1/* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15#include <linux/module.h> 16#include <linux/proc_fs.h> 17#include <linux/kernel.h> 18#include <linux/types.h> 19#include <linux/smp.h> 20#include <linux/init.h> 21#include <linux/sysctl.h> 22#include <linux/highmem.h> 23#include <linux/timer.h> 24#include <linux/slab.h> 25#include <linux/jiffies.h> 26#include <linux/spinlock.h> 27#include <linux/list.h> 28#include <linux/ctype.h> 29#include <linux/edac.h> 30#include <linux/bitops.h> 31#include <asm/uaccess.h> 32#include <asm/page.h> 33#include <asm/edac.h> 34#include "edac_core.h" 35#include "edac_module.h" 36#include <ras/ras_event.h> 37 38/* lock to memory controller's control array */ 39static DEFINE_MUTEX(mem_ctls_mutex); 40static LIST_HEAD(mc_devices); 41 42/* 43 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 44 * apei/ghes and i7core_edac to be used at the same time. 45 */ 46static void const *edac_mc_owner; 47 48static struct bus_type mc_bus[EDAC_MAX_MCS]; 49 50unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 51 unsigned len) 52{ 53 struct mem_ctl_info *mci = dimm->mci; 54 int i, n, count = 0; 55 char *p = buf; 56 57 for (i = 0; i < mci->n_layers; i++) { 58 n = snprintf(p, len, "%s %d ", 59 edac_layer_name[mci->layers[i].type], 60 dimm->location[i]); 61 p += n; 62 len -= n; 63 count += n; 64 if (!len) 65 break; 66 } 67 68 return count; 69} 70 71#ifdef CONFIG_EDAC_DEBUG 72 73static void edac_mc_dump_channel(struct rank_info *chan) 74{ 75 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 76 edac_dbg(4, " channel = %p\n", chan); 77 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 78 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 79} 80 81static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 82{ 83 char location[80]; 84 85 edac_dimm_info_location(dimm, location, sizeof(location)); 86 87 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 88 dimm->mci->csbased ? "rank" : "dimm", 89 number, location, dimm->csrow, dimm->cschannel); 90 edac_dbg(4, " dimm = %p\n", dimm); 91 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 92 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 93 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 94 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 95} 96 97static void edac_mc_dump_csrow(struct csrow_info *csrow) 98{ 99 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 100 edac_dbg(4, " csrow = %p\n", csrow); 101 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 102 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 103 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 104 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 105 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 106 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 107} 108 109static void edac_mc_dump_mci(struct mem_ctl_info *mci) 110{ 111 edac_dbg(3, "\tmci = %p\n", mci); 112 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 113 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 114 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 115 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 116 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 117 mci->nr_csrows, mci->csrows); 118 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 119 mci->tot_dimms, mci->dimms); 120 edac_dbg(3, "\tdev = %p\n", mci->pdev); 121 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 122 mci->mod_name, mci->ctl_name); 123 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 124} 125 126#endif /* CONFIG_EDAC_DEBUG */ 127 128const char * const edac_mem_types[] = { 129 [MEM_EMPTY] = "Empty csrow", 130 [MEM_RESERVED] = "Reserved csrow type", 131 [MEM_UNKNOWN] = "Unknown csrow type", 132 [MEM_FPM] = "Fast page mode RAM", 133 [MEM_EDO] = "Extended data out RAM", 134 [MEM_BEDO] = "Burst Extended data out RAM", 135 [MEM_SDR] = "Single data rate SDRAM", 136 [MEM_RDR] = "Registered single data rate SDRAM", 137 [MEM_DDR] = "Double data rate SDRAM", 138 [MEM_RDDR] = "Registered Double data rate SDRAM", 139 [MEM_RMBS] = "Rambus DRAM", 140 [MEM_DDR2] = "Unbuffered DDR2 RAM", 141 [MEM_FB_DDR2] = "Fully buffered DDR2", 142 [MEM_RDDR2] = "Registered DDR2 RAM", 143 [MEM_XDR] = "Rambus XDR", 144 [MEM_DDR3] = "Unbuffered DDR3 RAM", 145 [MEM_RDDR3] = "Registered DDR3 RAM", 146 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM", 147 [MEM_DDR4] = "Unbuffered DDR4 RAM", 148 [MEM_RDDR4] = "Registered DDR4 RAM", 149}; 150EXPORT_SYMBOL_GPL(edac_mem_types); 151 152/** 153 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 154 * @p: pointer to a pointer with the memory offset to be used. At 155 * return, this will be incremented to point to the next offset 156 * @size: Size of the data structure to be reserved 157 * @n_elems: Number of elements that should be reserved 158 * 159 * If 'size' is a constant, the compiler will optimize this whole function 160 * down to either a no-op or the addition of a constant to the value of '*p'. 