1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License as
4 * published by the Free Software Foundation version 2.
5 *
6 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7 * kind, whether express or implied; without even the implied warranty
8 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 */
11
12#include <linux/clk-provider.h>
13#include <linux/delay.h>
14#include <linux/err.h>
15#include <linux/math64.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/clk/ti.h>
19
20/* FAPLL Control Register PLL_CTRL */
21#define FAPLL_MAIN_MULT_N_SHIFT	16
22#define FAPLL_MAIN_DIV_P_SHIFT	8
23#define FAPLL_MAIN_LOCK		BIT(7)
24#define FAPLL_MAIN_PLLEN	BIT(3)
25#define FAPLL_MAIN_BP		BIT(2)
26#define FAPLL_MAIN_LOC_CTL	BIT(0)
27
28#define FAPLL_MAIN_MAX_MULT_N	0xffff
29#define FAPLL_MAIN_MAX_DIV_P	0xff
30#define FAPLL_MAIN_CLEAR_MASK	\
31	((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
32	 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
33	 FAPLL_MAIN_LOC_CTL)
34
35/* FAPLL powerdown register PWD */
36#define FAPLL_PWD_OFFSET	4
37
38#define MAX_FAPLL_OUTPUTS	7
39#define FAPLL_MAX_RETRIES	1000
40
41#define to_fapll(_hw)		container_of(_hw, struct fapll_data, hw)
42#define to_synth(_hw)		container_of(_hw, struct fapll_synth, hw)
43
44/* The bypass bit is inverted on the ddr_pll.. */
45#define fapll_is_ddr_pll(va)	(((u32)(va) & 0xffff) == 0x0440)
46
47/*
48 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
49 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
50 */
51#define is_ddr_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x044c)
52#define is_audio_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x04a8)
53
54/* Synthesizer divider register */
55#define SYNTH_LDMDIV1		BIT(8)
56
57/* Synthesizer frequency register */
58#define SYNTH_LDFREQ		BIT(31)
59
60#define SYNTH_PHASE_K		8
61#define SYNTH_MAX_INT_DIV	0xf
62#define SYNTH_MAX_DIV_M		0xff
63
64struct fapll_data {
65	struct clk_hw hw;
66	void __iomem *base;
67	const char *name;
68	struct clk *clk_ref;
69	struct clk *clk_bypass;
70	struct clk_onecell_data outputs;
71	bool bypass_bit_inverted;
72};
73
74struct fapll_synth {
75	struct clk_hw hw;
76	struct fapll_data *fd;
77	int index;
78	void __iomem *freq;
79	void __iomem *div;
80	const char *name;
81	struct clk *clk_pll;
82};
83
84static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
85{
86	u32 v = readl_relaxed(fd->base);
87
88	if (fd->bypass_bit_inverted)
89		return !(v & FAPLL_MAIN_BP);
90	else
91		return !!(v & FAPLL_MAIN_BP);
92}
93
94static void ti_fapll_set_bypass(struct fapll_data *fd)
95{
96	u32 v = readl_relaxed(fd->base);
97
98	if (fd->bypass_bit_inverted)
99		v &= ~FAPLL_MAIN_BP;
100	else
101		v |= FAPLL_MAIN_BP;
102	writel_relaxed(v, fd->base);
103}
104
105static void ti_fapll_clear_bypass(struct fapll_data *fd)
106{
107	u32 v = readl_relaxed(fd->base);
108
109	if (fd->bypass_bit_inverted)
110		v |= FAPLL_MAIN_BP;
111	else
112		v &= ~FAPLL_MAIN_BP;
113	writel_relaxed(v, fd->base);
114}
115
116static int ti_fapll_wait_lock(struct fapll_data *fd)
117{
118	int retries = FAPLL_MAX_RETRIES;
119	u32 v;
120
121	while ((v = readl_relaxed(fd->base))) {
122		if (v & FAPLL_MAIN_LOCK)
123			return 0;
124
125		if (retries-- <= 0)
126			break;
127
128		udelay(1);
129	}
130
131	pr_err("%s failed to lock\n", fd->name);
132
133	return -ETIMEDOUT;
134}
135
136static int ti_fapll_enable(struct clk_hw *hw)
137{
138	struct fapll_data *fd = to_fapll(hw);
139	u32 v = readl_relaxed(fd->base);
140
141	v |= FAPLL_MAIN_PLLEN;
142	writel_relaxed(v, fd->base);
143	ti_fapll_wait_lock(fd);
144
145	return 0;
146}
147
148static void ti_fapll_disable(struct clk_hw *hw)
149{
150	struct fapll_data *fd = to_fapll(hw);
151	u32 v = readl_relaxed(fd->base);
152
153	v &= ~FAPLL_MAIN_PLLEN;
154	writel_relaxed(v, fd->base);
155}
156
157static int ti_fapll_is_enabled(struct clk_hw *hw)
158{
159	struct fapll_data *fd = to_fapll(hw);
160	u32 v = readl_relaxed(fd->base);
161
162	return v & FAPLL_MAIN_PLLEN;
163}
164
165static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
166					  unsigned long parent_rate)
167{
168	struct fapll_data *fd = to_fapll(hw);
