1/*
2 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11 * GNU General Public License for more details.
12 */
13
14#include <linux/device.h>
15#include <linux/interrupt.h>
16#include <crypto/internal/hash.h>
17
18#include "common.h"
19#include "core.h"
20#include "sha.h"
21
22/* crypto hw padding constant for first operation */
23#define SHA_PADDING		64
24#define SHA_PADDING_MASK	(SHA_PADDING - 1)
25
26static LIST_HEAD(ahash_algs);
27
28static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
29	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
30};
31
32static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
33	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
34	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
35};
36
37static void qce_ahash_done(void *data)
38{
39	struct crypto_async_request *async_req = data;
40	struct ahash_request *req = ahash_request_cast(async_req);
41	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
42	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
43	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
44	struct qce_device *qce = tmpl->qce;
45	struct qce_result_dump *result = qce->dma.result_buf;
46	unsigned int digestsize = crypto_ahash_digestsize(ahash);
47	int error;
48	u32 status;
49
50	error = qce_dma_terminate_all(&qce->dma);
51	if (error)
52		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
53
54	qce_unmapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
55		    rctx->src_chained);
56	qce_unmapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
57
58	memcpy(rctx->digest, result->auth_iv, digestsize);
59	if (req->result)
60		memcpy(req->result, result->auth_iv, digestsize);
61
62	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
63	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
64
65	error = qce_check_status(qce, &status);
66	if (error < 0)
67		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
68
69	req->src = rctx->src_orig;
70	req->nbytes = rctx->nbytes_orig;
71	rctx->last_blk = false;
72	rctx->first_blk = false;
73
74	qce->async_req_done(tmpl->qce, error);
75}
76
77static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
78{
79	struct ahash_request *req = ahash_request_cast(async_req);
80	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
81	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
82	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
83	struct qce_device *qce = tmpl->qce;
84	unsigned long flags = rctx->flags;
85	int ret;
86
87	if (IS_SHA_HMAC(flags)) {
88		rctx->authkey = ctx->authkey;
89		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
90	} else if (IS_CMAC(flags)) {
91		rctx->authkey = ctx->authkey;
92		rctx->authklen = AES_KEYSIZE_128;
93	}
94
95	rctx->src_nents = qce_countsg(req->src, req->nbytes,
96				      &rctx->src_chained);
97	ret = qce_mapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
98			rctx->src_chained);
99	if (ret < 0)
100		return ret;
101
102	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
103
104	ret = qce_mapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
105	if (ret < 0)
106		goto error_unmap_src;
107
108	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
109			       &rctx->result_sg, 1, qce_ahash_done, async_req);
110	if (ret)
111		goto error_unmap_dst;
112
113	qce_dma_issue_pending(&qce->dma);
114
115	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
116	if (ret)
117		goto error_terminate;
118
119	return 0;
120
121error_terminate:
122	qce_dma_terminate_all(&qce->dma);
123error_unmap_dst:
124	qce_unmapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
125error_unmap_src:
126	qce_unmapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
127		    rctx->src_chained);
128	return ret;
129}
130
131static int qce_ahash_init(struct ahash_request *req)
132{
133	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
134	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
135	const u32 *std_iv = tmpl->std_iv;
136
137	memset(rctx, 0, sizeof(*rctx));
138	rctx->first_blk = true;
139	rctx->last_blk = false;
140	rctx->flags = tmpl->alg_flags;
141	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
142
143	return 0;
144}
145
146static int qce_ahash_export(struct ahash_request *req, void *out)
147{
148	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
149	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
150	unsigned long flags = rctx->flags;
151	unsigned int digestsize = crypto_ahash_digestsize(ahash);
152	unsigned int blocksize =
153			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
154
155	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
156		struct sha1_state *out_state = out;
157
158		out_state->count = rctx->count;
159		qce_cpu_to_be32p_array((__be32 *)out_state->state,
160				       rctx->digest, digestsize);
161		memcpy(out_state->buffer, rctx->buf, blocksize);
162	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
163		struct sha256_state *out_state = out;
164
165		out_state->count = rctx->count;
166		qce_cpu_to_be32p_array((__be32 *)out_state->state,
167				       rctx->digest, digestsize);
168		memcpy(out_state->buf, rctx->buf, blocksize);
169	} else {
170		return -EINVAL;
171	}
172
173	return 0;
174}
175
176static int qce_import_common(struct ahash_request *req, u64 in_count,
177			     const u32 *state, const u8 *buffer, bool hmac)
178{
179	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
180	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
181	unsigned int digestsize = crypto_ahash_digestsize(ahash);
182	unsigned int blocksize;
183	u64 count = in_count;
184
185	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
186	rctx->count = in_count;
187	memcpy(rctx->buf, buffer, blocksize);
188
189	if (in_count <= blocksize) {
190		rctx->first_blk = 1;
191	} else {
192		rctx->first_blk = 0;
193		/*
194		 * For HMAC, there is a hardware padding done when first block
195		 * is set. Therefore the byte_count must be incremened by 64
196		 * after the first block operation.
