1/*
2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
3 *
4 *  Copyright (C) 2011-2013 Xilinx
5 *
6 * based on arch/mips/kernel/time.c timer driver
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/clk.h>
19#include <linux/clk-provider.h>
20#include <linux/interrupt.h>
21#include <linux/clockchips.h>
22#include <linux/of_address.h>
23#include <linux/of_irq.h>
24#include <linux/slab.h>
25#include <linux/sched_clock.h>
26
27/*
28 * This driver configures the 2 16/32-bit count-up timers as follows:
29 *
30 * T1: Timer 1, clocksource for generic timekeeping
31 * T2: Timer 2, clockevent source for hrtimers
32 * T3: Timer 3, <unused>
33 *
34 * The input frequency to the timer module for emulation is 2.5MHz which is
35 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
36 * the timers are clocked at 78.125KHz (12.8 us resolution).
37
38 * The input frequency to the timer module in silicon is configurable and
39 * obtained from device tree. The pre-scaler of 32 is used.
40 */
41
42/*
43 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
44 * and use same offsets for Timer 2
45 */
46#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
47#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
48#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
49#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
50#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
51#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
52
53#define TTC_CNT_CNTRL_DISABLE_MASK	0x1
54
55#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
56#define TTC_CLK_CNTRL_PSV_MASK		0x1e
57#define TTC_CLK_CNTRL_PSV_SHIFT		1
58
59/*
60 * Setup the timers to use pre-scaling, using a fixed value for now that will
61 * work across most input frequency, but it may need to be more dynamic
62 */
63#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
64#define PRESCALE		2048	/* The exponent must match this */
65#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
66#define CLK_CNTRL_PRESCALE_EN	1
67#define CNT_CNTRL_RESET		(1 << 4)
68
69#define MAX_F_ERR 50
70
71/**
72 * struct ttc_timer - This definition defines local timer structure
73 *
74 * @base_addr:	Base address of timer
75 * @freq:	Timer input clock frequency
76 * @clk:	Associated clock source
77 * @clk_rate_change_nb	Notifier block for clock rate changes
78 */
79struct ttc_timer {
80	void __iomem *base_addr;
81	unsigned long freq;
82	struct clk *clk;
83	struct notifier_block clk_rate_change_nb;
84};
85
86#define to_ttc_timer(x) \
87		container_of(x, struct ttc_timer, clk_rate_change_nb)
88
89struct ttc_timer_clocksource {
90	u32			scale_clk_ctrl_reg_old;
91	u32			scale_clk_ctrl_reg_new;
92	struct ttc_timer	ttc;
93	struct clocksource	cs;
94};
95
96#define to_ttc_timer_clksrc(x) \
97		container_of(x, struct ttc_timer_clocksource, cs)
98
99struct ttc_timer_clockevent {
100	struct ttc_timer		ttc;
101	struct clock_event_device	ce;
102};
103
104#define to_ttc_timer_clkevent(x) \
105		container_of(x, struct ttc_timer_clockevent, ce)
106
107static void __iomem *ttc_sched_clock_val_reg;
108
109/**
110 * ttc_set_interval - Set the timer interval value
111 *
112 * @timer:	Pointer to the timer instance
113 * @cycles:	Timer interval ticks
114 **/
115static void ttc_set_interval(struct ttc_timer *timer,
116					unsigned long cycles)
117{
118	u32 ctrl_reg;
119
120	/* Disable the counter, set the counter value  and re-enable counter */
121	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124
125	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126
127	/*
128	 * Reset the counter (0x10) so that it starts from 0, one-shot
129	 * mode makes this needed for timing to be right.
