1/*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
4 *
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
7 *
8 */
9#include <crypto/aes.h>
10#include <crypto/algapi.h>
11#include <linux/crypto.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/kthread.h>
15#include <linux/platform_device.h>
16#include <linux/scatterlist.h>
17#include <linux/slab.h>
18#include <linux/module.h>
19#include <linux/clk.h>
20#include <crypto/internal/hash.h>
21#include <crypto/sha.h>
22#include <linux/of.h>
23#include <linux/of_platform.h>
24#include <linux/of_irq.h>
25
26#include "mv_cesa.h"
27
28#define MV_CESA	"MV-CESA:"
29#define MAX_HW_HASH_SIZE	0xFFFF
30#define MV_CESA_EXPIRE		500 /* msec */
31
32/*
33 * STM:
34 *   /---------------------------------------\
35 *   |					     | request complete
36 *  \./					     |
37 * IDLE -> new request -> BUSY -> done -> DEQUEUE
38 *                         /°\               |
39 *			    |		     | more scatter entries
40 *			    \________________/
41 */
42enum engine_status {
43	ENGINE_IDLE,
44	ENGINE_BUSY,
45	ENGINE_W_DEQUEUE,
46};
47
48/**
49 * struct req_progress - used for every crypt request
50 * @src_sg_it:		sg iterator for src
51 * @dst_sg_it:		sg iterator for dst
52 * @sg_src_left:	bytes left in src to process (scatter list)
53 * @src_start:		offset to add to src start position (scatter list)
54 * @crypt_len:		length of current hw crypt/hash process
55 * @hw_nbytes:		total bytes to process in hw for this request
56 * @copy_back:		whether to copy data back (crypt) or not (hash)
57 * @sg_dst_left:	bytes left dst to process in this scatter list
58 * @dst_start:		offset to add to dst start position (scatter list)
59 * @hw_processed_bytes:	number of bytes processed by hw (request).
60 *
61 * sg helper are used to iterate over the scatterlist. Since the size of the
62 * SRAM may be less than the scatter size, this struct struct is used to keep
63 * track of progress within current scatterlist.
64 */
65struct req_progress {
66	struct sg_mapping_iter src_sg_it;
67	struct sg_mapping_iter dst_sg_it;
68	void (*complete) (void);
69	void (*process) (int is_first);
70
71	/* src mostly */
72	int sg_src_left;
73	int src_start;
74	int crypt_len;
75	int hw_nbytes;
76	/* dst mostly */
77	int copy_back;
78	int sg_dst_left;
79	int dst_start;
80	int hw_processed_bytes;
81};
82
83struct crypto_priv {
84	void __iomem *reg;
85	void __iomem *sram;
86	int irq;
87	struct clk *clk;
88	struct task_struct *queue_th;
89
90	/* the lock protects queue and eng_st */
91	spinlock_t lock;
92	struct crypto_queue queue;
93	enum engine_status eng_st;
94	struct timer_list completion_timer;
95	struct crypto_async_request *cur_req;
96	struct req_progress p;
97	int max_req_size;
98	int sram_size;
99	int has_sha1;
100	int has_hmac_sha1;
101};
102
103static struct crypto_priv *cpg;
104
105struct mv_ctx {
106	u8 aes_enc_key[AES_KEY_LEN];
107	u32 aes_dec_key[8];
108	int key_len;
109	u32 need_calc_aes_dkey;
110};
111
112enum crypto_op {
113	COP_AES_ECB,
114	COP_AES_CBC,
115};
116
117struct mv_req_ctx {
118	enum crypto_op op;
119	int decrypt;
120};
121
122enum hash_op {
123	COP_SHA1,
124	COP_HMAC_SHA1
125};
126
127struct mv_tfm_hash_ctx {
128	struct crypto_shash *fallback;
129	struct crypto_shash *base_hash;
130	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
131	int count_add;
132	enum hash_op op;
133};
134
135struct mv_req_hash_ctx {
136	u64 count;
137	u32 state[SHA1_DIGEST_SIZE / 4];
138	u8 buffer[SHA1_BLOCK_SIZE];
139	int first_hash;		/* marks that we don't have previous state */
140	int last_chunk;		/* marks that this is the 'final' request */
141	int extra_bytes;	/* unprocessed bytes in buffer */
142	enum hash_op op;
143	int count_add;
144};
145
146static void mv_completion_timer_callback(unsigned long unused)
147{
148	int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
149
150	printk(KERN_ERR MV_CESA
151	       "completion timer expired (CESA %sactive), cleaning up.\n",
152	       active ? "" : "in");
153
154	del_timer(&cpg->completion_timer);
155	writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