197		 */
198		if (hmac)
199			count += SHA_PADDING;
200	}
201
202	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
203	rctx->byte_count[1] = (__force __be32)(count >> 32);
204	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
205			       digestsize);
206	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
207
208	return 0;
209}
210
211static int qce_ahash_import(struct ahash_request *req, const void *in)
212{
213	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
214	unsigned long flags = rctx->flags;
215	bool hmac = IS_SHA_HMAC(flags);
216	int ret = -EINVAL;
217
218	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
219		const struct sha1_state *state = in;
220
221		ret = qce_import_common(req, state->count, state->state,
222					state->buffer, hmac);
223	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
224		const struct sha256_state *state = in;
225
226		ret = qce_import_common(req, state->count, state->state,
227					state->buf, hmac);
228	}
229
230	return ret;
231}
232
233static int qce_ahash_update(struct ahash_request *req)
234{
235	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
236	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
237	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
238	struct qce_device *qce = tmpl->qce;
239	struct scatterlist *sg_last, *sg;
240	unsigned int total, len;
241	unsigned int hash_later;
242	unsigned int nbytes;
243	unsigned int blocksize;
244
245	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
246	rctx->count += req->nbytes;
247
248	/* check for buffer from previous updates and append it */
249	total = req->nbytes + rctx->buflen;
250
251	if (total <= blocksize) {
252		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
253					 0, req->nbytes, 0);
254		rctx->buflen += req->nbytes;
255		return 0;
256	}
257
258	/* save the original req structure fields */
259	rctx->src_orig = req->src;
260	rctx->nbytes_orig = req->nbytes;
261
262	/*
263	 * if we have data from previous update copy them on buffer. The old
264	 * data will be combined with current request bytes.
265	 */
266	if (rctx->buflen)
267		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
268
269	/* calculate how many bytes will be hashed later */
270	hash_later = total % blocksize;
271	if (hash_later) {
272		unsigned int src_offset = req->nbytes - hash_later;
273		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
274					 hash_later, 0);
275	}
276
277	/* here nbytes is multiple of blocksize */
278	nbytes = total - hash_later;
279
280	len = rctx->buflen;
281	sg = sg_last = req->src;
282
283	while (len < nbytes && sg) {
284		if (len + sg_dma_len(sg) > nbytes)
285			break;
286		len += sg_dma_len(sg);
287		sg_last = sg;
288		sg = sg_next(sg);
289	}
290
291	if (!sg_last)
292		return -EINVAL;
293
294	sg_mark_end(sg_last);
295
296	if (rctx->buflen) {
297		sg_init_table(rctx->sg, 2);
298		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
299		scatterwalk_sg_chain(rctx->sg, 2, req->src);
300		req->src = rctx->sg;
301	}
302
303	req->nbytes = nbytes;
304	rctx->buflen = hash_later;
305
306	return qce->async_req_enqueue(tmpl->qce, &req->base);
307}
308
309static int qce_ahash_final(struct ahash_request *req)
310{
311	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
312	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
313	struct qce_device *qce = tmpl->qce;
314
315	if (!rctx->buflen)
316		return 0;
317
318	rctx->last_blk = true;
319
320	rctx->src_orig = req->src;
321	rctx->nbytes_orig = req->nbytes;
322
323	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
