1/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API.  See Documentation/clk.txt
10 */
11
12#include <linux/clk-provider.h>
13#include <linux/clk/clk-conf.h>
14#include <linux/module.h>
15#include <linux/mutex.h>
16#include <linux/spinlock.h>
17#include <linux/err.h>
18#include <linux/list.h>
19#include <linux/slab.h>
20#include <linux/of.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/sched.h>
24
25#include "clk.h"
26
27static DEFINE_SPINLOCK(enable_lock);
28static DEFINE_MUTEX(prepare_lock);
29
30static struct task_struct *prepare_owner;
31static struct task_struct *enable_owner;
32
33static int prepare_refcnt;
34static int enable_refcnt;
35
36static HLIST_HEAD(clk_root_list);
37static HLIST_HEAD(clk_orphan_list);
38static LIST_HEAD(clk_notifier_list);
39
40static long clk_core_get_accuracy(struct clk_core *clk);
41static unsigned long clk_core_get_rate(struct clk_core *clk);
42static int clk_core_get_phase(struct clk_core *clk);
43static bool clk_core_is_prepared(struct clk_core *clk);
44static bool clk_core_is_enabled(struct clk_core *clk);
45static struct clk_core *clk_core_lookup(const char *name);
46
47/***    private data structures    ***/
48
49struct clk_core {
50	const char		*name;
51	const struct clk_ops	*ops;
52	struct clk_hw		*hw;
53	struct module		*owner;
54	struct clk_core		*parent;
55	const char		**parent_names;
56	struct clk_core		**parents;
57	u8			num_parents;
58	u8			new_parent_index;
59	unsigned long		rate;
60	unsigned long		req_rate;
61	unsigned long		new_rate;
62	struct clk_core		*new_parent;
63	struct clk_core		*new_child;
64	unsigned long		flags;
65	unsigned int		enable_count;
66	unsigned int		prepare_count;
67	unsigned long		accuracy;
68	int			phase;
69	struct hlist_head	children;
70	struct hlist_node	child_node;
71	struct hlist_node	debug_node;
72	struct hlist_head	clks;
73	unsigned int		notifier_count;
74#ifdef CONFIG_DEBUG_FS
75	struct dentry		*dentry;
76#endif
77	struct kref		ref;
78};
79
80#define CREATE_TRACE_POINTS
81#include <trace/events/clk.h>
82
83struct clk {
84	struct clk_core	*core;
85	const char *dev_id;
86	const char *con_id;
87	unsigned long min_rate;
88	unsigned long max_rate;
89	struct hlist_node clks_node;
90};
91
92/***           locking             ***/
93static void clk_prepare_lock(void)
94{
95	if (!mutex_trylock(&prepare_lock)) {
96		if (prepare_owner == current) {
97			prepare_refcnt++;
98			return;
99		}
100		mutex_lock(&prepare_lock);
101	}
102	WARN_ON_ONCE(prepare_owner != NULL);
103	WARN_ON_ONCE(prepare_refcnt != 0);
104	prepare_owner = current;
105	prepare_refcnt = 1;
106}
107
108static void clk_prepare_unlock(void)
109{
110	WARN_ON_ONCE(prepare_owner != current);
111	WARN_ON_ONCE(prepare_refcnt == 0);
112
113	if (--prepare_refcnt)
114		return;
115	prepare_owner = NULL;
116	mutex_unlock(&prepare_lock);
117}
118
119static unsigned long clk_enable_lock(void)
120{
121	unsigned long flags;
122
123	if (!spin_trylock_irqsave(&enable_lock, flags)) {
124		if (enable_owner == current) {
125			enable_refcnt++;
126			return flags;
127		}
128		spin_lock_irqsave(&enable_lock, flags);
129	}
130	WARN_ON_ONCE(enable_owner != NULL);
131	WARN_ON_ONCE(enable_refcnt != 0);
132	enable_owner = current;
133	enable_refcnt = 1;
134	return flags;
135}
136
137static void clk_enable_unlock(unsigned long flags)
138{
139	WARN_ON_ONCE(enable_owner != current);
140	WARN_ON_ONCE(enable_refcnt == 0);
141
142	if (--enable_refcnt)
143		return;
144	enable_owner = NULL;
145	spin_unlock_irqrestore(&enable_lock, flags);
146}
147
148/***        debugfs support        ***/
149
150#ifdef CONFIG_DEBUG_FS
151#include <linux/debugfs.h>
152
153static struct dentry *rootdir;
154static int inited = 0;
155static DEFINE_MUTEX(clk_debug_lock);
156static HLIST_HEAD(clk_debug_list);
157
158static struct hlist_head *all_lists[] = {
159	&clk_root_list,
160	&clk_orphan_list,
161	NULL,
162};
163
164static struct hlist_head *orphan_list[] = {
165	&clk_orphan_list,
166	NULL,
167};
168
169static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
170				 int level)
171{
172	if (!c)
173		return;
174
175	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
176		   level * 3 + 1, "",
177		   30 - level * 3, c->name,
178		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
179		   clk_core_get_accuracy(c), clk_core_get_phase(c));
180}
181
182static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
183				     int level)
184{
185	struct clk_core *child;
186
187	if (!c)
188		return;
189
190	clk_summary_show_one(s, c, level);
