1/*
2 * SuperH Timer Support - CMT
3 *
4 *  Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 */
15
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/ioport.h>
25#include <linux/irq.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/platform_device.h>
29#include <linux/pm_domain.h>
30#include <linux/pm_runtime.h>
31#include <linux/sh_timer.h>
32#include <linux/slab.h>
33#include <linux/spinlock.h>
34
35struct sh_cmt_device;
36
37/*
38 * The CMT comes in 5 different identified flavours, depending not only on the
39 * SoC but also on the particular instance. The following table lists the main
40 * characteristics of those flavours.
41 *
42 *			16B	32B	32B-F	48B	48B-2
43 * -----------------------------------------------------------------------------
44 * Channels		2	1/4	1	6	2/8
45 * Control Width	16	16	16	16	32
46 * Counter Width	16	32	32	32/48	32/48
47 * Shared Start/Stop	Y	Y	Y	Y	N
48 *
49 * The 48-bit gen2 version has a per-channel start/stop register located in the
50 * channel registers block. All other versions have a shared start/stop register
51 * located in the global space.
52 *
53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
54 * infers the start/stop bit position in the control register and the channel
55 * registers block address. Some CMT instances have a subset of channels
56 * available, in which case the index in the documentation doesn't match the
57 * "real" index as implemented in hardware. This is for instance the case with
58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59 * in the documentation but using start/stop bit 5 and having its registers
60 * block at 0x60.
61 *
62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64 */
65
66enum sh_cmt_model {
67	SH_CMT_16BIT,
68	SH_CMT_32BIT,
69	SH_CMT_32BIT_FAST,
70	SH_CMT_48BIT,
71	SH_CMT_48BIT_GEN2,
72};
73
74struct sh_cmt_info {
75	enum sh_cmt_model model;
76
77	unsigned long width; /* 16 or 32 bit version of hardware block */
78	unsigned long overflow_bit;
79	unsigned long clear_bits;
80
81	/* callbacks for CMSTR and CMCSR access */
82	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83	void (*write_control)(void __iomem *base, unsigned long offs,
84			      unsigned long value);
85
86	/* callbacks for CMCNT and CMCOR access */
87	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88	void (*write_count)(void __iomem *base, unsigned long offs,
89			    unsigned long value);
90};
91
92struct sh_cmt_channel {
93	struct sh_cmt_device *cmt;
94
95	unsigned int index;	/* Index in the documentation */
96	unsigned int hwidx;	/* Real hardware index */
97
98	void __iomem *iostart;
99	void __iomem *ioctrl;
100
101	unsigned int timer_bit;
102	unsigned long flags;
103	unsigned long match_value;
104	unsigned long next_match_value;
105	unsigned long max_match_value;
106	unsigned long rate;
107	raw_spinlock_t lock;
108	struct clock_event_device ced;
109	struct clocksource cs;
110	unsigned long total_cycles;
111	bool cs_enabled;
112};
113
114struct sh_cmt_device {
115	struct platform_device *pdev;
116
117	const struct sh_cmt_info *info;
118
119	void __iomem *mapbase;
120	struct clk *clk;
121
122	raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124	struct sh_cmt_channel *channels;
125	unsigned int num_channels;
126	unsigned int hw_channels;
127
128	bool has_clockevent;
129	bool has_clocksource;
130};
131
132#define SH_CMT16_CMCSR_CMF		(1 << 7)
133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
139
140#define SH_CMT32_CMCSR_CMF		(1 << 15)
141#define SH_CMT32_CMCSR_OVF		(1 << 14)
142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
143#define SH_CMT32_CMCSR_STTF		(1 << 12)
144#define SH_CMT32_CMCSR_STPF		(1 << 11)
145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
146#define SH_CMT32_CMCSR_CMS		(1 << 9)
147#define SH_CMT32_CMCSR_CMM		(1 << 8)
148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
159
160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
161{
162	return ioread16(base + (offs << 1));
163}
164
165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166{
167	return ioread32(base + (offs << 2));
168}
169
170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171			   unsigned long value)
172{
173	iowrite16(value, base + (offs << 1));
174}
175
176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177			   unsigned long value)
178{
179	iowrite32(value, base + (offs << 2));
180}
181
182static const struct sh_cmt_info sh_cmt_info[] = {
183	[SH_CMT_16BIT] = {
184		.model = SH_CMT_16BIT,
185		.width = 16,
186		.overflow_bit = SH_CMT16_CMCSR_CMF,
187		.clear_bits = ~SH_CMT16_CMCSR_CMF,
188		.read_control = sh_cmt_read16,
189		.write_control = sh_cmt_write16,
190		.read_count = sh_cmt_read16,
191		.write_count = sh_cmt_write16,
192	},
193	[SH_CMT_32BIT] = {
194		.model = SH_CMT_32BIT,
195		.width = 32,
196		.overflow_bit = SH_CMT32_CMCSR_CMF,