156	while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
157		printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
158	cpg->eng_st = ENGINE_W_DEQUEUE;
159	wake_up_process(cpg->queue_th);
160}
161
162static void mv_setup_timer(void)
163{
164	setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
165	mod_timer(&cpg->completion_timer,
166			jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
167}
168
169static void compute_aes_dec_key(struct mv_ctx *ctx)
170{
171	struct crypto_aes_ctx gen_aes_key;
172	int key_pos;
173
174	if (!ctx->need_calc_aes_dkey)
175		return;
176
177	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
178
179	key_pos = ctx->key_len + 24;
180	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
181	switch (ctx->key_len) {
182	case AES_KEYSIZE_256:
183		key_pos -= 2;
184		/* fall */
185	case AES_KEYSIZE_192:
186		key_pos -= 2;
187		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
188				4 * 4);
189		break;
190	}
191	ctx->need_calc_aes_dkey = 0;
192}
193
194static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
195		unsigned int len)
196{
197	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
198	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
199
200	switch (len) {
201	case AES_KEYSIZE_128:
202	case AES_KEYSIZE_192:
203	case AES_KEYSIZE_256:
204		break;
205	default:
206		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
207		return -EINVAL;
208	}
209	ctx->key_len = len;
210	ctx->need_calc_aes_dkey = 1;
211
212	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
213	return 0;
214}
215
216static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
217{
218	int ret;
219	void *sbuf;
220	int copy_len;
221
222	while (len) {
223		if (!p->sg_src_left) {
224			ret = sg_miter_next(&p->src_sg_it);
225			BUG_ON(!ret);
226			p->sg_src_left = p->src_sg_it.length;
227			p->src_start = 0;
228		}
229
230		sbuf = p->src_sg_it.addr + p->src_start;
231
232		copy_len = min(p->sg_src_left, len);
233		memcpy(dbuf, sbuf, copy_len);
234
235		p->src_start += copy_len;
236		p->sg_src_left -= copy_len;
237
238		len -= copy_len;
239		dbuf += copy_len;
240	}
241}
242
243static void setup_data_in(void)
244{
245	struct req_progress *p = &cpg->p;
246	int data_in_sram =
247	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
248	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
249			data_in_sram - p->crypt_len);
250	p->crypt_len = data_in_sram;
251}
252
253static void mv_process_current_q(int first_block)
254{
255	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
256	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
257	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
258	struct sec_accel_config op;
259
260	switch (req_ctx->op) {
261	case COP_AES_ECB:
262		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
263		break;
264	case COP_AES_CBC:
265	default:
266		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
267		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
268			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
269		if (first_block)
270			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
271		break;
272	}
273	if (req_ctx->decrypt) {
274		op.config |= CFG_DIR_DEC;
275		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
276				AES_KEY_LEN);
277	} else {
278		op.config |= CFG_DIR_ENC;
279		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
280				AES_KEY_LEN);
281	}
282
283	switch (ctx->key_len) {
284	case AES_KEYSIZE_128:
285		op.config |= CFG_AES_LEN_128;
286		break;
287	case AES_KEYSIZE_192:
288		op.config |= CFG_AES_LEN_192;
289		break;
290	case AES_KEYSIZE_256:
291		op.config |= CFG_AES_LEN_256;
292		break;
293	}
294	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
295		ENC_P_DST(SRAM_DATA_OUT_START);
296	op.enc_key_p = SRAM_DATA_KEY_P;
297
298	setup_data_in();
299	op.enc_len = cpg->p.crypt_len;
300	memcpy(cpg->sram + SRAM_CONFIG, &op,
301			sizeof(struct sec_accel_config));
302
303	/* GO */
304	mv_setup_timer();
305	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
306}
307
308static void mv_crypto_algo_completion(void)
309{
