1/**
2 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
3 *
4 * Copyright (C) 2011-2012 International Business Machines Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Author: Kent Yoder <yoder1@us.ibm.com>
20 */
21
22#include <crypto/internal/hash.h>
23#include <crypto/aes.h>
24#include <crypto/algapi.h>
25#include <linux/module.h>
26#include <linux/types.h>
27#include <linux/crypto.h>
28#include <asm/vio.h>
29
30#include "nx_csbcpb.h"
31#include "nx.h"
32
33
34struct xcbc_state {
35	u8 state[AES_BLOCK_SIZE];
36	unsigned int count;
37	u8 buffer[AES_BLOCK_SIZE];
38};
39
40static int nx_xcbc_set_key(struct crypto_shash *desc,
41			   const u8            *in_key,
42			   unsigned int         key_len)
43{
44	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
45	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
46
47	switch (key_len) {
48	case AES_KEYSIZE_128:
49		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
50		break;
51	default:
52		return -EINVAL;
53	}
54
55	memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
56
57	return 0;
58}
59
60/*
61 * Based on RFC 3566, for a zero-length message:
62 *
63 * n = 1
64 * K1 = E(K, 0x01010101010101010101010101010101)
65 * K3 = E(K, 0x03030303030303030303030303030303)
66 * E[0] = 0x00000000000000000000000000000000
67 * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
68 * E[1] = (K1, M[1] ^ E[0] ^ K3)
69 * Tag = M[1]
70 */
71static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
72{
73	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
74	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
75	struct nx_sg *in_sg, *out_sg;
76	u8 keys[2][AES_BLOCK_SIZE];
77	u8 key[32];
78	int rc = 0;
79	int len;
80
81	/* Change to ECB mode */
82	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
83	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
84	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
85	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
86
87	/* K1 and K3 base patterns */
88	memset(keys[0], 0x01, sizeof(keys[0]));
89	memset(keys[1], 0x03, sizeof(keys[1]));
90
91	len = sizeof(keys);
92	/* Generate K1 and K3 encrypting the patterns */
93	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
94				 nx_ctx->ap->sglen);
95
96	if (len != sizeof(keys))
97		return -EINVAL;
98
99	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
100				  nx_ctx->ap->sglen);
101
102	if (len != sizeof(keys))
103		return -EINVAL;
104
105	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
106	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
107
108	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
109			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
110	if (rc)
111		goto out;
112	atomic_inc(&(nx_ctx->stats->aes_ops));
113
114	/* XOr K3 with the padding for a 0 length message */
115	keys[1][0] ^= 0x80;
116
117	len = sizeof(keys[1]);
118
119	/* Encrypt the final result */
120	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
121	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
122				 nx_ctx->ap->sglen);
123
124	if (len != sizeof(keys[1]))
125		return -EINVAL;
126
127	len = AES_BLOCK_SIZE;
128	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
129				  nx_ctx->ap->sglen);
130
131	if (len != AES_BLOCK_SIZE)
132		return -EINVAL;
133
134	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
135	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
136
137	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
138			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
139	if (rc)
140		goto out;
141	atomic_inc(&(nx_ctx->stats->aes_ops));
142
143out:
144	/* Restore XCBC mode */
145	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
146	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
147	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
148
149	return rc;
150}
151
152static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
153{
154	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
155	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
156	int err;
157
158	err = nx_crypto_ctx_aes_xcbc_init(tfm);
159	if (err)
160		return err;
161
162	nx_ctx_init(nx_ctx, HCOP_FC_AES);
163
164	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
165	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
166
167	return 0;
168}
169
170static int nx_xcbc_init(struct shash_desc *desc)
171{
172	struct xcbc_state *sctx = shash_desc_ctx(desc);
173
174	memset(sctx, 0, sizeof *sctx);
175
176	return 0;
177}
178
179static int nx_xcbc_update(struct shash_desc *desc,
180			  const u8          *data,
181			  unsigned int       len)
182{
183	struct xcbc_state *sctx = shash_desc_ctx(desc);
184	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
185	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
186	struct nx_sg *in_sg;
187	struct nx_sg *out_sg;
188	u32 to_process = 0, leftover, total;
189	unsigned int max_sg_len;
190	unsigned long irq_flags;
191	int rc = 0;
192	int data_len;
193
194	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
195
196
197	total = sctx->count + len;
198
199	/* 2 cases for total data len:
200	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
201	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
202	 */
203	if (total <= AES_BLOCK_SIZE) {
204		memcpy(sctx->buffer + sctx->count, data, len);
205		sctx->count += len;
206		goto out;
207	}
208
209	in_sg = nx_ctx->in_sg;
210	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
211				nx_ctx->ap->sglen);
212	max_sg_len = min_t(u64, max_sg_len,
213				nx_ctx->ap->databytelen/NX_PAGE_SIZE);
214
215	data_len = AES_BLOCK_SIZE;
216	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
217				  &len, nx_ctx->ap->sglen);
218
219	if (data_len != AES_BLOCK_SIZE) {
220		rc = -EINVAL;
221		goto out;
222	}
223
224	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
225
226	do {
227		to_process = total - to_process;
228		to_process = to_process & ~(AES_BLOCK_SIZE - 1);
229
230		leftover = total - to_process;
231
232		/* the hardware will not accept a 0 byte operation for this
233		 * algorithm and the operation MUST be finalized to be correct.