161 * 162 * The 'p' pointer is absolutely needed to keep the proper advancing 163 * further in memory to the proper offsets when allocating the struct along 164 * with its embedded structs, as edac_device_alloc_ctl_info() does it 165 * above, for example. 166 * 167 * At return, the pointer 'p' will be incremented to be used on a next call 168 * to this function. 169 */ 170void *edac_align_ptr(void **p, unsigned size, int n_elems) 171{ 172 unsigned align, r; 173 void *ptr = *p; 174 175 *p += size * n_elems; 176 177 /* 178 * 'p' can possibly be an unaligned item X such that sizeof(X) is 179 * 'size'. Adjust 'p' so that its alignment is at least as 180 * stringent as what the compiler would provide for X and return 181 * the aligned result. 182 * Here we assume that the alignment of a "long long" is the most 183 * stringent alignment that the compiler will ever provide by default. 184 * As far as I know, this is a reasonable assumption. 185 */ 186 if (size > sizeof(long)) 187 align = sizeof(long long); 188 else if (size > sizeof(int)) 189 align = sizeof(long); 190 else if (size > sizeof(short)) 191 align = sizeof(int); 192 else if (size > sizeof(char)) 193 align = sizeof(short); 194 else 195 return (char *)ptr; 196 197 r = (unsigned long)p % align; 198 199 if (r == 0) 200 return (char *)ptr; 201 202 *p += align - r; 203 204 return (void *)(((unsigned long)ptr) + align - r); 205} 206 207static void _edac_mc_free(struct mem_ctl_info *mci) 208{ 209 int i, chn, row; 210 struct csrow_info *csr; 211 const unsigned int tot_dimms = mci->tot_dimms; 212 const unsigned int tot_channels = mci->num_cschannel; 213 const unsigned int tot_csrows = mci->nr_csrows; 214 215 if (mci->dimms) { 216 for (i = 0; i < tot_dimms; i++) 217 kfree(mci->dimms[i]); 218 kfree(mci->dimms); 219 } 220 if (mci->csrows) { 221 for (row = 0; row < tot_csrows; row++) { 222 csr = mci->csrows[row]; 223 if (csr) { 224 if (csr->channels) { 225 for (chn = 0; chn < tot_channels; chn++) 226 kfree(csr->channels[chn]); 227 kfree(csr->channels); 228 } 229 kfree(csr); 230 } 231 } 232 kfree(mci->csrows); 233 } 234 kfree(mci); 235} 236 237/** 238 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 239 * @mc_num: Memory controller number 240 * @n_layers: Number of MC hierarchy layers 241 * layers: Describes each layer as seen by the Memory Controller 242 * @size_pvt: size of private storage needed 243 * 244 * 245 * Everything is kmalloc'ed as one big chunk - more efficient. 246 * Only can be used if all structures have the same lifetime - otherwise 247 * you have to allocate and initialize your own structures. 248 * 249 * Use edac_mc_free() to free mc structures allocated by this function. 250 * 251 * NOTE: drivers handle multi-rank memories in different ways: in some 252 * drivers, one multi-rank memory stick is mapped as one entry, while, in 253 * others, a single multi-rank memory stick would be mapped into several 254 * entries. Currently, this function will allocate multiple struct dimm_info 255 * on such scenarios, as grouping the multiple ranks require drivers change. 256 * 257 * Returns: 258 * On failure: NULL 259 * On success: struct mem_ctl_info pointer 260 */ 261struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 262 unsigned n_layers, 263 struct edac_mc_layer *layers, 264 unsigned sz_pvt) 265{ 266 struct mem_ctl_info *mci; 267 struct edac_mc_layer *layer; 268 struct csrow_info *csr; 269 struct rank_info *chan; 270 struct dimm_info *dimm; 271 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 272 unsigned pos[EDAC_MAX_LAYERS]; 273 unsigned size, tot_dimms = 1, count = 1; 274 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 275 void *pvt, *p, *ptr = NULL; 276 int i, j, row, chn, n, len, off; 277 bool per_rank = false; 278 279 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 280 /* 281 * Calculate the total amount of dimms and csrows/cschannels while 282 * in the old API emulation mode 283 */ 284 for (i = 0; i < n_layers; i++) { 285 tot_dimms *= layers[i].size; 286 if (layers[i].is_virt_csrow) 287 tot_csrows *= layers[i].size; 288 else 289 tot_channels *= layers[i].size; 290 291 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 292 per_rank = true; 293 } 294 295 /* Figure out the offsets of the various items from the start of an mc 296 * structure. We want the alignment of each item to be at least as 297 * stringent as what the compiler would provide if we could simply 298 * hardcode everything into a single struct. 