197		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198		.read_control = sh_cmt_read16,
199		.write_control = sh_cmt_write16,
200		.read_count = sh_cmt_read32,
201		.write_count = sh_cmt_write32,
202	},
203	[SH_CMT_32BIT_FAST] = {
204		.model = SH_CMT_32BIT_FAST,
205		.width = 32,
206		.overflow_bit = SH_CMT32_CMCSR_CMF,
207		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
208		.read_control = sh_cmt_read16,
209		.write_control = sh_cmt_write16,
210		.read_count = sh_cmt_read32,
211		.write_count = sh_cmt_write32,
212	},
213	[SH_CMT_48BIT] = {
214		.model = SH_CMT_48BIT,
215		.width = 32,
216		.overflow_bit = SH_CMT32_CMCSR_CMF,
217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218		.read_control = sh_cmt_read32,
219		.write_control = sh_cmt_write32,
220		.read_count = sh_cmt_read32,
221		.write_count = sh_cmt_write32,
222	},
223	[SH_CMT_48BIT_GEN2] = {
224		.model = SH_CMT_48BIT_GEN2,
225		.width = 32,
226		.overflow_bit = SH_CMT32_CMCSR_CMF,
227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228		.read_control = sh_cmt_read32,
229		.write_control = sh_cmt_write32,
230		.read_count = sh_cmt_read32,
231		.write_count = sh_cmt_write32,
232	},
233};
234
235#define CMCSR 0 /* channel register */
236#define CMCNT 1 /* channel register */
237#define CMCOR 2 /* channel register */
238
239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
240{
241	if (ch->iostart)
242		return ch->cmt->info->read_control(ch->iostart, 0);
243	else
244		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
245}
246
247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248				      unsigned long value)
249{
250	if (ch->iostart)
251		ch->cmt->info->write_control(ch->iostart, 0, value);
252	else
253		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254}
255
256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257{
258	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259}
260
261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
262				      unsigned long value)
263{
264	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
265}
266
267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
268{
269	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
270}
271
272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
273				      unsigned long value)
274{
275	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276}
277
278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
279				      unsigned long value)
280{
281	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
282}
283
284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
285					int *has_wrapped)
286{
287	unsigned long v1, v2, v3;
288	int o1, o2;
289
290	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291
292	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
293	do {
294		o2 = o1;
295		v1 = sh_cmt_read_cmcnt(ch);
296		v2 = sh_cmt_read_cmcnt(ch);
297		v3 = sh_cmt_read_cmcnt(ch);
298		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
299	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
301
302	*has_wrapped = o1;
303	return v2;
304}
305
306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307{
308	unsigned long flags, value;
309
310	/* start stop register shared by multiple timer channels */
311	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
312	value = sh_cmt_read_cmstr(ch);
313
314	if (start)
315		value |= 1 << ch->timer_bit;
316	else
317		value &= ~(1 << ch->timer_bit);
318
319	sh_cmt_write_cmstr(ch, value);
320	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
321}
322
323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
324{
325	int k, ret;
326
327	pm_runtime_get_sync(&ch->cmt->pdev->dev);
328	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
329
330	/* enable clock */
331	ret = clk_enable(ch->cmt->clk);
332	if (ret) {
333		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334			ch->index);
335		goto err0;
336	}
337
338	/* make sure channel is disabled */
339	sh_cmt_start_stop_ch(ch, 0);
340
341	/* configure channel, periodic mode and maximum timeout */
342	if (ch->cmt->info->width == 16) {
343		*rate = clk_get_rate(ch->cmt->clk) / 512;
344		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345				   SH_CMT16_CMCSR_CKS512);
346	} else {
347		*rate = clk_get_rate(ch->cmt->clk) / 8;
348		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
349				   SH_CMT32_CMCSR_CMTOUT_IE |
350				   SH_CMT32_CMCSR_CMR_IRQ |
351				   SH_CMT32_CMCSR_CKS_RCLK8);
352	}
353
354	sh_cmt_write_cmcor(ch, 0xffffffff);
355	sh_cmt_write_cmcnt(ch, 0);
356
357	/*
358	 * According to the sh73a0 user's manual, as CMCNT can be operated
359	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360	 * modifying CMCNT register; two RCLK cycles are necessary before
361	 * this register is either read or any modification of the value
362	 * it holds is reflected in the LSI's actual operation.