191
192	hlist_for_each_entry(child, &c->children, child_node)
193		clk_summary_show_subtree(s, child, level + 1);
194}
195
196static int clk_summary_show(struct seq_file *s, void *data)
197{
198	struct clk_core *c;
199	struct hlist_head **lists = (struct hlist_head **)s->private;
200
201	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
202	seq_puts(s, "----------------------------------------------------------------------------------------\n");
203
204	clk_prepare_lock();
205
206	for (; *lists; lists++)
207		hlist_for_each_entry(c, *lists, child_node)
208			clk_summary_show_subtree(s, c, 0);
209
210	clk_prepare_unlock();
211
212	return 0;
213}
214
215
216static int clk_summary_open(struct inode *inode, struct file *file)
217{
218	return single_open(file, clk_summary_show, inode->i_private);
219}
220
221static const struct file_operations clk_summary_fops = {
222	.open		= clk_summary_open,
223	.read		= seq_read,
224	.llseek		= seq_lseek,
225	.release	= single_release,
226};
227
228static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
229{
230	if (!c)
231		return;
232
233	/* This should be JSON format, i.e. elements separated with a comma */
234	seq_printf(s, "\"%s\": { ", c->name);
235	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
236	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
237	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
238	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
239	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
240}
241
242static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
243{
244	struct clk_core *child;
245
246	if (!c)
247		return;
248
249	clk_dump_one(s, c, level);
250
251	hlist_for_each_entry(child, &c->children, child_node) {
252		seq_printf(s, ",");
253		clk_dump_subtree(s, child, level + 1);
254	}
255
256	seq_printf(s, "}");
257}
258
259static int clk_dump(struct seq_file *s, void *data)
260{
261	struct clk_core *c;
262	bool first_node = true;
263	struct hlist_head **lists = (struct hlist_head **)s->private;
264
265	seq_printf(s, "{");
266
267	clk_prepare_lock();
268
269	for (; *lists; lists++) {
270		hlist_for_each_entry(c, *lists, child_node) {
271			if (!first_node)
272				seq_puts(s, ",");
273			first_node = false;
274			clk_dump_subtree(s, c, 0);
275		}
276	}
277
278	clk_prepare_unlock();
279
280	seq_printf(s, "}");
281	return 0;
282}
283
284
285static int clk_dump_open(struct inode *inode, struct file *file)
286{
287	return single_open(file, clk_dump, inode->i_private);
288}
289
290static const struct file_operations clk_dump_fops = {
291	.open		= clk_dump_open,
292	.read		= seq_read,
293	.llseek		= seq_lseek,
294	.release	= single_release,
295};
296
297static int clk_debug_create_one(struct clk_core *clk, struct dentry *pdentry)
298{
299	struct dentry *d;
300	int ret = -ENOMEM;
301
302	if (!clk || !pdentry) {
303		ret = -EINVAL;
304		goto out;
305	}
306
307	d = debugfs_create_dir(clk->name, pdentry);
308	if (!d)
309		goto out;
310
311	clk->dentry = d;
312
313	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
314			(u32 *)&clk->rate);
315	if (!d)
316		goto err_out;
317
318	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
319			(u32 *)&clk->accuracy);
320	if (!d)
321		goto err_out;
322
323	d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry,
324			(u32 *)&clk->phase);
325	if (!d)
326		goto err_out;
327
328	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
329			(u32 *)&clk->flags);
330	if (!d)
331		goto err_out;
332
333	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
334			(u32 *)&clk->prepare_count);
335	if (!d)
336		goto err_out;
337
338	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
339			(u32 *)&clk->enable_count);
340	if (!d)
341		goto err_out;
342
343	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
344			(u32 *)&clk->notifier_count);
345	if (!d)
346		goto err_out;
347
348	if (clk->ops->debug_init) {
349		ret = clk->ops->debug_init(clk->hw, clk->dentry);
350		if (ret)
351			goto err_out;
352	}
353
354	ret = 0;
355	goto out;
356
357err_out:
358	debugfs_remove_recursive(clk->dentry);
359	clk->dentry = NULL;
360out:
361	return ret;
362}
363
364/**
365 * clk_debug_register - add a clk node to the debugfs clk tree
366 * @clk: the clk being added to the debugfs clk tree
367 *
368 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
369 * initialized.  Otherwise it bails out early since the debugfs clk tree
370 * will be created lazily by clk_debug_init as part of a late_initcall.