324	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
325
326	req->src = rctx->sg;
327	req->nbytes = rctx->buflen;
328
329	return qce->async_req_enqueue(tmpl->qce, &req->base);
330}
331
332static int qce_ahash_digest(struct ahash_request *req)
333{
334	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
335	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
336	struct qce_device *qce = tmpl->qce;
337	int ret;
338
339	ret = qce_ahash_init(req);
340	if (ret)
341		return ret;
342
343	rctx->src_orig = req->src;
344	rctx->nbytes_orig = req->nbytes;
345	rctx->first_blk = true;
346	rctx->last_blk = true;
347
348	return qce->async_req_enqueue(tmpl->qce, &req->base);
349}
350
351struct qce_ahash_result {
352	struct completion completion;
353	int error;
354};
355
356static void qce_digest_complete(struct crypto_async_request *req, int error)
357{
358	struct qce_ahash_result *result = req->data;
359
360	if (error == -EINPROGRESS)
361		return;
362
363	result->error = error;
364	complete(&result->completion);
365}
366
367static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
368				 unsigned int keylen)
369{
370	unsigned int digestsize = crypto_ahash_digestsize(tfm);
371	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
372	struct qce_ahash_result result;
373	struct ahash_request *req;
374	struct scatterlist sg;
375	unsigned int blocksize;
376	struct crypto_ahash *ahash_tfm;
377	u8 *buf;
378	int ret;
379	const char *alg_name;
380
381	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
382	memset(ctx->authkey, 0, sizeof(ctx->authkey));
383
384	if (keylen <= blocksize) {
385		memcpy(ctx->authkey, key, keylen);
386		return 0;
387	}
388
389	if (digestsize == SHA1_DIGEST_SIZE)
390		alg_name = "sha1-qce";
391	else if (digestsize == SHA256_DIGEST_SIZE)
392		alg_name = "sha256-qce";
393	else
394		return -EINVAL;
395
396	ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
397				       CRYPTO_ALG_TYPE_AHASH_MASK);
398	if (IS_ERR(ahash_tfm))
399		return PTR_ERR(ahash_tfm);
400
401	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
402	if (!req) {
403		ret = -ENOMEM;
404		goto err_free_ahash;
405	}
406
407	init_completion(&result.completion);
408	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
409				   qce_digest_complete, &result);
410	crypto_ahash_clear_flags(ahash_tfm, ~0);
411
412	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
413	if (!buf) {
414		ret = -ENOMEM;
415		goto err_free_req;
416	}
417
418	memcpy(buf, key, keylen);
419	sg_init_one(&sg, buf, keylen);
420	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
421
422	ret = crypto_ahash_digest(req);
423	if (ret == -EINPROGRESS || ret == -EBUSY) {
424		ret = wait_for_completion_interruptible(&result.completion);
425		if (!ret)
426			ret = result.error;
427	}
428
429	if (ret)
430		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
431
432	kfree(buf);
433err_free_req:
434	ahash_request_free(req);
435err_free_ahash:
436	crypto_free_ahash(ahash_tfm);
437	return ret;
438}
439
440static int qce_ahash_cra_init(struct crypto_tfm *tfm)
441{
442	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
443	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
444
445	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
446	memset(ctx, 0, sizeof(*ctx));
447	return 0;
448}
449
450struct qce_ahash_def {
451	unsigned long flags;
452	const char *name;
453	const char *drv_name;
454	unsigned int digestsize;
455	unsigned int blocksize;
456	unsigned int statesize;
457	const u32 *std_iv;
458};
459