130	 */
131	ctrl_reg |= CNT_CNTRL_RESET;
132	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134}
135
136/**
137 * ttc_clock_event_interrupt - Clock event timer interrupt handler
138 *
139 * @irq:	IRQ number of the Timer
140 * @dev_id:	void pointer to the ttc_timer instance
141 *
142 * returns: Always IRQ_HANDLED - success
143 **/
144static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145{
146	struct ttc_timer_clockevent *ttce = dev_id;
147	struct ttc_timer *timer = &ttce->ttc;
148
149	/* Acknowledge the interrupt and call event handler */
150	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151
152	ttce->ce.event_handler(&ttce->ce);
153
154	return IRQ_HANDLED;
155}
156
157/**
158 * __ttc_clocksource_read - Reads the timer counter register
159 *
160 * returns: Current timer counter register value
161 **/
162static cycle_t __ttc_clocksource_read(struct clocksource *cs)
163{
164	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165
166	return (cycle_t)readl_relaxed(timer->base_addr +
167				TTC_COUNT_VAL_OFFSET);
168}
169
170static u64 notrace ttc_sched_clock_read(void)
171{
172	return readl_relaxed(ttc_sched_clock_val_reg);
173}
174
175/**
176 * ttc_set_next_event - Sets the time interval for next event
177 *
178 * @cycles:	Timer interval ticks
179 * @evt:	Address of clock event instance
180 *
181 * returns: Always 0 - success
182 **/
183static int ttc_set_next_event(unsigned long cycles,
184					struct clock_event_device *evt)
185{
186	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
187	struct ttc_timer *timer = &ttce->ttc;
188
189	ttc_set_interval(timer, cycles);
190	return 0;
191}
192
193/**
194 * ttc_set_mode - Sets the mode of timer
195 *
196 * @mode:	Mode to be set
197 * @evt:	Address of clock event instance
198 **/
199static void ttc_set_mode(enum clock_event_mode mode,
200					struct clock_event_device *evt)
201{
202	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
203	struct ttc_timer *timer = &ttce->ttc;
204	u32 ctrl_reg;
205
206	switch (mode) {
207	case CLOCK_EVT_MODE_PERIODIC:
208		ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq,
209						PRESCALE * HZ));
210		break;
211	case CLOCK_EVT_MODE_ONESHOT:
212	case CLOCK_EVT_MODE_UNUSED:
213	case CLOCK_EVT_MODE_SHUTDOWN:
214		ctrl_reg = readl_relaxed(timer->base_addr +
215					TTC_CNT_CNTRL_OFFSET);
216		ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
217		writel_relaxed(ctrl_reg,
218				timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219		break;
220	case CLOCK_EVT_MODE_RESUME:
221		ctrl_reg = readl_relaxed(timer->base_addr +
222					TTC_CNT_CNTRL_OFFSET);
223		ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
224		writel_relaxed(ctrl_reg,
225				timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226		break;
227	}
228}
229
230static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
231		unsigned long event, void *data)
232{
233	struct clk_notifier_data *ndata = data;
234	struct ttc_timer *ttc = to_ttc_timer(nb);
235	struct ttc_timer_clocksource *ttccs = container_of(ttc,
236			struct ttc_timer_clocksource, ttc);
237
238	switch (event) {
239	case PRE_RATE_CHANGE:
240	{
241		u32 psv;
242		unsigned long factor, rate_low, rate_high;
243
244		if (ndata->new_rate > ndata->old_rate) {
245			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
246					ndata->old_rate);
247			rate_low = ndata->old_rate;
248			rate_high = ndata->new_rate;
249		} else {
250			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
251					ndata->new_rate);
252			rate_low = ndata->new_rate;
253			rate_high = ndata->old_rate;
254		}
255
256		if (!is_power_of_2(factor))
257				return NOTIFY_BAD;
258
259		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
260			return NOTIFY_BAD;
261
262		factor = __ilog2_u32(factor);
263
264		/*
265		 * store timer clock ctrl register so we can restore it in case
266		 * of an abort.
267		 */
268		ttccs->scale_clk_ctrl_reg_old =
269			readl_relaxed(ttccs->ttc.base_addr +
270			TTC_CLK_CNTRL_OFFSET);
271
272		psv = (ttccs->scale_clk_ctrl_reg_old &
273				TTC_CLK_CNTRL_PSV_MASK) >>
274				TTC_CLK_CNTRL_PSV_SHIFT;
275		if (ndata->new_rate < ndata->old_rate)
276			psv -= factor;
277		else
278			psv += factor;
279
280		/* prescaler within legal range? */
281		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
282			return NOTIFY_BAD;
283
284		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
285			~TTC_CLK_CNTRL_PSV_MASK;
286		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
287
288
289		/* scale down: adjust divider in post-change notification */
290		if (ndata->new_rate < ndata->old_rate)
291			return NOTIFY_DONE;
292
293		/* scale up: adjust divider now - before frequency change */
294		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
295			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
296		break;
297	}
298	case POST_RATE_CHANGE:
299		/* scale up: pre-change notification did the adjustment */
300		if (ndata->new_rate > ndata->old_rate)
301			return NOTIFY_OK;
302
303		/* scale down: adjust divider now - after frequency change */
304		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
305			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
306		break;
307
308	case ABORT_RATE_CHANGE:
309		/* we have to undo the adjustment in case we scale up */
310		if (ndata->new_rate < ndata->old_rate)
311			return NOTIFY_OK;
312
313		/* restore original register value */
314		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
315			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
316		/* fall through */
317	default:
318		return NOTIFY_DONE;
319	}
320
321	return NOTIFY_DONE;
322}
323
324static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
325					 u32 timer_width)
326{
327	struct ttc_timer_clocksource *ttccs;
328	int err;
329
330	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
331	if (WARN_ON(!ttccs))
332		return;
333
334	ttccs->ttc.clk = clk;
335
336	err = clk_prepare_enable(ttccs->ttc.clk);
337	if (WARN_ON(err)) {
338		kfree(ttccs);
339		return;
340	}
341
342	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
343
344	ttccs->ttc.clk_rate_change_nb.notifier_call =
345		ttc_rate_change_clocksource_cb;
346	ttccs->ttc.clk_rate_change_nb.next = NULL;
347	if (clk_notifier_register(ttccs->ttc.clk,
348				&ttccs->ttc.clk_rate_change_nb))
349		pr_warn("Unable to register clock notifier.\n");
350
351	ttccs->ttc.base_addr = base;
352	ttccs->cs.name = "ttc_clocksource";
353	ttccs->cs.rating = 200;
354	ttccs->cs.read = __ttc_clocksource_read;
355	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
356	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
357
358	/*
359	 * Setup the clock source counter to be an incrementing counter
360	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
361	 * it by 32 also. Let it start running now.