371 */
372static int clk_debug_register(struct clk_core *clk)
373{
374	int ret = 0;
375
376	mutex_lock(&clk_debug_lock);
377	hlist_add_head(&clk->debug_node, &clk_debug_list);
378
379	if (!inited)
380		goto unlock;
381
382	ret = clk_debug_create_one(clk, rootdir);
383unlock:
384	mutex_unlock(&clk_debug_lock);
385
386	return ret;
387}
388
389 /**
390 * clk_debug_unregister - remove a clk node from the debugfs clk tree
391 * @clk: the clk being removed from the debugfs clk tree
392 *
393 * Dynamically removes a clk and all it's children clk nodes from the
394 * debugfs clk tree if clk->dentry points to debugfs created by
395 * clk_debug_register in __clk_init.
396 */
397static void clk_debug_unregister(struct clk_core *clk)
398{
399	mutex_lock(&clk_debug_lock);
400	hlist_del_init(&clk->debug_node);
401	debugfs_remove_recursive(clk->dentry);
402	clk->dentry = NULL;
403	mutex_unlock(&clk_debug_lock);
404}
405
406struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
407				void *data, const struct file_operations *fops)
408{
409	struct dentry *d = NULL;
410
411	if (hw->core->dentry)
412		d = debugfs_create_file(name, mode, hw->core->dentry, data,
413					fops);
414
415	return d;
416}
417EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
418
419/**
420 * clk_debug_init - lazily create the debugfs clk tree visualization
421 *
422 * clks are often initialized very early during boot before memory can
423 * be dynamically allocated and well before debugfs is setup.
424 * clk_debug_init walks the clk tree hierarchy while holding
425 * prepare_lock and creates the topology as part of a late_initcall,
426 * thus insuring that clks initialized very early will still be
427 * represented in the debugfs clk tree.  This function should only be
428 * called once at boot-time, and all other clks added dynamically will
429 * be done so with clk_debug_register.
430 */
431static int __init clk_debug_init(void)
432{
433	struct clk_core *clk;
434	struct dentry *d;
435
436	rootdir = debugfs_create_dir("clk", NULL);
437
438	if (!rootdir)
439		return -ENOMEM;
440
441	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
442				&clk_summary_fops);
443	if (!d)
444		return -ENOMEM;
445
446	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
447				&clk_dump_fops);
448	if (!d)
449		return -ENOMEM;
450
451	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
452				&orphan_list, &clk_summary_fops);
453	if (!d)
454		return -ENOMEM;
455
456	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
457				&orphan_list, &clk_dump_fops);
458	if (!d)
459		return -ENOMEM;
460
461	mutex_lock(&clk_debug_lock);
462	hlist_for_each_entry(clk, &clk_debug_list, debug_node)
463		clk_debug_create_one(clk, rootdir);
464
465	inited = 1;
466	mutex_unlock(&clk_debug_lock);
467
468	return 0;
469}
470late_initcall(clk_debug_init);
471#else
472static inline int clk_debug_register(struct clk_core *clk) { return 0; }
473static inline void clk_debug_reparent(struct clk_core *clk,
474				      struct clk_core *new_parent)
475{
476}
477static inline void clk_debug_unregister(struct clk_core *clk)
478{
479}
480#endif
481
482/* caller must hold prepare_lock */
483static void clk_unprepare_unused_subtree(struct clk_core *clk)
484{
485	struct clk_core *child;
486
487	lockdep_assert_held(&prepare_lock);
488
489	hlist_for_each_entry(child, &clk->children, child_node)
490		clk_unprepare_unused_subtree(child);
491
492	if (clk->prepare_count)
493		return;
494
495	if (clk->flags & CLK_IGNORE_UNUSED)
496		return;
497
498	if (clk_core_is_prepared(clk)) {
499		trace_clk_unprepare(clk);
500		if (clk->ops->unprepare_unused)
501			clk->ops->unprepare_unused(clk->hw);
