDAC_MAX_LAYERS],
932			      const u16 count)
933{
934	int i, index = 0;
935
936	mci->ce_mc += count;
937
938	if (!enable_per_layer_report) {
939		mci->ce_noinfo_count += count;
940		return;
941	}
942
943	for (i = 0; i < mci->n_layers; i++) {
944		if (pos[i] < 0)
945			break;
946		index += pos[i];
947		mci->ce_per_layer[i][index] += count;
948
949		if (i < mci->n_layers - 1)
950			index *= mci->layers[i + 1].size;
951	}
952}
953
954static void edac_inc_ue_error(struct mem_ctl_info *mci,
955				    bool enable_per_layer_report,
956				    const int pos[EDAC_MAX_LAYERS],
957				    const u16 count)
958{
959	int i, index = 0;
960
961	mci->ue_mc += count;
962
963	if (!enable_per_layer_report) {
964		mci->ce_noinfo_count += count;
965		return;
966	}
967
968	for (i = 0; i < mci->n_layers; i++) {
969		if (pos[i] < 0)
970			break;
971		index += pos[i];
972		mci->ue_per_layer[i][index] += count;
973
974		if (i < mci->n_layers - 1)
975			index *= mci->layers[i + 1].size;
976	}
977}
978
979static void edac_ce_error(struct mem_ctl_info *mci,
980			  const u16 error_count,
981			  const int pos[EDAC_MAX_LAYERS],
982			  const char *msg,
983			  const char *location,
984			  const char *label,
985			  const char *detail,
986			  const char *other_detail,
987			  const bool enable_per_layer_report,
988			  const unsigned long page_frame_number,
989			  const unsigned long offset_in_page,
990			  long grain)
991{
992	unsigned long remapped_page;
993	char *msg_aux = "";
994
995	if (*msg)
996		msg_aux = " ";
997
998	if (edac_mc_get_log_ce()) {
999		if (other_detail && *other_detail)
1000			edac_mc_printk(mci, KERN_WARNING,
1001				       "%d CE %s%son %s (%s %s - %s)\n",
1002				       error_count, msg, msg_aux, label,
1003				       location, detail, other_detail);
1004		else
1005			edac_mc_printk(mci, KERN_WARNING,
1006				       "%d CE %s%son %s (%s %s)\n",
1007				       error_count, msg, msg_aux, label,
1008				       location, detail);
1009	}
1010	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1011
1012	if (mci->scrub_mode == SCRUB_SW_SRC) {
1013		/*
1014			* Some memory controllers (called MCs below) can remap
1015			* memory so that it is still available at a different
1016			* address when PCI devices map into memory.
1017			* MC's that can't do this, lose the memory where PCI
1018			* devices are mapped. This mapping is MC-dependent
1019			* and so we call back into the MC driver for it to
1020			* map the MC page to a physical (CPU) page which can
1021			* then be mapped to a virtual page - which can then
1022			* be scrubbed.
1023			*/
1024		remapped_page = mci->ctl_page_to_phys ?
1025			mci->ctl_page_to_phys(mci, page_frame_number) :
1026			page_frame_number;
1027
1028		edac_mc_scrub_block(remapped_page,
1029					offset_in_page, grain);
1030	}
1031}
1032
1033static void edac_ue_error(struct mem_ctl_info *mci,
1034			  const u16 error_count,
1035			  const int pos[EDAC_MAX_LAYERS],
1036			  const char *msg,
1037			  const char *location,
1038			  const char *label,
1039			  const char *detail,
1040			  const char *other_detail,
1041			  const bool enable_per_layer_report)
1042{
1043	char *msg_aux = "";
1044
1045	if (*msg)
1046		msg_aux = " ";
1047
1048	if (edac_mc_get_log_ue()) {
1049		if (other_detail && *other_detail)
1050			edac_mc_printk(mci, KERN_WARNING,
1051				       "%d UE %s%son %s (%s %s - %s)\n",
1052				       error_count, msg, msg_aux, label,
1053				       location, detail, other_detail);
1054		else
1055			edac_mc_printk(mci, KERN_WARNING,
1056				       "%d UE %s%son %s (%s %s)\n",
1057				       error_count, msg, msg_aux, label,
1058				       location, detail);
1059	}
1060
1061	if (edac_mc_get_panic_on_ue()) {
1062		if (other_detail && *other_detail)
1063			panic("UE %s%son %s (%s%s - %s)\n",
1064			      msg, msg_aux, label, location, detail, other_detail);
1065		else
1066			panic("UE %s%son %s (%s%s)\n",
1067			      msg, msg_aux, label, location, detail);
1068	}
1069
1070	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1071}
1072
1073/**
1074 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1075 *			      anything to discover the error location
1076 *
1077 * @type:		severity of the error (CE/UE/Fatal)
1078 * @mci:		a struct mem_ctl_info pointer
1079 * @e:			error description
1080 *
1081 * This raw function is used internally by edac_mc_handle_error(). It should
1082 * only be called directly when the hardware error come directly from BIOS,
1083 * like in the case of APEI GHES driver.