169	u32 fapll_n, fapll_p, v;
170	long long rate;
171
172	if (ti_fapll_clock_is_bypass(fd))
173		return parent_rate;
174
175	rate = parent_rate;
176
177	/* PLL pre-divider is P and multiplier is N */
178	v = readl_relaxed(fd->base);
179	fapll_p = (v >> 8) & 0xff;
180	if (fapll_p)
181		do_div(rate, fapll_p);
182	fapll_n = v >> 16;
183	if (fapll_n)
184		rate *= fapll_n;
185
186	return rate;
187}
188
189static u8 ti_fapll_get_parent(struct clk_hw *hw)
190{
191	struct fapll_data *fd = to_fapll(hw);
192
193	if (ti_fapll_clock_is_bypass(fd))
194		return 1;
195
196	return 0;
197}
198
199static int ti_fapll_set_div_mult(unsigned long rate,
200				 unsigned long parent_rate,
201				 u32 *pre_div_p, u32 *mult_n)
202{
203	/*
204	 * So far no luck getting decent clock with PLL divider,
205	 * PLL does not seem to lock and the signal does not look
206	 * right. It seems the divider can only be used together
207	 * with the multiplier?
208	 */
209	if (rate < parent_rate) {
210		pr_warn("FAPLL main divider rates unsupported\n");
211		return -EINVAL;
212	}
213
214	*mult_n = rate / parent_rate;
215	if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
216		return -EINVAL;
217	*pre_div_p = 1;
218
219	return 0;
220}
221
222static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
223				unsigned long *parent_rate)
224{
225	u32 pre_div_p, mult_n;
226	int error;
227
228	if (!rate)
229		return -EINVAL;
230
231	error = ti_fapll_set_div_mult(rate, *parent_rate,
232				      &pre_div_p, &mult_n);
233	if (error)
234		return error;
235
236	rate = *parent_rate / pre_div_p;
237	rate *= mult_n;
238
239	return rate;
240}
241
242static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
243			     unsigned long parent_rate)
244{
245	struct fapll_data *fd = to_fapll(hw);
246	u32 pre_div_p, mult_n, v;
247	int error;
248
249	if (!rate)
250		return -EINVAL;
251
252	error = ti_fapll_set_div_mult(rate, parent_rate,
253				      &pre_div_p, &mult_n);
254	if (error)
255		return error;
256
257	ti_fapll_set_bypass(fd);
258	v = readl_relaxed(fd->base);
259	v &= ~FAPLL_MAIN_CLEAR_MASK;
260	v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
261	v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
262	writel_relaxed(v, fd->base);
263	if (ti_fapll_is_enabled(hw))
264		ti_fapll_wait_lock(fd);
265	ti_fapll_clear_bypass(fd);
266
267	return 0;
268}
269
270static struct clk_ops ti_fapll_ops = {
271	.enable = ti_fapll_enable,
272	.disable = ti_fapll_disable,
273	.is_enabled = ti_fapll_is_enabled,
274	.recalc_rate = ti_fapll_recalc_rate,
275	.get_parent = ti_fapll_get_parent,
276	.round_rate = ti_fapll_round_rate,
277	.set_rate = ti_fapll_set_rate,
278};
279
280static int ti_fapll_synth_enable(struct clk_hw *hw)
281{
282	struct fapll_synth *synth = to_synth(hw);
283	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
284
285	v &= ~(1 << synth->index);
286	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
287
288	return 0;
289}
290
291static void ti_fapll_synth_disable(struct clk_hw *hw)
292{
293	struct fapll_synth *synth = to_synth(hw);
294	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
295
296	v |= 1 << synth->index;
297	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
298}
299
300static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
301{
302	struct fapll_synth *synth = to_synth(hw);
303	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
304
305	return !(v & (1 << synth->index));
306}
307
308/*
309 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
310 */
311static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
312						unsigned long parent_rate)
313{
314	struct fapll_synth *synth = to_synth(hw);
315	u32 synth_div_m;
316	long long rate;
317
318	/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
319	if (!synth->div)
320		return 32768;
321
322	/*
323	 * PLL in bypass sets the synths in bypass mode too. The PLL rate
324	 * can be also be set to 27MHz, so we can't use parent_rate to
325	 * check for bypass mode.
326	 */
327	if (ti_fapll_clock_is_bypass(synth->fd))
328		return parent_rate;
329
330	rate = parent_rate;
331
332	/*
333	 * Synth frequency integer and fractional divider.