310	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
311	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
312
313	sg_miter_stop(&cpg->p.src_sg_it);
314	sg_miter_stop(&cpg->p.dst_sg_it);
315
316	if (req_ctx->op != COP_AES_CBC)
317		return ;
318
319	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
320}
321
322static void mv_process_hash_current(int first_block)
323{
324	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
325	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
326	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
327	struct req_progress *p = &cpg->p;
328	struct sec_accel_config op = { 0 };
329	int is_last;
330
331	switch (req_ctx->op) {
332	case COP_SHA1:
333	default:
334		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
335		break;
336	case COP_HMAC_SHA1:
337		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
338		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
339				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
340		break;
341	}
342
343	op.mac_src_p =
344		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
345		req_ctx->
346		count);
347
348	setup_data_in();
349
350	op.mac_digest =
351		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
352	op.mac_iv =
353		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
354		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
355
356	is_last = req_ctx->last_chunk
357		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
358		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
359	if (req_ctx->first_hash) {
360		if (is_last)
361			op.config |= CFG_NOT_FRAG;
362		else
363			op.config |= CFG_FIRST_FRAG;
364
365		req_ctx->first_hash = 0;
366	} else {
367		if (is_last)
368			op.config |= CFG_LAST_FRAG;
369		else
370			op.config |= CFG_MID_FRAG;
371
372		if (first_block) {
373			writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
374			writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
375			writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
376			writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
377			writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
378		}
379	}
380
381	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
382
383	/* GO */
384	mv_setup_timer();
385	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
386}
387
388static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
389					  struct shash_desc *desc)
390{
391	int i;
392	struct sha1_state shash_state;
393
394	shash_state.count = ctx->count + ctx->count_add;
395	for (i = 0; i < 5; i++)
396		shash_state.state[i] = ctx->state[i];
397	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
398	return crypto_shash_import(desc, &shash_state);
399}
400
401static int mv_hash_final_fallback(struct ahash_request *req)
402{
403	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
404	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
405	SHASH_DESC_ON_STACK(shash, tfm_ctx->fallback);
406	int rc;
407
408	shash->tfm = tfm_ctx->fallback;
409	shash->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
410	if (unlikely(req_ctx->first_hash)) {
411		crypto_shash_init(shash);
412		crypto_shash_update(shash, req_ctx->buffer,
413				    req_ctx->extra_bytes);
414	} else {
415		/* only SHA1 for now....
416		 */
417		rc = mv_hash_import_sha1_ctx(req_ctx, shash);
418		if (rc)
419			goto out;
420	}
421	rc = crypto_shash_final(shash, req->result);
422out:
423	return rc;
424}
425
426static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
427{
428	ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
429	ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
430	ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
431	ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
432	ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
433}
434
435static void mv_hash_algo_completion(void)
436{
437	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
438	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
439
440	if (ctx->extra_bytes)
441		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
442	sg_miter_stop(&cpg->p.src_sg_it);
443