1084 */
1085void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1086			      struct mem_ctl_info *mci,
1087			      struct edac_raw_error_desc *e)
1088{
1089	char detail[80];
1090	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1091
1092	/* Memory type dependent details about the error */
1093	if (type == HW_EVENT_ERR_CORRECTED) {
1094		snprintf(detail, sizeof(detail),
1095			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1096			e->page_frame_number, e->offset_in_page,
1097			e->grain, e->syndrome);
1098		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1099			      detail, e->other_detail, e->enable_per_layer_report,
1100			      e->page_frame_number, e->offset_in_page, e->grain);
1101	} else {
1102		snprintf(detail, sizeof(detail),
1103			"page:0x%lx offset:0x%lx grain:%ld",
1104			e->page_frame_number, e->offset_in_page, e->grain);
1105
1106		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1107			      detail, e->other_detail, e->enable_per_layer_report);
1108	}
1109
1110
1111}
1112EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1113
1114/**
1115 * edac_mc_handle_error - reports a memory event to userspace
1116 *
1117 * @type:		severity of the error (CE/UE/Fatal)
1118 * @mci:		a struct mem_ctl_info pointer
1119 * @error_count:	Number of errors of the same type
1120 * @page_frame_number:	mem page where the error occurred
1121 * @offset_in_page:	offset of the error inside the page
1122 * @syndrome:		ECC syndrome
1123 * @top_layer:		Memory layer[0] position
1124 * @mid_layer:		Memory layer[1] position
1125 * @low_layer:		Memory layer[2] position
1126 * @msg:		Message meaningful to the end users that
1127 *			explains the event
1128 * @other_detail:	Technical details about the event that
1129 *			may help hardware manufacturers and
1130 *			EDAC developers to analyse the event
1131 */
1132void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1133			  struct mem_ctl_info *mci,
1134			  const u16 error_count,
1135			  const unsigned long page_frame_number,
1136			  const unsigned long offset_in_page,
1137			  const unsigned long syndrome,
1138			  const int top_layer,
1139			  const int mid_layer,
1140			  const int low_layer,
1141			  const char *msg,
1142			  const char *other_detail)
1143{
1144	char *p;
1145	int row = -1, chan = -1;
1146	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1147	int i, n_labels = 0;
1148	u8 grain_bits;
1149	struct edac_raw_error_desc *e = &mci->error_desc;
1150
1151	edac_dbg(3, "MC%d\n", mci->mc_idx);
1152
1153	/* Fills the error report buffer */
1154	memset(e, 0, sizeof (*e));
1155	e->error_count = error_count;
1156	e->top_layer = top_layer;
1157	e->mid_layer = mid_layer;
1158	e->low_layer = low_layer;
1159	e->page_frame_number = page_frame_number;
1160	e->offset_in_page = offset_in_page;
1161	e->syndrome = syndrome;
1162	e->msg = msg;
1163	e->other_detail = other_detail;
1164
1165	/*
1166	 * Check if the event report is consistent and if the memory
1167	 * location is known. If it is known, enable_per_layer_report will be
1168	 * true, the DIMM(s) label info will be filled and the per-layer
1169	 * error counters will be incremented.