334	 * Note that the phase output K is 8, so the result needs
335	 * to be multiplied by SYNTH_PHASE_K.
336	 */
337	if (synth->freq) {
338		u32 v, synth_int_div, synth_frac_div, synth_div_freq;
339
340		v = readl_relaxed(synth->freq);
341		synth_int_div = (v >> 24) & 0xf;
342		synth_frac_div = v & 0xffffff;
343		synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
344		rate *= 10000000;
345		do_div(rate, synth_div_freq);
346		rate *= SYNTH_PHASE_K;
347	}
348
349	/* Synth post-divider M */
350	synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
351
352	return DIV_ROUND_UP_ULL(rate, synth_div_m);
353}
354
355static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
356						  unsigned long parent_rate)
357{
358	struct fapll_synth *synth = to_synth(hw);
359	unsigned long current_rate, frac_rate;
360	u32 post_div_m;
361
362	current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
363	post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
364	frac_rate = current_rate * post_div_m;
365
366	return frac_rate;
367}
368
369static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
370					unsigned long rate,
371					unsigned long parent_rate)
372{
373	u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
374
375	post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
376	post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
377	if (post_div_m > SYNTH_MAX_DIV_M)
378		return -EINVAL;
379	if (!post_div_m)
380		post_div_m = 1;
381
382	for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
383		synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
384						 SYNTH_PHASE_K *
385						 10000000,
386						 rate * post_div_m);
387		synth_frac_div = synth_int_div % 10000000;
388		synth_int_div /= 10000000;
389
390		if (synth_int_div <= SYNTH_MAX_INT_DIV)
391			break;
392	}
393
394	if (synth_int_div > SYNTH_MAX_INT_DIV)
395		return -EINVAL;
396
397	v = readl_relaxed(synth->freq);
398	v &= ~0x1fffffff;
399	v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
400	v |= (synth_frac_div & 0xffffff);
401	v |= SYNTH_LDFREQ;
402	writel_relaxed(v, synth->freq);
403
404	return post_div_m;
405}
406
407static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
408				      unsigned long *parent_rate)
409{
410	struct fapll_synth *synth = to_synth(hw);
411	struct fapll_data *fd = synth->fd;
412	unsigned long r;
413
414	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
415		return -EINVAL;
416
417	/* Only post divider m available with no fractional divider? */
418	if (!synth->freq) {
419		unsigned long frac_rate;
420		u32 synth_post_div_m;
421
422		frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
423		synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
424		r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
425		goto out;
426	}
427
428	r = *parent_rate * SYNTH_PHASE_K;
429	if (rate > r)
430		goto out;
431
432	r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
433	if (rate < r)
434		goto out;
435
436	r = rate;
437out:
438	return r;
439}
440
441static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
442				   unsigned long parent_rate)
443{
444	struct fapll_synth *synth = to_synth(hw);
445	struct fapll_data *fd = synth->fd;
446	unsigned long frac_rate, post_rate = 0;
447	u32 post_div_m = 0, v;
448
449	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
450		return -EINVAL;
451
452	/* Produce the rate with just post divider M? */
453	frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
454	if (frac_rate < rate) {
455		if (!synth->freq)
456			return -EINVAL;
457	} else {
458		post_div_m = DIV_ROUND_UP(frac_rate, rate);
459		if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
460			post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
461		if (!synth->freq && !post_rate)
462			return -EINVAL;
463	}
464
465	/* Need to recalculate the fractional divider? */
466	if ((post_rate != rate) && synth->freq)
467		post_div_m = ti_fapll_synth_set_frac_rate(synth,
468							  rate,
469							  parent_rate);
470
471	v = readl_relaxed(synth->div);
472	v &= ~SYNTH_MAX_DIV_M;
473	v |= post_div_m;
474	v |= SYNTH_LDMDIV1;
475	writel_relaxed(v, synth->div);
476
477	return 0;
478}
479
480static struct clk_ops ti_fapll_synt_ops = {
481	.enable = ti_fapll_synth_enable,
482	.disable = ti_fapll_synth_disable,
483	.is_enabled = ti_fapll_synth_is_enabled,
484	.recalc_rate = ti_fapll_synth_recalc_rate,
485	.round_rate = ti_fapll_synth_round_rate,
486	.set_rate = ti_fapll_synth_set_rate,