444	if (likely(ctx->last_chunk)) {
445		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
446			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
447			       crypto_ahash_digestsize(crypto_ahash_reqtfm
448						       (req)));
449		} else {
450			mv_save_digest_state(ctx);
451			mv_hash_final_fallback(req);
452		}
453	} else {
454		mv_save_digest_state(ctx);
455	}
456}
457
458static void dequeue_complete_req(void)
459{
460	struct crypto_async_request *req = cpg->cur_req;
461	void *buf;
462	int ret;
463	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
464	if (cpg->p.copy_back) {
465		int need_copy_len = cpg->p.crypt_len;
466		int sram_offset = 0;
467		do {
468			int dst_copy;
469
470			if (!cpg->p.sg_dst_left) {
471				ret = sg_miter_next(&cpg->p.dst_sg_it);
472				BUG_ON(!ret);
473				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
474				cpg->p.dst_start = 0;
475			}
476
477			buf = cpg->p.dst_sg_it.addr;
478			buf += cpg->p.dst_start;
479
480			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
481
482			memcpy(buf,
483			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
484			       dst_copy);
485			sram_offset += dst_copy;
486			cpg->p.sg_dst_left -= dst_copy;
487			need_copy_len -= dst_copy;
488			cpg->p.dst_start += dst_copy;
489		} while (need_copy_len > 0);
490	}
491
492	cpg->p.crypt_len = 0;
493
494	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
495	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
496		/* process next scatter list entry */
497		cpg->eng_st = ENGINE_BUSY;
498		cpg->p.process(0);
499	} else {
500		cpg->p.complete();
501		cpg->eng_st = ENGINE_IDLE;
502		local_bh_disable();
503		req->complete(req, 0);
504		local_bh_enable();
505	}
506}
507
508static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
509{
510	int i = 0;
511	size_t cur_len;
512
513	while (sl) {
514		cur_len = sl[i].length;
515		++i;
516		if (total_bytes > cur_len)
517			total_bytes -= cur_len;
518		else
519			break;
520	}
521
522	return i;
523}
524
525static void mv_start_new_crypt_req(struct ablkcipher_request *req)
526{
527	struct req_progress *p = &cpg->p;
528	int num_sgs;
529
530	cpg->cur_req = &req->base;
531	memset(p, 0, sizeof(struct req_progress));
532	p->hw_nbytes = req->nbytes;
533	p->complete = mv_crypto_algo_completion;
534	p->process = mv_process_current_q;
535	p->copy_back = 1;
536
537	num_sgs = count_sgs(req->src, req->nbytes);
538	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
539
540	num_sgs = count_sgs(req->dst, req->nbytes);
541	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
542
543	mv_process_current_q(1);
544}
545
546static void mv_start_new_hash_req(struct ahash_request *req)
547{
548	struct req_progress *p = &cpg->p;
549	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
550	int num_sgs, hw_bytes, old_extra_bytes, rc;
551	cpg->cur_req = &req->base;
552	memset(p, 0, sizeof(struct req_progress));
553	hw_bytes = req->nbytes + ctx->extra_bytes;
554	old_extra_bytes = ctx->extra_bytes;
555
556	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
557	if (ctx->extra_bytes != 0
558	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
559		hw_bytes -= ctx->extra_bytes;
560	else
561		ctx->extra_bytes = 0;
562
563	num_sgs = count_sgs(req->src, req->nbytes);
564	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
565
566	if (hw_bytes) {
567		p->hw_nbytes = hw_bytes;
568		p->complete = mv_hash_algo_completion;
569		p->process = mv_process_hash_current;
570
571		if (unlikely(old_extra_bytes)) {
572			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
573			       old_extra_bytes);
574			p->crypt_len = old_extra_bytes;
575		}
576
577		mv_process_hash_current(1);
578	} else {
579		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
580				ctx->extra_bytes - old_extra_bytes);
581		sg_miter_stop(&p->src_sg_it);
582		if (ctx->last_chunk)
583			rc = mv_hash_final_fallback(req);
584		else
585			rc = 0;
586		cpg->eng_st = ENGINE_IDLE;
587		local_bh_disable();
588		req->base.complete(&req->base, rc);
589		local_bh_enable();
590	}
591}
592
593static int queue_manag(void *data)