363	 *
364	 * While at it, we're supposed to clear out the CMCNT as of this
365	 * moment, so make sure it's processed properly here.  This will
366	 * take RCLKx2 at maximum.
367	 */
368	for (k = 0; k < 100; k++) {
369		if (!sh_cmt_read_cmcnt(ch))
370			break;
371		udelay(1);
372	}
373
374	if (sh_cmt_read_cmcnt(ch)) {
375		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
376			ch->index);
377		ret = -ETIMEDOUT;
378		goto err1;
379	}
380
381	/* enable channel */
382	sh_cmt_start_stop_ch(ch, 1);
383	return 0;
384 err1:
385	/* stop clock */
386	clk_disable(ch->cmt->clk);
387
388 err0:
389	return ret;
390}
391
392static void sh_cmt_disable(struct sh_cmt_channel *ch)
393{
394	/* disable channel */
395	sh_cmt_start_stop_ch(ch, 0);
396
397	/* disable interrupts in CMT block */
398	sh_cmt_write_cmcsr(ch, 0);
399
400	/* stop clock */
401	clk_disable(ch->cmt->clk);
402
403	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
404	pm_runtime_put(&ch->cmt->pdev->dev);
405}
406
407/* private flags */
408#define FLAG_CLOCKEVENT (1 << 0)
409#define FLAG_CLOCKSOURCE (1 << 1)
410#define FLAG_REPROGRAM (1 << 2)
411#define FLAG_SKIPEVENT (1 << 3)
412#define FLAG_IRQCONTEXT (1 << 4)
413
414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
415					      int absolute)
416{
417	unsigned long new_match;
418	unsigned long value = ch->next_match_value;
419	unsigned long delay = 0;
420	unsigned long now = 0;
421	int has_wrapped;
422
423	now = sh_cmt_get_counter(ch, &has_wrapped);
424	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
425
426	if (has_wrapped) {
427		/* we're competing with the interrupt handler.
428		 *  -> let the interrupt handler reprogram the timer.
429		 *  -> interrupt number two handles the event.
430		 */
431		ch->flags |= FLAG_SKIPEVENT;
432		return;
433	}
434
435	if (absolute)
436		now = 0;
437
438	do {
439		/* reprogram the timer hardware,
440		 * but don't save the new match value yet.
441		 */
442		new_match = now + value + delay;
443		if (new_match > ch->max_match_value)
444			new_match = ch->max_match_value;
445
446		sh_cmt_write_cmcor(ch, new_match);
447
448		now = sh_cmt_get_counter(ch, &has_wrapped);
449		if (has_wrapped && (new_match > ch->match_value)) {
450			/* we are changing to a greater match value,
451			 * so this wrap must be caused by the counter
452			 * matching the old value.
453			 * -> first interrupt reprograms the timer.
454			 * -> interrupt number two handles the event.
455			 */
456			ch->flags |= FLAG_SKIPEVENT;
457			break;
458		}
459
460		if (has_wrapped) {
461			/* we are changing to a smaller match value,
462			 * so the wrap must be caused by the counter
463			 * matching the new value.
464			 * -> save programmed match value.
465			 * -> let isr handle the event.
466			 */
467			ch->match_value = new_match;
468			break;
469		}
470
471		/* be safe: verify hardware settings */
472		if (now < new_match) {
473			/* timer value is below match value, all good.