299 */ 300 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 301 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 302 for (i = 0; i < n_layers; i++) { 303 count *= layers[i].size; 304 edac_dbg(4, "errcount layer %d size %d\n", i, count); 305 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 306 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 307 tot_errcount += 2 * count; 308 } 309 310 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 311 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 312 size = ((unsigned long)pvt) + sz_pvt; 313 314 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 315 size, 316 tot_dimms, 317 per_rank ? "ranks" : "dimms", 318 tot_csrows * tot_channels); 319 320 mci = kzalloc(size, GFP_KERNEL); 321 if (mci == NULL) 322 return NULL; 323 324 /* Adjust pointers so they point within the memory we just allocated 325 * rather than an imaginary chunk of memory located at address 0. 326 */ 327 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 328 for (i = 0; i < n_layers; i++) { 329 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 330 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 331 } 332 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 333 334 /* setup index and various internal pointers */ 335 mci->mc_idx = mc_num; 336 mci->tot_dimms = tot_dimms; 337 mci->pvt_info = pvt; 338 mci->n_layers = n_layers; 339 mci->layers = layer; 340 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 341 mci->nr_csrows = tot_csrows; 342 mci->num_cschannel = tot_channels; 343 mci->csbased = per_rank; 344 345 /* 346 * Alocate and fill the csrow/channels structs 347 */ 348 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 349 if (!mci->csrows) 350 goto error; 351 for (row = 0; row < tot_csrows; row++) { 352 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 353 if (!csr) 354 goto error; 355 mci->csrows[row] = csr; 356 csr->csrow_idx = row; 357 csr->mci = mci; 358 csr->nr_channels = tot_channels; 359 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 360 GFP_KERNEL); 361 if (!csr->channels) 362 goto error; 363 364 for (chn = 0; chn < tot_channels; chn++) { 365 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 366 if (!chan) 367 goto error; 368 csr->channels[chn] = chan; 369 chan->chan_idx = chn; 370 chan->csrow = csr; 371 } 372 } 373 374 /* 375 * Allocate and fill the dimm structs 376 */ 377 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 378 if (!mci->dimms) 379 goto error; 380 381 memset(&pos, 0, sizeof(pos)); 382 row = 0; 383 chn = 0; 384 for (i = 0; i < tot_dimms; i++) { 385 chan = mci->csrows[row]->channels[chn]; 386 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 387 if (off < 0 || off >= tot_dimms) { 388 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 389 goto error; 390 } 391 392 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 393 if (!dimm) 394 goto error; 395 mci->dimms[off] = dimm; 396 dimm->mci = mci; 397 398 /* 399 * Copy DIMM location and initialize it. 400 */ 401 len = sizeof(dimm->label); 402 p = dimm->label; 403 n = snprintf(p, len, "mc#%u", mc_num); 404 p += n; 405 len -= n; 406 for (j = 0; j < n_layers; j++) { 407 n = snprintf(p, len, "%s#%u", 408 edac_layer_name[layers[j].type], 409 pos[j]); 410 p += n; 411 len -= n; 412 dimm->location[j] = pos[j]; 413 414 if (len <= 0) 415 break; 416 } 417 418 /* Link it to the csrows old API data */ 419 chan->dimm = dimm; 420 dimm->csrow = row; 421 dimm->cschannel = chn; 422 423 /* Increment csrow location */ 424 if (layers[0].is_virt_csrow) { 425 chn++; 426 if (chn == tot_channels) { 427 chn = 0; 428 row++; 429 } 430 } else { 431 row++; 432 if (row == tot_csrows) { 433 row = 0; 434 chn++; 435 } 436 } 437 438 /* Increment dimm location */ 439 for (j = n_layers - 1; j >= 0; j--) { 440 pos[j]++; 441 if (pos[j] < layers[j].size) 442 break; 443 pos[j] = 0; 444 } 445 } 446 447 mci->op_state = OP_ALLOC; 448 449 return mci; 450 451error: 452 _edac_mc_free(mci); 453 454 return NULL; 455} 456EXPORT_SYMBOL_GPL(edac_mc_alloc); 457 458/** 459 * edac_mc_free 460 * 'Free' a previously allocated 'mci' structure 461 * @mci: pointer to a struct mem_ctl_info structure 462 */ 463void edac_mc_free(struct mem_ctl_info *mci) 464{ 465 edac_dbg(1, "\n"); 466 467 /* If we're not yet registered with sysfs free only what was allocated 468 * in edac_mc_alloc(). 