594{
595	cpg->eng_st = ENGINE_IDLE;
596	do {
597		struct crypto_async_request *async_req = NULL;
598		struct crypto_async_request *backlog;
599
600		__set_current_state(TASK_INTERRUPTIBLE);
601
602		if (cpg->eng_st == ENGINE_W_DEQUEUE)
603			dequeue_complete_req();
604
605		spin_lock_irq(&cpg->lock);
606		if (cpg->eng_st == ENGINE_IDLE) {
607			backlog = crypto_get_backlog(&cpg->queue);
608			async_req = crypto_dequeue_request(&cpg->queue);
609			if (async_req) {
610				BUG_ON(cpg->eng_st != ENGINE_IDLE);
611				cpg->eng_st = ENGINE_BUSY;
612			}
613		}
614		spin_unlock_irq(&cpg->lock);
615
616		if (backlog) {
617			backlog->complete(backlog, -EINPROGRESS);
618			backlog = NULL;
619		}
620
621		if (async_req) {
622			if (crypto_tfm_alg_type(async_req->tfm) !=
623			    CRYPTO_ALG_TYPE_AHASH) {
624				struct ablkcipher_request *req =
625				    ablkcipher_request_cast(async_req);
626				mv_start_new_crypt_req(req);
627			} else {
628				struct ahash_request *req =
629				    ahash_request_cast(async_req);
630				mv_start_new_hash_req(req);
631			}
632			async_req = NULL;
633		}
634
635		schedule();
636
637	} while (!kthread_should_stop());
638	return 0;
639}
640
641static int mv_handle_req(struct crypto_async_request *req)
642{
643	unsigned long flags;
644	int ret;
645
646	spin_lock_irqsave(&cpg->lock, flags);
647	ret = crypto_enqueue_request(&cpg->queue, req);
648	spin_unlock_irqrestore(&cpg->lock, flags);
649	wake_up_process(cpg->queue_th);
650	return ret;
651}
652
653static int mv_enc_aes_ecb(struct ablkcipher_request *req)
654{
655	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
656
657	req_ctx->op = COP_AES_ECB;
658	req_ctx->decrypt = 0;
659
660	return mv_handle_req(&req->base);
661}
662
663static int mv_dec_aes_ecb(struct ablkcipher_request *req)
664{
665	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
666	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
667
668	req_ctx->op = COP_AES_ECB;
669	req_ctx->decrypt = 1;
670
671	compute_aes_dec_key(ctx);
672	return mv_handle_req(&req->base);
673}
674
675static int mv_enc_aes_cbc(struct ablkcipher_request *req)
676{
677	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
678
679	req_ctx->op = COP_AES_CBC;
680	req_ctx->decrypt = 0;
681
682	return mv_handle_req(&req->base);
683}
684
685static int mv_dec_aes_cbc(struct ablkcipher_request *req)
686{
687	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
688	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
689
690	req_ctx->op = COP_AES_CBC;
691	req_ctx->decrypt = 1;
692
693	compute_aes_dec_key(ctx);
694	return mv_handle_req(&req->base);
695}
696
697static int mv_cra_init(struct crypto_tfm *tfm)
698{
699	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
700	return 0;
701}
702
703static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
704				 int is_last, unsigned int req_len,
705				 int count_add)
706{
707	memset(ctx, 0, sizeof(*ctx));
708	ctx->op = op;
709	ctx->count = req_len;
710	ctx->first_hash = 1;
711	ctx->last_chunk = is_last;
712	ctx->count_add = count_add;
713}
714
715static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
716				   unsigned req_len)
717{
718	ctx->last_chunk = is_last;
719	ctx->count += req_len;
720}
721
722static int mv_hash_init(struct ahash_request *req)
723{
724	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
725	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
726			     tfm_ctx->count_add);
727	return 0;
728}
729
730static int mv_hash_update(struct ahash_request *req)
731{
732	if (!req->nbytes)
733		return 0;
734
735	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
736	return mv_handle_req(&req->base);
737}
738
739static int mv_hash_final(struct ahash_request *req)
740{
741	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
742
743	ahash_request_set_crypt(req, NULL, req->result, 0);
744	mv_update_hash_req_ctx(ctx, 1, 0);
745	return mv_handle_req(&req->base);
746}
747
748static int mv_hash_finup(struct ahash_request *req)
749{
750	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
751	return mv_handle_req(&req->base);
752}
753