474			 * this makes sure we won't miss any match events.
475			 * -> save programmed match value.
476			 * -> let isr handle the event.
477			 */
478			ch->match_value = new_match;
479			break;
480		}
481
482		/* the counter has reached a value greater
483		 * than our new match value. and since the
484		 * has_wrapped flag isn't set we must have
485		 * programmed a too close event.
486		 * -> increase delay and retry.
487		 */
488		if (delay)
489			delay <<= 1;
490		else
491			delay = 1;
492
493		if (!delay)
494			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
495				 ch->index);
496
497	} while (delay);
498}
499
500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
501{
502	if (delta > ch->max_match_value)
503		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
504			 ch->index);
505
506	ch->next_match_value = delta;
507	sh_cmt_clock_event_program_verify(ch, 0);
508}
509
510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511{
512	unsigned long flags;
513
514	raw_spin_lock_irqsave(&ch->lock, flags);
515	__sh_cmt_set_next(ch, delta);
516	raw_spin_unlock_irqrestore(&ch->lock, flags);
517}
518
519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
520{
521	struct sh_cmt_channel *ch = dev_id;
522
523	/* clear flags */
524	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
525			   ch->cmt->info->clear_bits);
526
527	/* update clock source counter to begin with if enabled
528	 * the wrap flag should be cleared by the timer specific
529	 * isr before we end up here.
530	 */
531	if (ch->flags & FLAG_CLOCKSOURCE)
532		ch->total_cycles += ch->match_value + 1;
533
534	if (!(ch->flags & FLAG_REPROGRAM))
535		ch->next_match_value = ch->max_match_value;
536
537	ch->flags |= FLAG_IRQCONTEXT;
538
539	if (ch->flags & FLAG_CLOCKEVENT) {
540		if (!(ch->flags & FLAG_SKIPEVENT)) {
541			if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
542				ch->next_match_value = ch->max_match_value;
543				ch->flags |= FLAG_REPROGRAM;
544			}
545
546			ch->ced.event_handler(&ch->ced);
547		}
548	}
549
550	ch->flags &= ~FLAG_SKIPEVENT;
551
552	if (ch->flags & FLAG_REPROGRAM) {
553		ch->flags &= ~FLAG_REPROGRAM;
554		sh_cmt_clock_event_program_verify(ch, 1);
555
556		if (ch->flags & FLAG_CLOCKEVENT)
557			if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
558			    || (ch->match_value == ch->next_match_value))
559				ch->flags &= ~FLAG_REPROGRAM;
560	}
561
562	ch->flags &= ~FLAG_IRQCONTEXT;
563
564	return IRQ_HANDLED;
565}
566
567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
568{
569	int ret = 0;
570	unsigned long flags;
571
572	raw_spin_lock_irqsave(&ch->lock, flags);
573
574	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
575		ret = sh_cmt_enable(ch, &ch->rate);
576
577	if (ret)
578		goto out;
579	ch->flags |= flag;
580
581	/* setup timeout if no clockevent */
582	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583		__sh_cmt_set_next(ch, ch->max_match_value);
584 out:
585	raw_spin_unlock_irqrestore(&ch->lock, flags);
586
587	return ret;
588}
589
590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
591{
592	unsigned long flags;
593	unsigned long f;
594
595	raw_spin_lock_irqsave(&ch->lock, flags);
596
597	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598	ch->flags &= ~flag;
599
600	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601		sh_cmt_disable(ch);
602
603	/* adjust the timeout to maximum if only clocksource left */
604	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605		__sh_cmt_set_next(ch, ch->max_match_value);
606
607	raw_spin_unlock_irqrestore(&ch->lock, flags);
608}
609
610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
611{
612	return container_of(cs, struct sh_cmt_channel, cs);
613}
614
615static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
616{
617	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
618	unsigned long flags, raw;
619	unsigned long value;
620	int has_wrapped;
621
622	raw_spin_lock_irqsave(&ch->lock, flags);
623	value = ch->total_cycles;
624	raw = sh_cmt_get_counter(ch, &has_wrapped);
625
626	if (unlikely(has_wrapped))
627		raw += ch->match_value + 1;
628	raw_spin_unlock_irqrestore(&ch->lock, flags);
629
630	return value + raw;
631}
632
633static int sh_cmt_clocksource_enable(struct clocksource *cs)
634{
635	int ret;
636	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
637
638	WARN_ON(ch->cs_enabled);
639
640	ch->total_cycles = 0;
641
642	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643	if (!ret) {
644		__clocksource_update_freq_hz(cs, ch->rate);
645		ch->cs_enabled = true;
646	}
647	return ret;
648}
649
650static void sh_cmt_clocksource_disable(struct clocksource *cs)
651{
652	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
653
654	WARN_ON(!ch->cs_enabled);
655
656	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657	ch->cs_enabled = false;
658}
659
660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
661{
662	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
663
664	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666}