234		 * So if we happen to get an update that falls on a block sized
235		 * boundary, we must save off the last block to finalize with
236		 * later. */
237		if (!leftover) {
238			to_process -= AES_BLOCK_SIZE;
239			leftover = AES_BLOCK_SIZE;
240		}
241
242		if (sctx->count) {
243			data_len = sctx->count;
244			in_sg = nx_build_sg_list(nx_ctx->in_sg,
245						(u8 *) sctx->buffer,
246						&data_len,
247						max_sg_len);
248			if (data_len != sctx->count) {
249				rc = -EINVAL;
250				goto out;
251			}
252		}
253
254		data_len = to_process - sctx->count;
255		in_sg = nx_build_sg_list(in_sg,
256					(u8 *) data,
257					&data_len,
258					max_sg_len);
259
260		if (data_len != to_process - sctx->count) {
261			rc = -EINVAL;
262			goto out;
263		}
264
265		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
266					sizeof(struct nx_sg);
267
268		/* we've hit the nx chip previously and we're updating again,
269		 * so copy over the partial digest */
270		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
271			memcpy(csbcpb->cpb.aes_xcbc.cv,
272				csbcpb->cpb.aes_xcbc.out_cv_mac,
273				AES_BLOCK_SIZE);
274		}
275
276		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
277		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
278			rc = -EINVAL;
279			goto out;
280		}
281
282		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
283			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
284		if (rc)
285			goto out;
286
287		atomic_inc(&(nx_ctx->stats->aes_ops));
288
289		/* everything after the first update is continuation */
290		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
291
292		total -= to_process;
293		data += to_process - sctx->count;
294		sctx->count = 0;
295		in_sg = nx_ctx->in_sg;
296	} while (leftover > AES_BLOCK_SIZE);
297
298	/* copy the leftover back into the state struct */
299	memcpy(sctx->buffer, data, leftover);
300	sctx->count = leftover;
301
302out:
303	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
304	return rc;
305}
306
307static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
308{
309	struct xcbc_state *sctx = shash_desc_ctx(desc);
310	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
311	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
312	struct nx_sg *in_sg, *out_sg;
313	unsigned long irq_flags;
314	int rc = 0;
315	int len;
316
317	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
318
319	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
320		/* we've hit the nx chip previously, now we're finalizing,
321		 * so copy over the partial digest */
322		memcpy(csbcpb->cpb.aes_xcbc.cv,
323		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
324	} else if (sctx->count == 0) {
325		/*
326		 * we've never seen an update, so this is a 0 byte op. The
327		 * hardware cannot handle a 0 byte op, so just ECB to
328		 * generate the hash.
329		 */
330		rc = nx_xcbc_empty(desc, out);
331		goto out;
332	}
333
334	/* final is represented by continuing the operation and indicating that
335	 * this is not an intermediate operation */
336	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
337
338	len = sctx->count;
339	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
340				 &len, nx_ctx->ap->sglen);
341
342	if (len != sctx->count) {
343		rc = -EINVAL;
344		goto out;
345	}
346
347	len = AES_BLOCK_SIZE;
348	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
349				  nx_ctx->ap->sglen);
350
351	if (len != AES_BLOCK_SIZE) {
352		rc = -EINVAL;
353		goto out;
354	}
355
356	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
357	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
358
359	if (!nx_ctx->op.outlen) {
360		rc = -EINVAL;
361		goto out;
362	}
363
364	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
365			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
366	if (rc)
367		goto out;
368
369	atomic_inc(&(nx_ctx->stats->aes_ops));
370
371	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
372out:
373	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
374	return rc;
375}
376
377struct shash_alg nx_shash_aes_xcbc_alg = {
378	.digestsize = AES_BLOCK_SIZE,
379	.init       = nx_xcbc_init,
380	.update     = nx_xcbc_update,
381	.final      = nx_xcbc_final,
382	.setkey     = nx_xcbc_set_key,
383	.descsize   = sizeof(struct xcbc_state),
384	.statesize  = sizeof(struct xcbc_state),
385	.base       = {
386		.cra_name        = "xcbc(aes)",
387		.cra_driver_name = "xcbc-aes-nx",
388		.cra_priority    = 300,
389		.cra_flags       = CRYPTO_ALG_TYPE_SHASH,
390		.cra_blocksize   = AES_BLOCK_SIZE,
391		.cra_module      = THIS_MODULE,
392		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
393		.cra_init        = nx_crypto_ctx_aes_xcbc_init2,
394		.cra_exit        = nx_crypto_ctx_exit,
395	}
396};
397