469 */ 470 if (!device_is_registered(&mci->dev)) { 471 _edac_mc_free(mci); 472 return; 473 } 474 475 /* the mci instance is freed here, when the sysfs object is dropped */ 476 edac_unregister_sysfs(mci); 477} 478EXPORT_SYMBOL_GPL(edac_mc_free); 479 480 481/** 482 * find_mci_by_dev 483 * 484 * scan list of controllers looking for the one that manages 485 * the 'dev' device 486 * @dev: pointer to a struct device related with the MCI 487 */ 488struct mem_ctl_info *find_mci_by_dev(struct device *dev) 489{ 490 struct mem_ctl_info *mci; 491 struct list_head *item; 492 493 edac_dbg(3, "\n"); 494 495 list_for_each(item, &mc_devices) { 496 mci = list_entry(item, struct mem_ctl_info, link); 497 498 if (mci->pdev == dev) 499 return mci; 500 } 501 502 return NULL; 503} 504EXPORT_SYMBOL_GPL(find_mci_by_dev); 505 506/* 507 * handler for EDAC to check if NMI type handler has asserted interrupt 508 */ 509static int edac_mc_assert_error_check_and_clear(void) 510{ 511 int old_state; 512 513 if (edac_op_state == EDAC_OPSTATE_POLL) 514 return 1; 515 516 old_state = edac_err_assert; 517 edac_err_assert = 0; 518 519 return old_state; 520} 521 522/* 523 * edac_mc_workq_function 524 * performs the operation scheduled by a workq request 525 */ 526static void edac_mc_workq_function(struct work_struct *work_req) 527{ 528 struct delayed_work *d_work = to_delayed_work(work_req); 529 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 530 531 mutex_lock(&mem_ctls_mutex); 532 533 /* if this control struct has movd to offline state, we are done */ 534 if (mci->op_state == OP_OFFLINE) { 535 mutex_unlock(&mem_ctls_mutex); 536 return; 537 } 538 539 /* Only poll controllers that are running polled and have a check */ 540 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 541 mci->edac_check(mci); 542 543 mutex_unlock(&mem_ctls_mutex); 544 545 /* Reschedule */ 546 queue_delayed_work(edac_workqueue, &mci->work, 547 msecs_to_jiffies(edac_mc_get_poll_msec())); 548} 549 550/* 551 * edac_mc_workq_setup 552 * initialize a workq item for this mci 553 * passing in the new delay period in msec 554 * 555 * locking model: 556 * 557 * called with the mem_ctls_mutex held 558 */ 559static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec, 560 bool init) 561{ 562 edac_dbg(0, "\n"); 563 564 /* if this instance is not in the POLL state, then simply return */ 565 if (mci->op_state != OP_RUNNING_POLL) 566 return; 567 568 if (init) 569 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 570 571 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 572} 573 574/* 575 * edac_mc_workq_teardown 576 * stop the workq processing on this mci 577 * 578 * locking model: 579 * 580 * called WITHOUT lock held 581 */ 582static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 583{ 584 mci->op_state = OP_OFFLINE; 585 586 cancel_delayed_work_sync(&mci->work); 587 flush_workqueue(edac_workqueue); 588} 589 590/* 591 * edac_mc_reset_delay_period(unsigned long value) 592 * 593 * user space has updated our poll period value, need to 594 * reset our workq delays 595 */ 596void edac_mc_reset_delay_period(unsigned long value) 597{ 598 struct mem_ctl_info *mci; 599 struct list_head *item; 600 601 mutex_lock(&mem_ctls_mutex); 602 603 list_for_each(item, &mc_devices) { 604 mci = list_entry(item, struct mem_ctl_info, link); 605 606 edac_mc_workq_setup(mci, value, false); 607 } 608 609 mutex_unlock(&mem_ctls_mutex); 610} 611 612 613 614/* Return 0 on success, 1 on failure. 615 * Before calling this function, caller must 616 * assign a unique value to mci->mc_idx. 617 * 618 * locking model: 619 * 620 * called with the mem_ctls_mutex lock held 621 */ 622static int add_mc_to_global_list(struct mem_ctl_info *mci) 623{ 624 struct list_head *item, *insert_before; 625 struct mem_ctl_info *p; 626 627 insert_before = &mc_devices; 628 629 p = find_mci_by_dev(mci->pdev); 630 if (unlikely(p != NULL)) 631 goto fail0; 632 633 list_for_each(item, &mc_devices) { 634 p = list_entry(item, struct mem_ctl_info, link); 635 636 if (p->mc_idx >= mci->mc_idx) { 637 if (unlikely(p->mc_idx == mci->mc_idx)) 638 goto fail1; 639 640 insert_before = item; 641 break; 642 } 643 } 644 645 list_add_tail_rcu(&mci->link, insert_before); 646 atomic_inc(&edac_handlers); 647 return 0; 648 649fail0: 650 edac_printk(KERN_WARNING, EDAC_MC, 651 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 652 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 653 return 1; 654 655fail1: 656 edac_printk(KERN_WARNING, EDAC_MC, 657 "bug in low-level driver: attempt to assign\n" 658 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 659 return 1; 660} 661 662static int del_mc_from_global_list(struct mem_ctl_info *mci) 663{ 664 int handlers = atomic_dec_return(&edac_handlers); 665 list_del_rcu(&mci->link); 666 667 /* these are for safe removal of devices from global list while 668 * NMI handlers may be traversing list 669 */ 670 synchronize_rcu(); 671 INIT_LIST_HEAD(&mci->link); 672 673 return handlers; 674} 675 676/** 677 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 678 * 679 * If found, return a pointer to the structure. 