667
668static void sh_cmt_clocksource_resume(struct clocksource *cs)
669{
670	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671
672	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
673	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
674}
675
676static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
677				       const char *name)
678{
679	struct clocksource *cs = &ch->cs;
680
681	cs->name = name;
682	cs->rating = 125;
683	cs->read = sh_cmt_clocksource_read;
684	cs->enable = sh_cmt_clocksource_enable;
685	cs->disable = sh_cmt_clocksource_disable;
686	cs->suspend = sh_cmt_clocksource_suspend;
687	cs->resume = sh_cmt_clocksource_resume;
688	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
689	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
690
691	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
692		 ch->index);
693
694	/* Register with dummy 1 Hz value, gets updated in ->enable() */
695	clocksource_register_hz(cs, 1);
696	return 0;
697}
698
699static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
700{
701	return container_of(ced, struct sh_cmt_channel, ced);
702}
703
704static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
705{
706	struct clock_event_device *ced = &ch->ced;
707
708	sh_cmt_start(ch, FLAG_CLOCKEVENT);
709
710	/* TODO: calculate good shift from rate and counter bit width */
711
712	ced->shift = 32;
713	ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
714	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
715	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
716
717	if (periodic)
718		sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
719	else
720		sh_cmt_set_next(ch, ch->max_match_value);
721}
722
723static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
724				    struct clock_event_device *ced)
725{
726	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
727
728	/* deal with old setting first */
729	switch (ced->mode) {
730	case CLOCK_EVT_MODE_PERIODIC:
731	case CLOCK_EVT_MODE_ONESHOT:
732		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
733		break;
734	default:
735		break;
736	}
737
738	switch (mode) {
739	case CLOCK_EVT_MODE_PERIODIC:
740		dev_info(&ch->cmt->pdev->dev,
741			 "ch%u: used for periodic clock events\n", ch->index);
742		sh_cmt_clock_event_start(ch, 1);
743		break;
744	case CLOCK_EVT_MODE_ONESHOT:
745		dev_info(&ch->cmt->pdev->dev,
746			 "ch%u: used for oneshot clock events\n", ch->index);
747		sh_cmt_clock_event_start(ch, 0);
748		break;
749	case CLOCK_EVT_MODE_SHUTDOWN:
750	case CLOCK_EVT_MODE_UNUSED:
751		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752		break;
753	default:
754		break;
755	}
756}
757
758static int sh_cmt_clock_event_next(unsigned long delta,
759				   struct clock_event_device *ced)
760{
761	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762
763	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
764	if (likely(ch->flags & FLAG_IRQCONTEXT))
765		ch->next_match_value = delta - 1;
766	else
767		sh_cmt_set_next(ch, delta - 1);
768
769	return 0;
770}
771
772static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
773{
774	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
775
776	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
777	clk_unprepare(ch->cmt->clk);
778}
779
780static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
781{
782	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
783
784	clk_prepare(ch->cmt->clk);
785	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
786}
787
788static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
789				      const char *name)
790{
791	struct clock_event_device *ced = &ch->ced;
792	int irq;
793	int ret;
794
795	irq = platform_get_irq(ch->cmt->pdev, ch->index);
796	if (irq < 0) {
797		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
798			ch->index);
799		return irq;
800	}
801
802	ret = request_irq(irq, sh_cmt_interrupt,
803			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
804			  dev_name(&ch->cmt->pdev->dev), ch);
805	if (ret) {
806		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
807			ch->index, irq);
808		return ret;
809	}
810
811	ced->name = name;
812	ced->features = CLOCK_EVT_FEAT_PERIODIC;
813	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
814	ced->rating = 125;
815	ced->cpumask = cpu_possible_mask;
816	ced->set_next_event = sh_cmt_clock_event_next;
817	ced->set_mode = sh_cmt_clock_event_mode;
818	ced->suspend = sh_cmt_clock_event_suspend;
819	ced->resume = sh_cmt_clock_event_resume;
820
821	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
822		 ch->index);
823	clockevents_register_device(ced);
824
825	return 0;
826}
827
828static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
829			   bool clockevent, bool clocksource)
830{
831	int ret;
832
833	if (clockevent) {
834		ch->cmt->has_clockevent = true;
835		ret = sh_cmt_register_clockevent(ch, name);
836		if (ret < 0)
837			return ret;
838	}
839
840	if (clocksource) {