754static int mv_hash_digest(struct ahash_request *req)
755{
756	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
757	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
758			     req->nbytes, tfm_ctx->count_add);
759	return mv_handle_req(&req->base);
760}
761
762static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
763			     const void *ostate)
764{
765	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
766	int i;
767	for (i = 0; i < 5; i++) {
768		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
769		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
770	}
771}
772
773static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
774			  unsigned int keylen)
775{
776	int rc;
777	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
778	int bs, ds, ss;
779
780	if (!ctx->base_hash)
781		return 0;
782
783	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
784	if (rc)
785		return rc;
786
787	/* Can't see a way to extract the ipad/opad from the fallback tfm
788	   so I'm basically copying code from the hmac module */
789	bs = crypto_shash_blocksize(ctx->base_hash);
790	ds = crypto_shash_digestsize(ctx->base_hash);
791	ss = crypto_shash_statesize(ctx->base_hash);
792
793	{
794		SHASH_DESC_ON_STACK(shash, ctx->base_hash);
795
796		unsigned int i;
797		char ipad[ss];
798		char opad[ss];
799
800		shash->tfm = ctx->base_hash;
801		shash->flags = crypto_shash_get_flags(ctx->base_hash) &
802		    CRYPTO_TFM_REQ_MAY_SLEEP;
803
804		if (keylen > bs) {
805			int err;
806
807			err =
808			    crypto_shash_digest(shash, key, keylen, ipad);
809			if (err)
810				return err;
811
812			keylen = ds;
813		} else
814			memcpy(ipad, key, keylen);
815
816		memset(ipad + keylen, 0, bs - keylen);
817		memcpy(opad, ipad, bs);
818
819		for (i = 0; i < bs; i++) {
820			ipad[i] ^= 0x36;
821			opad[i] ^= 0x5c;
822		}
823
824		rc = crypto_shash_init(shash) ? :
825		    crypto_shash_update(shash, ipad, bs) ? :
826		    crypto_shash_export(shash, ipad) ? :
827		    crypto_shash_init(shash) ? :
828		    crypto_shash_update(shash, opad, bs) ? :
829		    crypto_shash_export(shash, opad);
830
831		if (rc == 0)
832			mv_hash_init_ivs(ctx, ipad, opad);
833
834		return rc;
835	}
836}
837
838static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
839			    enum hash_op op, int count_add)
840{
841	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
842	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
843	struct crypto_shash *fallback_tfm = NULL;
844	struct crypto_shash *base_hash = NULL;
845	int err = -ENOMEM;
846
847	ctx->op = op;
848	ctx->count_add = count_add;
849
850	/* Allocate a fallback and abort if it failed. */
851	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
852					  CRYPTO_ALG_NEED_FALLBACK);
853	if (IS_ERR(fallback_tfm)) {
854		printk(KERN_WARNING MV_CESA
855		       "Fallback driver '%s' could not be loaded!\n",
856		       fallback_driver_name);
857		err = PTR_ERR(fallback_tfm);
858		goto out;
859	}
860	ctx->fallback = fallback_tfm;
861
862	if (base_hash_name) {
863		/* Allocate a hash to compute the ipad/opad of hmac. */
864		base_hash = crypto_alloc_shash(base_hash_name, 0,
865					       CRYPTO_ALG_NEED_FALLBACK);
866		if (IS_ERR(base_hash)) {
867			printk(KERN_WARNING MV_CESA
868			       "Base driver '%s' could not be loaded!\n",
869			       base_hash_name);
870			err = PTR_ERR(base_hash);
871			goto err_bad_base;
872		}
873	}
874	ctx->base_hash = base_hash;
875
876	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
877				 sizeof(struct mv_req_hash_ctx) +
878				 crypto_shash_descsize(ctx->fallback));
879	return 0;
880err_bad_base:
881	crypto_free_shash(fallback_tfm);
882out:
883	return err;
884}
885
886static void mv_cra_hash_exit(struct crypto_tfm *tfm)
887{
888	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
889
890	crypto_free_shash(ctx->fallback);
891	if (ctx->base_hash)
892		crypto_free_shash(ctx->base_hash);
893}
894
895static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
896{
897	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
898}
899
900static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