680 * Else return NULL. 681 * 682 * Caller must hold mem_ctls_mutex. 683 */ 684struct mem_ctl_info *edac_mc_find(int idx) 685{ 686 struct list_head *item; 687 struct mem_ctl_info *mci; 688 689 list_for_each(item, &mc_devices) { 690 mci = list_entry(item, struct mem_ctl_info, link); 691 692 if (mci->mc_idx >= idx) { 693 if (mci->mc_idx == idx) 694 return mci; 695 696 break; 697 } 698 } 699 700 return NULL; 701} 702EXPORT_SYMBOL(edac_mc_find); 703 704/** 705 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci 706 * global list and create sysfs entries associated with mci structure 707 * @mci: pointer to the mci structure to be added to the list 708 * @groups: optional attribute groups for the driver-specific sysfs entries 709 * 710 * Return: 711 * 0 Success 712 * !0 Failure 713 */ 714 715/* FIXME - should a warning be printed if no error detection? correction? */ 716int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 717 const struct attribute_group **groups) 718{ 719 int ret = -EINVAL; 720 edac_dbg(0, "\n"); 721 722 if (mci->mc_idx >= EDAC_MAX_MCS) { 723 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); 724 return -ENODEV; 725 } 726 727#ifdef CONFIG_EDAC_DEBUG 728 if (edac_debug_level >= 3) 729 edac_mc_dump_mci(mci); 730 731 if (edac_debug_level >= 4) { 732 int i; 733 734 for (i = 0; i < mci->nr_csrows; i++) { 735 struct csrow_info *csrow = mci->csrows[i]; 736 u32 nr_pages = 0; 737 int j; 738 739 for (j = 0; j < csrow->nr_channels; j++) 740 nr_pages += csrow->channels[j]->dimm->nr_pages; 741 if (!nr_pages) 742 continue; 743 edac_mc_dump_csrow(csrow); 744 for (j = 0; j < csrow->nr_channels; j++) 745 if (csrow->channels[j]->dimm->nr_pages) 746 edac_mc_dump_channel(csrow->channels[j]); 747 } 748 for (i = 0; i < mci->tot_dimms; i++) 749 if (mci->dimms[i]->nr_pages) 750 edac_mc_dump_dimm(mci->dimms[i], i); 751 } 752#endif 753 mutex_lock(&mem_ctls_mutex); 754 755 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 756 ret = -EPERM; 757 goto fail0; 758 } 759 760 if (add_mc_to_global_list(mci)) 761 goto fail0; 762 763 /* set load time so that error rate can be tracked */ 764 mci->start_time = jiffies; 765 766 mci->bus = &mc_bus[mci->mc_idx]; 767 768 if (edac_create_sysfs_mci_device(mci, groups)) { 769 edac_mc_printk(mci, KERN_WARNING, 770 "failed to create sysfs device\n"); 771 goto fail1; 772 } 773 774 /* If there IS a check routine, then we are running POLLED */ 775 if (mci->edac_check != NULL) { 776 /* This instance is NOW RUNNING */ 777 mci->op_state = OP_RUNNING_POLL; 778 779 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true); 780 } else { 781 mci->op_state = OP_RUNNING_INTERRUPT; 782 } 783 784 /* Report action taken */ 785 edac_mc_printk(mci, KERN_INFO, 786 "Giving out device to module %s controller %s: DEV %s (%s)\n", 787 mci->mod_name, mci->ctl_name, mci->dev_name, 788 edac_op_state_to_string(mci->op_state)); 789 790 edac_mc_owner = mci->mod_name; 791 792 mutex_unlock(&mem_ctls_mutex); 793 return 0; 794 795fail1: 796 del_mc_from_global_list(mci); 797 798fail0: 799 mutex_unlock(&mem_ctls_mutex); 800 return ret; 801} 802EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 803 804/** 805 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 806 * remove mci structure from global list 807 * @pdev: Pointer to 'struct device' representing mci structure to remove. 808 * 809 * Return pointer to removed mci structure, or NULL if device not found. 