487};
488
489static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
490						void __iomem *freq,
491						void __iomem *div,
492						int index,
493						const char *name,
494						const char *parent,
495						struct clk *pll_clk)
496{
497	struct clk_init_data *init;
498	struct fapll_synth *synth;
499
500	init = kzalloc(sizeof(*init), GFP_KERNEL);
501	if (!init)
502		return ERR_PTR(-ENOMEM);
503
504	init->ops = &ti_fapll_synt_ops;
505	init->name = name;
506	init->parent_names = &parent;
507	init->num_parents = 1;
508
509	synth = kzalloc(sizeof(*synth), GFP_KERNEL);
510	if (!synth)
511		goto free;
512
513	synth->fd = fd;
514	synth->index = index;
515	synth->freq = freq;
516	synth->div = div;
517	synth->name = name;
518	synth->hw.init = init;
519	synth->clk_pll = pll_clk;
520
521	return clk_register(NULL, &synth->hw);
522
523free:
524	kfree(synth);
525	kfree(init);
526
527	return ERR_PTR(-ENOMEM);
528}
529
530static void __init ti_fapll_setup(struct device_node *node)
531{
532	struct fapll_data *fd;
533	struct clk_init_data *init = NULL;
534	const char *parent_name[2];
535	struct clk *pll_clk;
536	int i;
537
538	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
539	if (!fd)
540		return;
541
542	fd->outputs.clks = kzalloc(sizeof(struct clk *) *
543				   MAX_FAPLL_OUTPUTS + 1,
544				   GFP_KERNEL);
545	if (!fd->outputs.clks)
546		goto free;
547
548	init = kzalloc(sizeof(*init), GFP_KERNEL);
549	if (!init)
550		goto free;
551
552	init->ops = &ti_fapll_ops;
553	init->name = node->name;
554
555	init->num_parents = of_clk_get_parent_count(node);
556	if (init->num_parents != 2) {
557		pr_err("%s must have two parents\n", node->name);
558		goto free;
559	}
560
561	parent_name[0] = of_clk_get_parent_name(node, 0);
562	parent_name[1] = of_clk_get_parent_name(node, 1);
563	init->parent_names = parent_name;
564
565	fd->clk_ref = of_clk_get(node, 0);
566	if (IS_ERR(fd->clk_ref)) {
567		pr_err("%s could not get clk_ref\n", node->name);
568		goto free;
569	}
570
571	fd->clk_bypass = of_clk_get(node, 1);
572	if (IS_ERR(fd->clk_bypass)) {
573		pr_err("%s could not get clk_bypass\n", node->name);
574		goto free;
575	}
576
577	fd->base = of_iomap(node, 0);
578	if (!fd->base) {
579		pr_err("%s could not get IO base\n", node->name);
580		goto free;
581	}
582
583	if (fapll_is_ddr_pll(fd->base))
584		fd->bypass_bit_inverted = true;
585
586	fd->name = node->name;
587	fd->hw.init = init;
588
589	/* Register the parent PLL */
590	pll_clk = clk_register(NULL, &fd->hw);
591	if (IS_ERR(pll_clk))
592		goto unmap;
593
594	fd->outputs.clks[0] = pll_clk;
595	fd->outputs.clk_num++;
596
597	/*
598	 * Set up the child synthesizers starting at index 1 as the
599	 * PLL output is at index 0. We need to check the clock-indices
600	 * for numbering in case there are holes in the synth mapping,
601	 * and then probe the synth register to see if it has a FREQ
602	 * register available.
603	 */
604	for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
605		const char *output_name;
606		void __iomem *freq, *div;
607		struct clk *synth_clk;
608		int output_instance;
609		u32 v;
610
611		if (of_property_read_string_index(node, "clock-output-names",
612						  i, &output_name))
613			continue;
614
615		if (of_property_read_u32_index(node, "clock-indices", i,
616					       &output_instance))
617			output_instance = i;
618
619		freq = fd->base + (output_instance * 8);
620		div = freq + 4;
621
622		/* Check for hardwired audio_pll_clk1 */
623		if (is_audio_pll_clk1(freq)) {
624			freq = 0;
625			div = 0;
626		} else {
627			/* Does the synthesizer have a FREQ register? */
628			v = readl_relaxed(freq);
629			if (!v)
630				freq = 0;
631		}
632		synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
633						 output_name, node->name,
634						 pll_clk);
635		if (IS_ERR(synth_clk))
636			continue;
637
638		fd->outputs.clks[output_instance] = synth_clk;
639		fd->outputs.clk_num++;
640
641		clk_register_clkdev(synth_clk, output_name, NULL);
642	}
643
644	/* Register the child synthesizers as the FAPLL outputs */
645	of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
646	/* Add clock alias for the outputs */
647
648	kfree(init);
649
650	return;
651
652unmap:
653	iounmap(fd->base);
654free:
655	if (fd->clk_bypass)
656		clk_put(fd->clk_bypass);
657	if (fd->clk_ref)
658		clk_put(fd->clk_ref);
659	kfree(fd->outputs.clks);
660	kfree(fd);
661	kfree(init);
662}
663
664CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
665