502		else if (clk->ops->unprepare)
503			clk->ops->unprepare(clk->hw);
504		trace_clk_unprepare_complete(clk);
505	}
506}
507
508/* caller must hold prepare_lock */
509static void clk_disable_unused_subtree(struct clk_core *clk)
510{
511	struct clk_core *child;
512	unsigned long flags;
513
514	lockdep_assert_held(&prepare_lock);
515
516	hlist_for_each_entry(child, &clk->children, child_node)
517		clk_disable_unused_subtree(child);
518
519	flags = clk_enable_lock();
520
521	if (clk->enable_count)
522		goto unlock_out;
523
524	if (clk->flags & CLK_IGNORE_UNUSED)
525		goto unlock_out;
526
527	/*
528	 * some gate clocks have special needs during the disable-unused
529	 * sequence.  call .disable_unused if available, otherwise fall
530	 * back to .disable
531	 */
532	if (clk_core_is_enabled(clk)) {
533		trace_clk_disable(clk);
534		if (clk->ops->disable_unused)
535			clk->ops->disable_unused(clk->hw);
536		else if (clk->ops->disable)
537			clk->ops->disable(clk->hw);
538		trace_clk_disable_complete(clk);
539	}
540
541unlock_out:
542	clk_enable_unlock(flags);
543}
544
545static bool clk_ignore_unused;
546static int __init clk_ignore_unused_setup(char *__unused)
547{
548	clk_ignore_unused = true;
549	return 1;
550}
551__setup("clk_ignore_unused", clk_ignore_unused_setup);
552
553static int clk_disable_unused(void)
554{
555	struct clk_core *clk;
556
557	if (clk_ignore_unused) {
558		pr_warn("clk: Not disabling unused clocks\n");
559		return 0;
560	}
561
562	clk_prepare_lock();
563
564	hlist_for_each_entry(clk, &clk_root_list, child_node)
565		clk_disable_unused_subtree(clk);
566
567	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
568		clk_disable_unused_subtree(clk);
569
570	hlist_for_each_entry(clk, &clk_root_list, child_node)
571		clk_unprepare_unused_subtree(clk);
572
573	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
574		clk_unprepare_unused_subtree(clk);
575
576	clk_prepare_unlock();
577
578	return 0;
579}
580late_initcall_sync(clk_disable_unused);
581
582/***    helper functions   ***/
583
584const char *__clk_get_name(struct clk *clk)
585{
586	return !clk ? NULL : clk->core->name;
587}
588EXPORT_SYMBOL_GPL(__clk_get_name);
589
590struct clk_hw *__clk_get_hw(struct clk *clk)
591{
592	return !clk ? NULL : clk->core->hw;
593}
594EXPORT_SYMBOL_GPL(__clk_get_hw);
595
596u8 __clk_get_num_parents(struct clk *clk)
597{
598	return !clk ? 0 : clk->core->num_parents;
599}
600EXPORT_SYMBOL_GPL(__clk_get_num_parents);
601
602struct clk *__clk_get_parent(struct clk *clk)
603{
604	if (!clk)
605		return NULL;
606
607	/* TODO: Create a per-user clk and change callers to call clk_put */
608	return !clk->core->parent ? NULL : clk->core->parent->hw->clk;
609}
610EXPORT_SYMBOL_GPL(__clk_get_parent);
611
612static struct clk_core *clk_core_get_parent_by_index(struct clk_core *clk,
613							 u8 index)
614{
615	if (!clk || index >= clk->num_parents)
616		return NULL;
617	else if (!clk->parents)
618		return clk_core_lookup(clk->parent_names[index]);
619	else if (!clk->parents[index])
620		return clk->parents[index] =
621			clk_core_lookup(clk->parent_names[index]);
622	else
623		return clk->parents[index];
624}
625
626struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
627{
628	struct clk_core *parent;
629
630	if (!clk)
631		return NULL;
632
633	parent = clk_core_get_parent_by_index(clk->core, index);
634
635	return !parent ? NULL : parent->hw->clk;
636}
637EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
638
639unsigned int __clk_get_enable_count(struct clk *clk)
640{
641	return !clk ? 0 : clk->core->enable_count;
642}
643
644static unsigned long clk_core_get_rate_nolock(struct clk_core *clk)
645{
646	unsigned long ret;