901{
902	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
903}
904
905static irqreturn_t crypto_int(int irq, void *priv)
906{
907	u32 val;
908
909	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
910	if (!(val & SEC_INT_ACCEL0_DONE))
911		return IRQ_NONE;
912
913	if (!del_timer(&cpg->completion_timer)) {
914		printk(KERN_WARNING MV_CESA
915		       "got an interrupt but no pending timer?\n");
916	}
917	val &= ~SEC_INT_ACCEL0_DONE;
918	writel(val, cpg->reg + FPGA_INT_STATUS);
919	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
920	BUG_ON(cpg->eng_st != ENGINE_BUSY);
921	cpg->eng_st = ENGINE_W_DEQUEUE;
922	wake_up_process(cpg->queue_th);
923	return IRQ_HANDLED;
924}
925
926static struct crypto_alg mv_aes_alg_ecb = {
927	.cra_name		= "ecb(aes)",
928	.cra_driver_name	= "mv-ecb-aes",
929	.cra_priority	= 300,
930	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
931			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
932	.cra_blocksize	= 16,
933	.cra_ctxsize	= sizeof(struct mv_ctx),
934	.cra_alignmask	= 0,
935	.cra_type	= &crypto_ablkcipher_type,
936	.cra_module	= THIS_MODULE,
937	.cra_init	= mv_cra_init,
938	.cra_u		= {
939		.ablkcipher = {
940			.min_keysize	=	AES_MIN_KEY_SIZE,
941			.max_keysize	=	AES_MAX_KEY_SIZE,
942			.setkey		=	mv_setkey_aes,
943			.encrypt	=	mv_enc_aes_ecb,
944			.decrypt	=	mv_dec_aes_ecb,
945		},
946	},
947};
948
949static struct crypto_alg mv_aes_alg_cbc = {
950	.cra_name		= "cbc(aes)",
951	.cra_driver_name	= "mv-cbc-aes",
952	.cra_priority	= 300,
953	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
954			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
955	.cra_blocksize	= AES_BLOCK_SIZE,
956	.cra_ctxsize	= sizeof(struct mv_ctx),
957	.cra_alignmask	= 0,
958	.cra_type	= &crypto_ablkcipher_type,
959	.cra_module	= THIS_MODULE,
960	.cra_init	= mv_cra_init,
961	.cra_u		= {
962		.ablkcipher = {
963			.ivsize		=	AES_BLOCK_SIZE,
964			.min_keysize	=	AES_MIN_KEY_SIZE,
965			.max_keysize	=	AES_MAX_KEY_SIZE,
966			.setkey		=	mv_setkey_aes,
967			.encrypt	=	mv_enc_aes_cbc,
968			.decrypt	=	mv_dec_aes_cbc,
969		},
970	},
971};
972
973static struct ahash_alg mv_sha1_alg = {
974	.init = mv_hash_init,
975	.update = mv_hash_update,
976	.final = mv_hash_final,
977	.finup = mv_hash_finup,
978	.digest = mv_hash_digest,
979	.halg = {
980		 .digestsize = SHA1_DIGEST_SIZE,
981		 .base = {
982			  .cra_name = "sha1",
983			  .cra_driver_name = "mv-sha1",
984			  .cra_priority = 300,
985			  .cra_flags =
986			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
987			  CRYPTO_ALG_NEED_FALLBACK,
988			  .cra_blocksize = SHA1_BLOCK_SIZE,
989			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
990			  .cra_init = mv_cra_hash_sha1_init,
991			  .cra_exit = mv_cra_hash_exit,
992			  .cra_module = THIS_MODULE,
993			  }
994		 }
995};
996
997static struct ahash_alg mv_hmac_sha1_alg = {
998	.init = mv_hash_init,
999	.update = mv_hash_update,
1000	.final = mv_hash_final,
1001	.finup = mv_hash_finup,
1002	.digest = mv_hash_digest,
1003	.setkey = mv_hash_setkey,
1004	.halg = {
1005		 .digestsize = SHA1_DIGEST_SIZE,
1006		 .base = {
1007			  .cra_name = "hmac(sha1)",
1008			  .cra_driver_name = "mv-hmac-sha1",
1009			  .cra_priority = 300,
1010			  .cra_flags =
1011			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1012			  CRYPTO_ALG_NEED_FALLBACK,
1013			  .cra_blocksize = SHA1_BLOCK_SIZE,
1014			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1015			  .cra_init = mv_cra_hash_hmac_sha1_init,
1016			  .cra_exit = mv_cra_hash_exit,
1017			  .cra_module = THIS_MODULE,
1018			  }
1019		 }
1020};
1021
1022static int mv_probe(struct platform_device *pdev)
1023{
1024	struct crypto_priv *cp;
1025	struct resource *res;
1026	int irq;
1027	int ret;
1028
1029	if (cpg) {
1030		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1031		return -EEXIST;
1032	}
1033
1034	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1035	if (!res)
1036		return -ENXIO;
1037
1038	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1039	if (!cp)
1040		return -ENOMEM;
1041