1170	 */
1171	for (i = 0; i < mci->n_layers; i++) {
1172		if (pos[i] >= (int)mci->layers[i].size) {
1173
1174			edac_mc_printk(mci, KERN_ERR,
1175				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1176				       edac_layer_name[mci->layers[i].type],
1177				       pos[i], mci->layers[i].size);
1178			/*
1179			 * Instead of just returning it, let's use what's
1180			 * known about the error. The increment routines and
1181			 * the DIMM filter logic will do the right thing by
1182			 * pointing the likely damaged DIMMs.
1183			 */
1184			pos[i] = -1;
1185		}
1186		if (pos[i] >= 0)
1187			e->enable_per_layer_report = true;
1188	}
1189
1190	/*
1191	 * Get the dimm label/grain that applies to the match criteria.
1192	 * As the error algorithm may not be able to point to just one memory
1193	 * stick, the logic here will get all possible labels that could
1194	 * pottentially be affected by the error.
1195	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1196	 * to have only the MC channel and the MC dimm (also called "branch")
1197	 * but the channel is not known, as the memory is arranged in pairs,
1198	 * where each memory belongs to a separate channel within the same
1199	 * branch.
1200	 */
1201	p = e->label;
1202	*p = '\0';
1203
1204	for (i = 0; i < mci->tot_dimms; i++) {
1205		struct dimm_info *dimm = mci->dimms[i];
1206
1207		if (top_layer >= 0 && top_layer != dimm->location[0])
1208			continue;
1209		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1210			continue;
1211		if (low_layer >= 0 && low_layer != dimm->location[2])
1212			continue;
1213
1214		/* get the max grain, over the error match range */
1215		if (dimm->grain > e->grain)
1216			e->grain = dimm->grain;
1217
1218		/*
1219		 * If the error is memory-controller wide, there's no need to
1220		 * seek for the affected DIMMs because the whole
1221		 * channel/memory controller/...  may be affected.
1222		 * Also, don't show errors for empty DIMM slots.
1223		 */
1224		if (e->enable_per_layer_report && dimm->nr_pages) {
1225			if (n_labels >= EDAC_MAX_LABELS) {
1226				e->enable_per_layer_report = false;
1227				break;
1228			}
1229			n_labels++;
1230			if (p != e->label) {
1231				strcpy(p, OTHER_LABEL);
1232				p += strlen(OTHER_LABEL);
1233			}
1234			strcpy(p, dimm->label);
1235			p += strlen(p);
1236			*p = '\0';
1237
1238			/*
1239			 * get csrow/channel of the DIMM, in order to allow
1240			 * incrementing the compat API counters
1241			 */
1242			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1243				 mci->csbased ? "rank" : "dimm",
1244				 dimm->csrow, dimm->cschannel);
1245			if (row == -1)
1246				row = dimm->csrow;
1247			else if (row >= 0 && row != dimm->csrow)
1248				row = -2;
1249
1250			if (chan == -1)
1251				chan = dimm->cschannel;
1252			else if (chan >= 0 && chan != dimm->cschannel)
1253				chan = -2;
1254		}
1255	}
1256
1257	if (!e->enable_per_layer_report) {
1258		strcpy(e->label, "any memory");
1259	} else {
1260		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1261		if (p == e->label)
1262			strcpy(e->label, "unknown memory");
1263		if (type == HW_EVENT_ERR_CORRECTED) {
1264			if (row >= 0) {
1265				mci->csrows[row]->ce_count += error_count;
1266				if (chan >= 0)
1267					mci->csrows[row]->channels[chan]->ce_count += error_count;
1268			}
1269		} else
1270			if (row >= 0)
1271				mci->csrows[row]->ue_count += error_count;
1272	}
1273
1274	/* Fill the RAM location data */
1275	p = e->location;
1276
1277	for (i = 0; i < mci->n_layers; i++) {
1278		if (pos[i] < 0)
1279			continue;
1280
1281		p += sprintf(p, "%s:%d ",
1282			     edac_layer_name[mci->layers[i].type],
1283			     pos[i]);
1284	}
1285	if (p > e->location)
1286		*(p - 1) = '\0';
1287
1288	/* Report the error via the trace interface */
1289	grain_bits = fls_long(e->grain) + 1;
1290	trace_mc_event(type, e->msg, e->label, e->error_count,
1291		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1292		       PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1293		       grain_bits, e->syndrome, e->other_detail);
1294
1295	edac_raw_mc_handle_error(type, mci, e);
1296}
1297EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1298