647
648	if (!clk) {
649		ret = 0;
650		goto out;
651	}
652
653	ret = clk->rate;
654
655	if (clk->flags & CLK_IS_ROOT)
656		goto out;
657
658	if (!clk->parent)
659		ret = 0;
660
661out:
662	return ret;
663}
664
665unsigned long __clk_get_rate(struct clk *clk)
666{
667	if (!clk)
668		return 0;
669
670	return clk_core_get_rate_nolock(clk->core);
671}
672EXPORT_SYMBOL_GPL(__clk_get_rate);
673
674static unsigned long __clk_get_accuracy(struct clk_core *clk)
675{
676	if (!clk)
677		return 0;
678
679	return clk->accuracy;
680}
681
682unsigned long __clk_get_flags(struct clk *clk)
683{
684	return !clk ? 0 : clk->core->flags;
685}
686EXPORT_SYMBOL_GPL(__clk_get_flags);
687
688static bool clk_core_is_prepared(struct clk_core *clk)
689{
690	int ret;
691
692	if (!clk)
693		return false;
694
695	/*
696	 * .is_prepared is optional for clocks that can prepare
697	 * fall back to software usage counter if it is missing
698	 */
699	if (!clk->ops->is_prepared) {
700		ret = clk->prepare_count ? 1 : 0;
701		goto out;
702	}
703
704	ret = clk->ops->is_prepared(clk->hw);
705out:
706	return !!ret;
707}
708
709bool __clk_is_prepared(struct clk *clk)
710{
711	if (!clk)
712		return false;
713
714	return clk_core_is_prepared(clk->core);
715}
716
717static bool clk_core_is_enabled(struct clk_core *clk)
718{
719	int ret;
720
721	if (!clk)
722		return false;
723
724	/*
725	 * .is_enabled is only mandatory for clocks that gate
726	 * fall back to software usage counter if .is_enabled is missing
727	 */
728	if (!clk->ops->is_enabled) {
729		ret = clk->enable_count ? 1 : 0;
730		goto out;
731	}
732
733	ret = clk->ops->is_enabled(clk->hw);
734out:
735	return !!ret;
736}
737
738bool __clk_is_enabled(struct clk *clk)
739{
740	if (!clk)
741		return false;
742
743	return clk_core_is_enabled(clk->core);
744}
745EXPORT_SYMBOL_GPL(__clk_is_enabled);
746
747static struct clk_core *__clk_lookup_subtree(const char *name,
748					     struct clk_core *clk)
749{
750	struct clk_core *child;
751	struct clk_core *ret;
752
753	if (!strcmp(clk->name, name))
754		return clk;
755
756	hlist_for_each_entry(child, &clk->children, child_node) {
757		ret = __clk_lookup_subtree(name, child);
758		if (ret)
759			return ret;
760	}
761
762	return NULL;
763}
764
765static struct clk_core *clk_core_lookup(const char *name)
766{
767	struct clk_core *root_clk;
768	struct clk_core *ret;
769
770	if (!name)
771		return NULL;
772
773	/* search the 'proper' clk tree first */
774	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
775		ret = __clk_lookup_subtree(name, root_clk);
776		if (ret)
777			return ret;
778	}
779
780	/* if not found, then search the orphan tree */
781	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
782		ret = __clk_lookup_subtree(name, root_clk);
783		if (ret)
784			return ret;
785	}
786
787	return NULL;
788}
789
790static bool mux_is_better_rate(unsigned long rate, unsigned long now,
791			   unsigned long best, unsigned long flags)
792{
793	if (flags & CLK_MUX_ROUND_CLOSEST)
794		return abs(now - rate) < abs(best - rate);
795
796	return now <= rate && now > best;
797}
798
799static long
800clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate,
801			     unsigned long min_rate,
802			     unsigned long max_rate,
803			     unsigned long *best_parent_rate,
804			     struct clk_hw **best_parent_p,
805			     unsigned long flags)
806{
807	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
808	int i, num_parents;
809	unsigned long parent_rate, best = 0;
810
811	/* if NO_REPARENT flag set, pass through to current parent */
812	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
813		parent = core->parent;
814		if (core->flags & CLK_SET_RATE_PARENT)