460static const struct qce_ahash_def ahash_def[] = {
461	{
462		.flags		= QCE_HASH_SHA1,
463		.name		= "sha1",
464		.drv_name	= "sha1-qce",
465		.digestsize	= SHA1_DIGEST_SIZE,
466		.blocksize	= SHA1_BLOCK_SIZE,
467		.statesize	= sizeof(struct sha1_state),
468		.std_iv		= std_iv_sha1,
469	},
470	{
471		.flags		= QCE_HASH_SHA256,
472		.name		= "sha256",
473		.drv_name	= "sha256-qce",
474		.digestsize	= SHA256_DIGEST_SIZE,
475		.blocksize	= SHA256_BLOCK_SIZE,
476		.statesize	= sizeof(struct sha256_state),
477		.std_iv		= std_iv_sha256,
478	},
479	{
480		.flags		= QCE_HASH_SHA1_HMAC,
481		.name		= "hmac(sha1)",
482		.drv_name	= "hmac-sha1-qce",
483		.digestsize	= SHA1_DIGEST_SIZE,
484		.blocksize	= SHA1_BLOCK_SIZE,
485		.statesize	= sizeof(struct sha1_state),
486		.std_iv		= std_iv_sha1,
487	},
488	{
489		.flags		= QCE_HASH_SHA256_HMAC,
490		.name		= "hmac(sha256)",
491		.drv_name	= "hmac-sha256-qce",
492		.digestsize	= SHA256_DIGEST_SIZE,
493		.blocksize	= SHA256_BLOCK_SIZE,
494		.statesize	= sizeof(struct sha256_state),
495		.std_iv		= std_iv_sha256,
496	},
497};
498
499static int qce_ahash_register_one(const struct qce_ahash_def *def,
500				  struct qce_device *qce)
501{
502	struct qce_alg_template *tmpl;
503	struct ahash_alg *alg;
504	struct crypto_alg *base;
505	int ret;
506
507	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
508	if (!tmpl)
509		return -ENOMEM;
510
511	tmpl->std_iv = def->std_iv;
512
513	alg = &tmpl->alg.ahash;
514	alg->init = qce_ahash_init;
515	alg->update = qce_ahash_update;
516	alg->final = qce_ahash_final;
517	alg->digest = qce_ahash_digest;
518	alg->export = qce_ahash_export;
519	alg->import = qce_ahash_import;
520	if (IS_SHA_HMAC(def->flags))
521		alg->setkey = qce_ahash_hmac_setkey;
522	alg->halg.digestsize = def->digestsize;
523	alg->halg.statesize = def->statesize;
524
525	base = &alg->halg.base;
526	base->cra_blocksize = def->blocksize;
527	base->cra_priority = 300;
528	base->cra_flags = CRYPTO_ALG_ASYNC;
529	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
530	base->cra_alignmask = 0;
531	base->cra_module = THIS_MODULE;
532	base->cra_init = qce_ahash_cra_init;
533	INIT_LIST_HEAD(&base->cra_list);
534
535	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
536	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
537		 def->drv_name);
538
539	INIT_LIST_HEAD(&tmpl->entry);
540	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
541	tmpl->alg_flags = def->flags;
542	tmpl->qce = qce;
543
544	ret = crypto_register_ahash(alg);
545	if (ret) {
546		kfree(tmpl);
547		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
548		return ret;
549	}
550
551	list_add_tail(&tmpl->entry, &ahash_algs);
552	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
553	return 0;
554}
555
556static void qce_ahash_unregister(struct qce_device *qce)
557{
558	struct qce_alg_template *tmpl, *n;
559
560	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
561		crypto_unregister_ahash(&tmpl->alg.ahash);
562		list_del(&tmpl->entry);
563		kfree(tmpl);
564	}
565}
566
567static int qce_ahash_register(struct qce_device *qce)
568{
569	int ret, i;
570
571	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
572		ret = qce_ahash_register_one(&ahash_def[i], qce);
573		if (ret)
574			goto err;
575	}
576
577	return 0;
578err:
579	qce_ahash_unregister(qce);
580	return ret;
581}
582
583const struct qce_algo_ops ahash_ops = {
584	.type = CRYPTO_ALG_TYPE_AHASH,
585	.register_algs = qce_ahash_register,
586	.unregister_algs = qce_ahash_unregister,
587	.async_req_handle = qce_ahash_async_req_handle,
588};
589