841		ch->cmt->has_clocksource = true;
842		sh_cmt_register_clocksource(ch, name);
843	}
844
845	return 0;
846}
847
848static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
849				unsigned int hwidx, bool clockevent,
850				bool clocksource, struct sh_cmt_device *cmt)
851{
852	int ret;
853
854	/* Skip unused channels. */
855	if (!clockevent && !clocksource)
856		return 0;
857
858	ch->cmt = cmt;
859	ch->index = index;
860	ch->hwidx = hwidx;
861
862	/*
863	 * Compute the address of the channel control register block. For the
864	 * timers with a per-channel start/stop register, compute its address
865	 * as well.
866	 */
867	switch (cmt->info->model) {
868	case SH_CMT_16BIT:
869		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
870		break;
871	case SH_CMT_32BIT:
872	case SH_CMT_48BIT:
873		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
874		break;
875	case SH_CMT_32BIT_FAST:
876		/*
877		 * The 32-bit "fast" timer has a single channel at hwidx 5 but
878		 * is located at offset 0x40 instead of 0x60 for some reason.
879		 */
880		ch->ioctrl = cmt->mapbase + 0x40;
881		break;
882	case SH_CMT_48BIT_GEN2:
883		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
884		ch->ioctrl = ch->iostart + 0x10;
885		break;
886	}
887
888	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
889		ch->max_match_value = ~0;
890	else
891		ch->max_match_value = (1 << cmt->info->width) - 1;
892
893	ch->match_value = ch->max_match_value;
894	raw_spin_lock_init(&ch->lock);
895
896	ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
897
898	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
899			      clockevent, clocksource);
900	if (ret) {
901		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
902			ch->index);
903		return ret;
904	}
905	ch->cs_enabled = false;
906
907	return 0;
908}
909
910static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
911{
912	struct resource *mem;
913
914	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
915	if (!mem) {
916		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
917		return -ENXIO;
918	}
919
920	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
921	if (cmt->mapbase == NULL) {
922		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
923		return -ENXIO;
924	}
925
926	return 0;
927}
928
929static const struct platform_device_id sh_cmt_id_table[] = {
930	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
931	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
932	{ "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
933	{ "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
934	{ "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
935	{ }
936};
937MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
938
939static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
940	{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
941	{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
942	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
943	{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
944	{ }
945};
946MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
947
948static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
949{
950	struct device_node *np = cmt->pdev->dev.of_node;
951
952	return of_property_read_u32(np, "renesas,channels-mask",
953				    &cmt->hw_channels);
954}
955
956static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
957{
958	unsigned int mask;
959	unsigned int i;
960	int ret;
961
962	memset(cmt, 0, sizeof(*cmt));
963	cmt->pdev = pdev;
964	raw_spin_lock_init(&cmt->lock);
965
966	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
967		const struct of_device_id *id;
968
969		id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
970		cmt->info = id->data;
971
972		ret = sh_cmt_parse_dt(cmt);
973		if (ret < 0)
974			return ret;
975	} else if (pdev->dev.platform_data) {
976		struct sh_timer_config *cfg = pdev->dev.platform_data;
977		const struct platform_device_id *id = pdev->id_entry;
978
979		cmt->info = (const struct sh_cmt_info *)id->driver_data;
980		cmt->hw_channels = cfg->channels_mask;
981	} else {
982		dev_err(&cmt->pdev->dev, "missing platform data\n");
983		return -ENXIO;
984	}
985
986	/* Get hold of clock. */
987	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
988	if (IS_ERR(cmt->clk)) {
989		dev_err(&cmt->pdev->dev, "cannot get clock\n");
990		return PTR_ERR(cmt->clk);
991	}
992
993	ret = clk_prepare(cmt->clk);
994	if (ret < 0)
995		goto err_clk_put;
996
997	/* Map the memory resource(s). */
998	ret = sh_cmt_map_memory(cmt);
999	if (ret < 0)
1000		goto err_clk_unprepare;
1001
1002	/* Allocate and setup the channels. */
1003	cmt->num_channels = hweight8(cmt->hw_channels);
1004	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1005				GFP_KERNEL);
1006	if (cmt->channels == NULL) {
1007		ret = -ENOMEM;
1008		goto err_unmap;
1009	}
1010
1011	/*
1012	 * Use the first channel as a clock event device and the second channel
1013	 * as a clock source. If only one channel is available use it for both.