810 */ 811struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 812{ 813 struct mem_ctl_info *mci; 814 815 edac_dbg(0, "\n"); 816 817 mutex_lock(&mem_ctls_mutex); 818 819 /* find the requested mci struct in the global list */ 820 mci = find_mci_by_dev(dev); 821 if (mci == NULL) { 822 mutex_unlock(&mem_ctls_mutex); 823 return NULL; 824 } 825 826 if (!del_mc_from_global_list(mci)) 827 edac_mc_owner = NULL; 828 mutex_unlock(&mem_ctls_mutex); 829 830 /* flush workq processes */ 831 edac_mc_workq_teardown(mci); 832 833 /* marking MCI offline */ 834 mci->op_state = OP_OFFLINE; 835 836 /* remove from sysfs */ 837 edac_remove_sysfs_mci_device(mci); 838 839 edac_printk(KERN_INFO, EDAC_MC, 840 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 841 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 842 843 return mci; 844} 845EXPORT_SYMBOL_GPL(edac_mc_del_mc); 846 847static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 848 u32 size) 849{ 850 struct page *pg; 851 void *virt_addr; 852 unsigned long flags = 0; 853 854 edac_dbg(3, "\n"); 855 856 /* ECC error page was not in our memory. Ignore it. */ 857 if (!pfn_valid(page)) 858 return; 859 860 /* Find the actual page structure then map it and fix */ 861 pg = pfn_to_page(page); 862 863 if (PageHighMem(pg)) 864 local_irq_save(flags); 865 866 virt_addr = kmap_atomic(pg); 867 868 /* Perform architecture specific atomic scrub operation */ 869 atomic_scrub(virt_addr + offset, size); 870 871 /* Unmap and complete */ 872 kunmap_atomic(virt_addr); 873 874 if (PageHighMem(pg)) 875 local_irq_restore(flags); 876} 877 878/* FIXME - should return -1 */ 879int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 880{ 881 struct csrow_info **csrows = mci->csrows; 882 int row, i, j, n; 883 884 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 885 row = -1; 886 887 for (i = 0; i < mci->nr_csrows; i++) { 888 struct csrow_info *csrow = csrows[i]; 889 n = 0; 890 for (j = 0; j < csrow->nr_channels; j++) { 891 struct dimm_info *dimm = csrow->channels[j]->dimm; 892 n += dimm->nr_pages; 893 } 894 if (n == 0) 895 continue; 896 897 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 898 mci->mc_idx, 899 csrow->first_page, page, csrow->last_page, 900 csrow->page_mask); 901 902 if ((page >= csrow->first_page) && 903 (page <= csrow->last_page) && 904 ((page & csrow->page_mask) == 905 (csrow->first_page & csrow->page_mask))) { 906 row = i; 907 break; 908 } 909 } 910 911 if (row == -1) 912 edac_mc_printk(mci, KERN_ERR, 913 "could not look up page error address %lx\n", 914 (unsigned long)page); 915 916 return row; 917} 918EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 919 920const char *edac_layer_name[] = { 921 [EDAC_MC_LAYER_BRANCH] = "branch", 922 [EDAC_MC_LAYER_CHANNEL] = "channel", 923 [EDAC_MC_LAYER_SLOT] = "slot", 924 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 925 [EDAC_MC_LAYER_ALL_MEM] = "memory", 926}; 927EXPORT_SYMBOL_GPL(edac_layer_name); 928 929static void edac_inc_ce_error(struct mem_ctl_info *mci, 930 bool enable_per_layer_report, 931 const int pos[EDAC_MAX_LAYERS], 932 const u16 count) 933{ 934 int i, index = 0; 935 936 mci->ce_mc += count; 937 938 if (!enable_per_layer_report) { 939 mci->ce_noinfo_count += count; 940 return; 941 } 942 943 for (i = 0; i < mci->n_layers; i++) { 944 if (pos[i] < 0) 945 break; 946 index += pos[i]; 947 mci->ce_per_layer[i][index] += count; 948 949 if (i < mci->n_layers - 1) 950 index *= mci->layers[i + 1].size; 951 } 952} 953 954static void edac_inc_ue_error(struct mem_ctl_info *mci, 955 bool enable_per_layer_report, 956 const int pos[EDAC_MAX_LAYERS], 957 const u16 count) 958{ 959 int i, index = 0; 960 961 mci->ue_mc += count; 962 963 if (!enable_per_layer_report) { 964 mci->ce_noinfo_count += count; 965 return; 966 } 967 968 for (i = 0; i < mci->n_layers; i++) { 969 if (pos[i] < 0) 970 break; 971 index += pos[i]; 972 mci->ue_per_layer[i][index] += count; 973 974 if (i < mci->n_layers - 1) 975 index *= mci->layers[i + 1].size; 976 } 977} 978 979static void edac_ce_error(struct mem_ctl_info *mci, 980 const u16 error_count, 981 const int pos[EDAC_MAX_LAYERS], 982 const char *msg, 983 const char *location, 984 const char *label, 985 const char *detail, 986 const char *other_detail, 987 const bool enable_per_layer_report, 988 const unsigned long page_frame_number, 989 const unsigned long offset_in_page, 990 long grain) 991{ 992 unsigned long remapped_page; 993 char *msg_aux = ""; 994 995 if (*msg) 996 msg_aux = " "; 997 998 if (edac_mc_get_log_ce()) { 999 if (other_detail && *other_detail) 1000 edac_mc_printk(mci, KERN_WARNING, 1001 "%d CE %s%son %s (%s %s - %s)\n", 1002 error_count, msg, msg_aux, label, 1003 location, detail, other_detail); 1004 else 1005 edac_mc_printk(mci, KERN_WARNING, 1006 "%d CE %s%son %s (%s %s)\n", 1007 error_count, msg, msg_aux, label, 1008 location, detail); 1009 } 1010 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 1011 1012 if (mci->scrub_mode == SCRUB_SW_SRC) { 1013 /* 1014 * Some memory controllers (called MCs below) can remap 1015 * memory so that it is still available at a different 1016 * address when PCI devices map into memory. 