815			best = __clk_determine_rate(parent ? parent->hw : NULL,
816						    rate, min_rate, max_rate);
817		else if (parent)
818			best = clk_core_get_rate_nolock(parent);
819		else
820			best = clk_core_get_rate_nolock(core);
821		goto out;
822	}
823
824	/* find the parent that can provide the fastest rate <= rate */
825	num_parents = core->num_parents;
826	for (i = 0; i < num_parents; i++) {
827		parent = clk_core_get_parent_by_index(core, i);
828		if (!parent)
829			continue;
830		if (core->flags & CLK_SET_RATE_PARENT)
831			parent_rate = __clk_determine_rate(parent->hw, rate,
832							   min_rate,
833							   max_rate);
834		else
835			parent_rate = clk_core_get_rate_nolock(parent);
836		if (mux_is_better_rate(rate, parent_rate, best, flags)) {
837			best_parent = parent;
838			best = parent_rate;
839		}
840	}
841
842out:
843	if (best_parent)
844		*best_parent_p = best_parent->hw;
845	*best_parent_rate = best;
846
847	return best;
848}
849
850struct clk *__clk_lookup(const char *name)
851{
852	struct clk_core *core = clk_core_lookup(name);
853
854	return !core ? NULL : core->hw->clk;
855}
856
857static void clk_core_get_boundaries(struct clk_core *clk,
858				    unsigned long *min_rate,
859				    unsigned long *max_rate)
860{
861	struct clk *clk_user;
862
863	*min_rate = 0;
864	*max_rate = ULONG_MAX;
865
866	hlist_for_each_entry(clk_user, &clk->clks, clks_node)
867		*min_rate = max(*min_rate, clk_user->min_rate);
868
869	hlist_for_each_entry(clk_user, &clk->clks, clks_node)
870		*max_rate = min(*max_rate, clk_user->max_rate);
871}
872
873/*
874 * Helper for finding best parent to provide a given frequency. This can be used
875 * directly as a determine_rate callback (e.g. for a mux), or from a more
876 * complex clock that may combine a mux with other operations.
877 */
878long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
879			      unsigned long min_rate,
880			      unsigned long max_rate,
881			      unsigned long *best_parent_rate,
882			      struct clk_hw **best_parent_p)
883{
884	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
885					    best_parent_rate,
886					    best_parent_p, 0);
887}
888EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
889
890long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate,
891			      unsigned long min_rate,
892			      unsigned long max_rate,
893			      unsigned long *best_parent_rate,
894			      struct clk_hw **best_parent_p)
895{
896	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
897					    best_parent_rate,
898					    best_parent_p,
899					    CLK_MUX_ROUND_CLOSEST);
900}
901EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
902
903/***        clk api        ***/
904
905static void clk_core_unprepare(struct clk_core *clk)
906{
907	if (!clk)
908		return;
909
910	if (WARN_ON(clk->prepare_count == 0))
911		return;
912
913	if (--clk->prepare_count > 0)
914		return;
915
916	WARN_ON(clk->enable_count > 0);
917
918	trace_clk_unprepare(clk);
919
920	if (clk->ops->unprepare)
921		clk->ops->unprepare(clk->hw);
922
923	trace_clk_unprepare_complete(clk);
924	clk_core_unprepare(clk->parent);
925}
926
927/**
928 * clk_unprepare - undo preparation of a clock source
929 * @clk: the clk being unprepared
930 *
931 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
932 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
933 * if the operation may sleep.  One example is a clk which is accessed over
934 * I2c.  In the complex case a clk gate operation may require a fast and a slow
935 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
936 * exclusive.  In fact clk_disable must be called before clk_unprepare.