1014	 */
1015	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1016		unsigned int hwidx = ffs(mask) - 1;
1017		bool clocksource = i == 1 || cmt->num_channels == 1;
1018		bool clockevent = i == 0;
1019
1020		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1021					   clockevent, clocksource, cmt);
1022		if (ret < 0)
1023			goto err_unmap;
1024
1025		mask &= ~(1 << hwidx);
1026	}
1027
1028	platform_set_drvdata(pdev, cmt);
1029
1030	return 0;
1031
1032err_unmap:
1033	kfree(cmt->channels);
1034	iounmap(cmt->mapbase);
1035err_clk_unprepare:
1036	clk_unprepare(cmt->clk);
1037err_clk_put:
1038	clk_put(cmt->clk);
1039	return ret;
1040}
1041
1042static int sh_cmt_probe(struct platform_device *pdev)
1043{
1044	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1045	int ret;
1046
1047	if (!is_early_platform_device(pdev)) {
1048		pm_runtime_set_active(&pdev->dev);
1049		pm_runtime_enable(&pdev->dev);
1050	}
1051
1052	if (cmt) {
1053		dev_info(&pdev->dev, "kept as earlytimer\n");
1054		goto out;
1055	}
1056
1057	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1058	if (cmt == NULL)
1059		return -ENOMEM;
1060
1061	ret = sh_cmt_setup(cmt, pdev);
1062	if (ret) {
1063		kfree(cmt);
1064		pm_runtime_idle(&pdev->dev);
1065		return ret;
1066	}
1067	if (is_early_platform_device(pdev))
1068		return 0;
1069
1070 out:
1071	if (cmt->has_clockevent || cmt->has_clocksource)
1072		pm_runtime_irq_safe(&pdev->dev);
1073	else
1074		pm_runtime_idle(&pdev->dev);
1075
1076	return 0;
1077}
1078
1079static int sh_cmt_remove(struct platform_device *pdev)
1080{
1081	return -EBUSY; /* cannot unregister clockevent and clocksource */
1082}
1083
1084static struct platform_driver sh_cmt_device_driver = {
1085	.probe		= sh_cmt_probe,
1086	.remove		= sh_cmt_remove,
1087	.driver		= {
1088		.name	= "sh_cmt",
1089		.of_match_table = of_match_ptr(sh_cmt_of_table),
1090	},
1091	.id_table	= sh_cmt_id_table,
1092};
1093
1094static int __init sh_cmt_init(void)
1095{
1096	return platform_driver_register(&sh_cmt_device_driver);
1097}
1098
1099static void __exit sh_cmt_exit(void)
1100{
1101	platform_driver_unregister(&sh_cmt_device_driver);
1102}
1103
1104early_platform_init("earlytimer", &sh_cmt_device_driver);
1105subsys_initcall(sh_cmt_init);
1106module_exit(sh_cmt_exit);
1107
1108MODULE_AUTHOR("Magnus Damm");
1109MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1110MODULE_LICENSE("GPL v2");
1111