362	 */
363	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
364	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
365		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
366	writel_relaxed(CNT_CNTRL_RESET,
367		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
368
369	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
370	if (WARN_ON(err)) {
371		kfree(ttccs);
372		return;
373	}
374
375	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
376	sched_clock_register(ttc_sched_clock_read, timer_width,
377			     ttccs->ttc.freq / PRESCALE);
378}
379
380static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
381		unsigned long event, void *data)
382{
383	struct clk_notifier_data *ndata = data;
384	struct ttc_timer *ttc = to_ttc_timer(nb);
385	struct ttc_timer_clockevent *ttcce = container_of(ttc,
386			struct ttc_timer_clockevent, ttc);
387
388	switch (event) {
389	case POST_RATE_CHANGE:
390		/* update cached frequency */
391		ttc->freq = ndata->new_rate;
392
393		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
394
395		/* fall through */
396	case PRE_RATE_CHANGE:
397	case ABORT_RATE_CHANGE:
398	default:
399		return NOTIFY_DONE;
400	}
401}
402
403static void __init ttc_setup_clockevent(struct clk *clk,
404						void __iomem *base, u32 irq)
405{
406	struct ttc_timer_clockevent *ttcce;
407	int err;
408
409	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
410	if (WARN_ON(!ttcce))
411		return;
412
413	ttcce->ttc.clk = clk;
414
415	err = clk_prepare_enable(ttcce->ttc.clk);
416	if (WARN_ON(err)) {
417		kfree(ttcce);
418		return;
419	}
420
421	ttcce->ttc.clk_rate_change_nb.notifier_call =
422		ttc_rate_change_clockevent_cb;
423	ttcce->ttc.clk_rate_change_nb.next = NULL;
424	if (clk_notifier_register(ttcce->ttc.clk,
425				&ttcce->ttc.clk_rate_change_nb))
426		pr_warn("Unable to register clock notifier.\n");
427	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
428
429	ttcce->ttc.base_addr = base;
430	ttcce->ce.name = "ttc_clockevent";
431	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
432	ttcce->ce.set_next_event = ttc_set_next_event;
433	ttcce->ce.set_mode = ttc_set_mode;
434	ttcce->ce.rating = 200;
435	ttcce->ce.irq = irq;
436	ttcce->ce.cpumask = cpu_possible_mask;
437
438	/*
439	 * Setup the clock event timer to be an interval timer which
440	 * is prescaled by 32 using the interval interrupt. Leave it
441	 * disabled for now.
442	 */
443	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
444	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
445		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
446	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
447
448	err = request_irq(irq, ttc_clock_event_interrupt,
449			  IRQF_TIMER, ttcce->ce.name, ttcce);
450	if (WARN_ON(err)) {
451		kfree(ttcce);
452		return;
453	}
454
455	clockevents_config_and_register(&ttcce->ce,
456			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
457}
458
459/**
460 * ttc_timer_init - Initialize the timer
461 *
462 * Initializes the timer hardware and register the clock source and clock event
463 * timers with Linux kernal timer framework
464 */
465static void __init ttc_timer_init(struct device_node *timer)
466{
467	unsigned int irq;
468	void __iomem *timer_baseaddr;
469	struct clk *clk_cs, *clk_ce;
470	static int initialized;
471	int clksel;
472	u32 timer_width = 16;
473
474	if (initialized)
475		return;
476
477	initialized = 1;
478
479	/*
480	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
481	 * and use it. Note that the event timer uses the interrupt and it's the
482	 * 2nd TTC hence the irq_of_parse_and_map(,1)
483	 */
484	timer_baseaddr = of_iomap(timer, 0);
485	if (!timer_baseaddr) {
486		pr_err("ERROR: invalid timer base address\n");
487		BUG();
488	}
489
490	irq = irq_of_parse_and_map(timer, 1);
491	if (irq <= 0) {
492		pr_err("ERROR: invalid interrupt number\n");
493		BUG();
494	}
495
496	of_property_read_u32(timer, "timer-width", &timer_width);
497
498	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
499	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
500	clk_cs = of_clk_get(timer, clksel);
501	if (IS_ERR(clk_cs)) {
502		pr_err("ERROR: timer input clock not found\n");
503		BUG();
504	}
505
506	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
507	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
508	clk_ce = of_clk_get(timer, clksel);
509	if (IS_ERR(clk_ce)) {
510		pr_err("ERROR: timer input clock not found\n");
511		BUG();
512	}
513
514	ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
515	ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
516
517	pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
518}
519
520CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);
521