937 */
938void clk_unprepare(struct clk *clk)
939{
940	if (IS_ERR_OR_NULL(clk))
941		return;
942
943	clk_prepare_lock();
944	clk_core_unprepare(clk->core);
945	clk_prepare_unlock();
946}
947EXPORT_SYMBOL_GPL(clk_unprepare);
948
949static int clk_core_prepare(struct clk_core *clk)
950{
951	int ret = 0;
952
953	if (!clk)
954		return 0;
955
956	if (clk->prepare_count == 0) {
957		ret = clk_core_prepare(clk->parent);
958		if (ret)
959			return ret;
960
961		trace_clk_prepare(clk);
962
963		if (clk->ops->prepare)
964			ret = clk->ops->prepare(clk->hw);
965
966		trace_clk_prepare_complete(clk);
967
968		if (ret) {
969			clk_core_unprepare(clk->parent);
970			return ret;
971		}
972	}
973
974	clk->prepare_count++;
975
976	return 0;
977}
978
979/**
980 * clk_prepare - prepare a clock source
981 * @clk: the clk being prepared
982 *
983 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
984 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
985 * operation may sleep.  One example is a clk which is accessed over I2c.  In
986 * the complex case a clk ungate operation may require a fast and a slow part.
987 * It is this reason that clk_prepare and clk_enable are not mutually
988 * exclusive.  In fact clk_prepare must be called before clk_enable.
989 * Returns 0 on success, -EERROR otherwise.
990 */
991int clk_prepare(struct clk *clk)
992{
993	int ret;
994
995	if (!clk)
996		return 0;
997
998	clk_prepare_lock();
999	ret = clk_core_prepare(clk->core);
1000	clk_prepare_unlock();
1001
1002	return ret;
1003}
1004EXPORT_SYMBOL_GPL(clk_prepare);
1005
1006static void clk_core_disable(struct clk_core *clk)
1007{
1008	if (!clk)
1009		return;
1010
1011	if (WARN_ON(clk->enable_count == 0))
1012		return;
1013
1014	if (--clk->enable_count > 0)
1015		return;
1016
1017	trace_clk_disable(clk);
1018
1019	if (clk->ops->disable)
1020		clk->ops->disable(clk->hw);
1021
1022	trace_clk_disable_complete(clk);
1023
1024	clk_core_disable(clk->parent);
1025}
1026
1027static void __clk_disable(struct clk *clk)
1028{
1029	if (!clk)
1030		return;
1031
1032	clk_core_disable(clk->core);
1033}
1034
1035/**
1036 * clk_disable - gate a clock
1037 * @clk: the clk being gated
1038 *
1039 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1040 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1041 * clk if the operation is fast and will never sleep.  One example is a
1042 * SoC-internal clk which is controlled via simple register writes.  In the
1043 * complex case a clk gate operation may require a fast and a slow part.  It is
1044 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1045 * In fact clk_disable must be called before clk_unprepare.
1046 */
1047void clk_disable(struct clk *clk)
1048{
1049	unsigned long flags;
1050
1051	if (IS_ERR_OR_NULL(clk))
1052		return;
1053
1054	flags = clk_enable_lock();
1055	__clk_disable(clk);
1056	clk_enable_unlock(flags);
1057}
1058EXPORT_SYMBOL_GPL(clk_disable);
1059
1060static int clk_core_enable(struct clk_core *clk)
1061{
1062	int ret = 0;
1063
1064	if (!clk)
1065		return 0;
1066
1067	if (WARN_ON(clk->prepare_count == 0))
1068		return -ESHUTDOWN;
1069
1070	if (clk->enable_count == 0) {
1071		ret = clk_core_enable(clk->parent);
1072
1073		if (ret)
1074			return ret;
1075
1076		trace_clk_enable(clk);
1077
1078		if (clk->ops->enable)
1079			ret = clk->ops->enable(clk->hw);
1080
1081		trace_clk_enable_complete(clk);
1082
1083		if (ret) {
1084			clk_core_disable(clk->parent);
1085			return ret;
1086		}
1087	}
1088
1089	clk->enable_count++;
1090	return 0;
1091}
1092
1093static int __clk_enable(struct clk *clk)
1094{
1095	if (!clk)
1096		return 0;
1097
1098	return clk_core_enable(clk->core);
1099}
1100
1101/**
1102 * clk_enable - ungate a clock
1103 * @clk: the clk being ungated
1104 *
1105 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1106 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1107 * if the operation will never sleep.  One example is a SoC-internal clk which
1108 * is controlled via simple register writes.  In the complex case a clk ungate
1109 * operation may require a fast and a slow part.  It is this reason that
1110 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1111 * must be called before clk_enable.  Returns 0 on success, -EERROR
1112 * otherwise.