1017 * MC's that can't do this, lose the memory where PCI 1018 * devices are mapped. This mapping is MC-dependent 1019 * and so we call back into the MC driver for it to 1020 * map the MC page to a physical (CPU) page which can 1021 * then be mapped to a virtual page - which can then 1022 * be scrubbed. 1023 */ 1024 remapped_page = mci->ctl_page_to_phys ? 1025 mci->ctl_page_to_phys(mci, page_frame_number) : 1026 page_frame_number; 1027 1028 edac_mc_scrub_block(remapped_page, 1029 offset_in_page, grain); 1030 } 1031} 1032 1033static void edac_ue_error(struct mem_ctl_info *mci, 1034 const u16 error_count, 1035 const int pos[EDAC_MAX_LAYERS], 1036 const char *msg, 1037 const char *location, 1038 const char *label, 1039 const char *detail, 1040 const char *other_detail, 1041 const bool enable_per_layer_report) 1042{ 1043 char *msg_aux = ""; 1044 1045 if (*msg) 1046 msg_aux = " "; 1047 1048 if (edac_mc_get_log_ue()) { 1049 if (other_detail && *other_detail) 1050 edac_mc_printk(mci, KERN_WARNING, 1051 "%d UE %s%son %s (%s %s - %s)\n", 1052 error_count, msg, msg_aux, label, 1053 location, detail, other_detail); 1054 else 1055 edac_mc_printk(mci, KERN_WARNING, 1056 "%d UE %s%son %s (%s %s)\n", 1057 error_count, msg, msg_aux, label, 1058 location, detail); 1059 } 1060 1061 if (edac_mc_get_panic_on_ue()) { 1062 if (other_detail && *other_detail) 1063 panic("UE %s%son %s (%s%s - %s)\n", 1064 msg, msg_aux, label, location, detail, other_detail); 1065 else 1066 panic("UE %s%son %s (%s%s)\n", 1067 msg, msg_aux, label, location, detail); 1068 } 1069 1070 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1071} 1072 1073/** 1074 * edac_raw_mc_handle_error - reports a memory event to userspace without doing 1075 * anything to discover the error location 1076 * 1077 * @type: severity of the error (CE/UE/Fatal) 1078 * @mci: a struct mem_ctl_info pointer 1079 * @e: error description 1080 * 1081 * This raw function is used internally by edac_mc_handle_error(). It should 1082 * only be called directly when the hardware error come directly from BIOS, 1083 * like in the case of APEI GHES driver. 1084 */ 1085void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, 1086 struct mem_ctl_info *mci, 1087 struct edac_raw_error_desc *e) 1088{ 1089 char detail[80]; 1090 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 1091 1092 /* Memory type dependent details about the error */ 1093 if (type == HW_EVENT_ERR_CORRECTED) { 1094 snprintf(detail, sizeof(detail), 1095 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1096 e->page_frame_number, e->offset_in_page, 1097 e->grain, e->syndrome); 1098 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1099 detail, e->other_detail, e->enable_per_layer_report, 1100 e->page_frame_number, e->offset_in_page, e->grain); 1101 } else { 1102 snprintf(detail, sizeof(detail), 1103 "page:0x%lx offset:0x%lx grain:%ld", 1104 e->page_frame_number, e->offset_in_page, e->grain); 1105 1106 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, 1107 detail, e->other_detail, e->enable_per_layer_report); 1108 } 1109 1110 1111} 1112EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 1113 1114/** 1115 * edac_mc_handle_error - reports a memory event to userspace 1116 * 1117 * @type: severity of the error (CE/UE/Fatal) 1118 * @mci: a struct mem_ctl_info pointer 1119 * @error_count: Number of errors of the same type 1120 * @page_frame_number: mem page where the error occurred 1121 * @offset_in_page: offset of the error inside the page 1122 * @syndrome: ECC syndrome 1123 * @top_layer: Memory layer[0] position 1124 * @mid_layer: Memory layer[1] position 1125 * @low_layer: Memory layer[2] position 1126 * @msg: Message meaningful to the end users that 1127 * explains the event 1128 * @other_detail: Technical details about the event that 1129 * may help hardware manufacturers and 1130 * EDAC developers to analyse the event 1131 */ 1132void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1133 struct mem_ctl_info *mci, 1134 const u16 error_count, 1135 const unsigned long page_frame_number, 1136 const unsigned long offset_in_page, 1137 const unsigned long syndrome, 1138 const int top_layer, 1139 const int mid_layer, 1140 const int low_layer, 1141 const char *msg, 1142 const char *other_detail) 1143{ 1144 char *p; 1145 int row = -1, chan = -1; 1146 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1147 int i, n_labels = 0; 1148 u8 grain_bits; 1149 struct edac_raw_error_desc *e = &mci->error_desc; 1150 1151 edac_dbg(3, "MC%d\n", mci->mc_idx); 1152 1153 /* Fills the error report buffer */ 1154 memset(e, 0, sizeof (*e)); 1155 e->error_count = error_count; 1156 e->top_layer = top_layer; 1157 e->mid_layer = mid_layer; 1158 e->low_layer = low_layer; 1159 e->page_frame_number = page_frame_number; 1160 e->offset_in_page = offset_in_page; 1161 e->syndrome = syndrome; 1162 e->msg = msg; 1163 e->other_detail = other_detail; 1164 1165 /* 1166 * Check if the event report is consistent and if the memory 1167 * location is known. If it is known, enable_per_layer_report will be 1168 * true, the DIMM(s) label info will be filled and the per-layer 1169 * error counters will be incremented. 