1042	spin_lock_init(&cp->lock);
1043	crypto_init_queue(&cp->queue, 50);
1044	cp->reg = ioremap(res->start, resource_size(res));
1045	if (!cp->reg) {
1046		ret = -ENOMEM;
1047		goto err;
1048	}
1049
1050	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1051	if (!res) {
1052		ret = -ENXIO;
1053		goto err_unmap_reg;
1054	}
1055	cp->sram_size = resource_size(res);
1056	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1057	cp->sram = ioremap(res->start, cp->sram_size);
1058	if (!cp->sram) {
1059		ret = -ENOMEM;
1060		goto err_unmap_reg;
1061	}
1062
1063	if (pdev->dev.of_node)
1064		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1065	else
1066		irq = platform_get_irq(pdev, 0);
1067	if (irq < 0 || irq == NO_IRQ) {
1068		ret = irq;
1069		goto err_unmap_sram;
1070	}
1071	cp->irq = irq;
1072
1073	platform_set_drvdata(pdev, cp);
1074	cpg = cp;
1075
1076	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1077	if (IS_ERR(cp->queue_th)) {
1078		ret = PTR_ERR(cp->queue_th);
1079		goto err_unmap_sram;
1080	}
1081
1082	ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
1083			cp);
1084	if (ret)
1085		goto err_thread;
1086
1087	/* Not all platforms can gate the clock, so it is not
1088	   an error if the clock does not exists. */
1089	cp->clk = clk_get(&pdev->dev, NULL);
1090	if (!IS_ERR(cp->clk))
1091		clk_prepare_enable(cp->clk);
1092
1093	writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1094	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1095	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1096	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1097
1098	ret = crypto_register_alg(&mv_aes_alg_ecb);
1099	if (ret) {
1100		printk(KERN_WARNING MV_CESA
1101		       "Could not register aes-ecb driver\n");
1102		goto err_irq;
1103	}
1104
1105	ret = crypto_register_alg(&mv_aes_alg_cbc);
1106	if (ret) {
1107		printk(KERN_WARNING MV_CESA
1108		       "Could not register aes-cbc driver\n");
1109		goto err_unreg_ecb;
1110	}
1111
1112	ret = crypto_register_ahash(&mv_sha1_alg);
1113	if (ret == 0)
1114		cpg->has_sha1 = 1;
1115	else
1116		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1117
1118	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1119	if (ret == 0) {
1120		cpg->has_hmac_sha1 = 1;
1121	} else {
1122		printk(KERN_WARNING MV_CESA
1123		       "Could not register hmac-sha1 driver\n");
1124	}
1125
1126	return 0;
1127err_unreg_ecb:
1128	crypto_unregister_alg(&mv_aes_alg_ecb);
1129err_irq:
1130	free_irq(irq, cp);
1131	if (!IS_ERR(cp->clk)) {
1132		clk_disable_unprepare(cp->clk);
1133		clk_put(cp->clk);
1134	}
1135err_thread:
1136	kthread_stop(cp->queue_th);
1137err_unmap_sram:
1138	iounmap(cp->sram);
1139err_unmap_reg:
1140	iounmap(cp->reg);
1141err:
1142	kfree(cp);
1143	cpg = NULL;
1144	return ret;
1145}
1146
1147static int mv_remove(struct platform_device *pdev)
1148{
1149	struct crypto_priv *cp = platform_get_drvdata(pdev);
1150
1151	crypto_unregister_alg(&mv_aes_alg_ecb);
1152	crypto_unregister_alg(&mv_aes_alg_cbc);
1153	if (cp->has_sha1)
1154		crypto_unregister_ahash(&mv_sha1_alg);
1155	if (cp->has_hmac_sha1)
1156		crypto_unregister_ahash(&mv_hmac_sha1_alg);
1157	kthread_stop(cp->queue_th);
1158	free_irq(cp->irq, cp);
1159	memset(cp->sram, 0, cp->sram_size);
1160	iounmap(cp->sram);
1161	iounmap(cp->reg);
1162
1163	if (!IS_ERR(cp->clk)) {
1164		clk_disable_unprepare(cp->clk);
1165		clk_put(cp->clk);
1166	}
1167
1168	kfree(cp);
1169	cpg = NULL;
1170	return 0;
1171}
1172
1173static const struct of_device_id mv_cesa_of_match_table[] = {
1174	{ .compatible = "marvell,orion-crypto", },
1175	{}
1176};
1177MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1178
1179static struct platform_driver marvell_crypto = {
1180	.probe		= mv_probe,
1181	.remove		= mv_remove,
1182	.driver		= {
1183		.name	= "mv_crypto",
1184		.of_match_table = mv_cesa_of_match_table,
1185	},
1186};
1187MODULE_ALIAS("platform:mv_crypto");
1188
1189module_platform_driver(marvell_crypto);
1190
1191MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1192MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1193MODULE_LICENSE("GPL");
1194