1170 */ 1171 for (i = 0; i < mci->n_layers; i++) { 1172 if (pos[i] >= (int)mci->layers[i].size) { 1173 1174 edac_mc_printk(mci, KERN_ERR, 1175 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1176 edac_layer_name[mci->layers[i].type], 1177 pos[i], mci->layers[i].size); 1178 /* 1179 * Instead of just returning it, let's use what's 1180 * known about the error. The increment routines and 1181 * the DIMM filter logic will do the right thing by 1182 * pointing the likely damaged DIMMs. 1183 */ 1184 pos[i] = -1; 1185 } 1186 if (pos[i] >= 0) 1187 e->enable_per_layer_report = true; 1188 } 1189 1190 /* 1191 * Get the dimm label/grain that applies to the match criteria. 1192 * As the error algorithm may not be able to point to just one memory 1193 * stick, the logic here will get all possible labels that could 1194 * pottentially be affected by the error. 1195 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1196 * to have only the MC channel and the MC dimm (also called "branch") 1197 * but the channel is not known, as the memory is arranged in pairs, 1198 * where each memory belongs to a separate channel within the same 1199 * branch. 1200 */ 1201 p = e->label; 1202 *p = '\0'; 1203 1204 for (i = 0; i < mci->tot_dimms; i++) { 1205 struct dimm_info *dimm = mci->dimms[i]; 1206 1207 if (top_layer >= 0 && top_layer != dimm->location[0]) 1208 continue; 1209 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1210 continue; 1211 if (low_layer >= 0 && low_layer != dimm->location[2]) 1212 continue; 1213 1214 /* get the max grain, over the error match range */ 1215 if (dimm->grain > e->grain) 1216 e->grain = dimm->grain; 1217 1218 /* 1219 * If the error is memory-controller wide, there's no need to 1220 * seek for the affected DIMMs because the whole 1221 * channel/memory controller/... may be affected. 1222 * Also, don't show errors for empty DIMM slots. 1223 */ 1224 if (e->enable_per_layer_report && dimm->nr_pages) { 1225 if (n_labels >= EDAC_MAX_LABELS) { 1226 e->enable_per_layer_report = false; 1227 break; 1228 } 1229 n_labels++; 1230 if (p != e->label) { 1231 strcpy(p, OTHER_LABEL); 1232 p += strlen(OTHER_LABEL); 1233 } 1234 strcpy(p, dimm->label); 1235 p += strlen(p); 1236 *p = '\0'; 1237 1238 /* 1239 * get csrow/channel of the DIMM, in order to allow 1240 * incrementing the compat API counters 1241 */ 1242 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1243 mci->csbased ? "rank" : "dimm", 1244 dimm->csrow, dimm->cschannel); 1245 if (row == -1) 1246 row = dimm->csrow; 1247 else if (row >= 0 && row != dimm->csrow) 1248 row = -2; 1249 1250 if (chan == -1) 1251 chan = dimm->cschannel; 1252 else if (chan >= 0 && chan != dimm->cschannel) 1253 chan = -2; 1254 } 1255 } 1256 1257 if (!e->enable_per_layer_report) { 1258 strcpy(e->label, "any memory"); 1259 } else { 1260 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1261 if (p == e->label) 1262 strcpy(e->label, "unknown memory"); 1263 if (type == HW_EVENT_ERR_CORRECTED) { 1264 if (row >= 0) { 1265 mci->csrows[row]->ce_count += error_count; 1266 if (chan >= 0) 1267 mci->csrows[row]->channels[chan]->ce_count += error_count; 1268 } 1269 } else 1270 if (row >= 0) 1271 mci->csrows[row]->ue_count += error_count; 1272 } 1273 1274 /* Fill the RAM location data */ 1275 p = e->location; 1276 1277 for (i = 0; i < mci->n_layers; i++) { 1278 if (pos[i] < 0) 1279 continue; 1280 1281 p += sprintf(p, "%s:%d ", 1282 edac_layer_name[mci->layers[i].type], 1283 pos[i]); 1284 } 1285 if (p > e->location) 1286 *(p - 1) = '\0'; 1287 1288 /* Report the error via the trace interface */ 1289 grain_bits = fls_long(e->grain) + 1; 1290 trace_mc_event(type, e->msg, e->label, e->error_count, 1291 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, 1292 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page, 1293 grain_bits, e->syndrome, e->other_detail); 1294 1295 edac_raw_mc_handle_error(type, mci, e); 1296} 1297EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1298