1113 */
1114int clk_enable(struct clk *clk)
1115{
1116	unsigned long flags;
1117	int ret;
1118
1119	flags = clk_enable_lock();
1120	ret = __clk_enable(clk);
1121	clk_enable_unlock(flags);
1122
1123	return ret;
1124}
1125EXPORT_SYMBOL_GPL(clk_enable);
1126
1127static unsigned long clk_core_round_rate_nolock(struct clk_core *clk,
1128						unsigned long rate,
1129						unsigned long min_rate,
1130						unsigned long max_rate)
1131{
1132	unsigned long parent_rate = 0;
1133	struct clk_core *parent;
1134	struct clk_hw *parent_hw;
1135
1136	lockdep_assert_held(&prepare_lock);
1137
1138	if (!clk)
1139		return 0;
1140
1141	parent = clk->parent;
1142	if (parent)
1143		parent_rate = parent->rate;
1144
1145	if (clk->ops->determine_rate) {
1146		parent_hw = parent ? parent->hw : NULL;
1147		return clk->ops->determine_rate(clk->hw, rate,
1148						min_rate, max_rate,
1149						&parent_rate, &parent_hw);
1150	} else if (clk->ops->round_rate)
1151		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1152	else if (clk->flags & CLK_SET_RATE_PARENT)
1153		return clk_core_round_rate_nolock(clk->parent, rate, min_rate,
1154						  max_rate);
1155	else
1156		return clk->rate;
1157}
1158
1159/**
1160 * __clk_determine_rate - get the closest rate actually supported by a clock
1161 * @hw: determine the rate of this clock
1162 * @rate: target rate
1163 * @min_rate: returned rate must be greater than this rate
1164 * @max_rate: returned rate must be less than this rate
1165 *
1166 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate and
1167 * .determine_rate.
1168 */
1169unsigned long __clk_determine_rate(struct clk_hw *hw,
1170				   unsigned long rate,
1171				   unsigned long min_rate,
1172				   unsigned long max_rate)
1173{
1174	if (!hw)
1175		return 0;
1176
1177	return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate);
1178}
1179EXPORT_SYMBOL_GPL(__clk_determine_rate);
1180
1181/**
1182 * __clk_round_rate - round the given rate for a clk
1183 * @clk: round the rate of this clock
1184 * @rate: the rate which is to be rounded
1185 *
1186 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
1187 */
1188unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
1189{
1190	unsigned long min_rate;
1191	unsigned long max_rate;
1192
1193	if (!clk)
1194		return 0;
1195
1196	clk_core_get_boundaries(clk->core, &min_rate, &max_rate);
1197
1198	return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate);
1199}
1200EXPORT_SYMBOL_GPL(__clk_round_rate);
1201
1202/**
1203 * clk_round_rate - round the given rate for a clk
1204 * @clk: the clk for which we are rounding a rate
1205 * @rate: the rate which is to be rounded
1206 *
1207 * Takes in a rate as input and rounds it to a rate that the clk can actually
1208 * use which is then returned.  If clk doesn't support round_rate operation
1209 * then the parent rate is returned.
1210 */
1211long clk_round_rate(struct clk *clk, unsigned long rate)
1212{
1213	unsigned long ret;
1214
1215	if (!clk)
1216		return 0;
1217
1218	clk_prepare_lock();
1219	ret = __clk_round_rate(clk, rate);
1220	clk_prepare_unlock();
1221
1222	return ret;
1223}
1224EXPORT_SYMBOL_GPL(clk_round_rate);
1225
1226/**
1227 * __clk_notify - call clk notifier chain
1228 * @clk: struct clk * that is changing rate
1229 * @msg: clk notifier type (see include/linux/clk.h)
1230 * @old_rate: old clk rate
1231 * @new_rate: new clk rate
1232 *
1233 * Triggers a notifier call chain on the clk rate-change notification
1234 * for 'clk'.  Passes a pointer to the struct clk and the previous
1235 * and current rates to the notifier callback.  Intended to be called by
1236 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1237 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1238 * a driver returns that.
1239 */
1240static int __clk_notify(struct clk_core *clk, unsigned long msg,
1241		unsigned long old_rate, unsigned long new_rate)
1242{
1243	struct clk_notifier *cn;
1244	struct clk_notifier_data cnd;
1245	int ret = NOTIFY_DONE;
1246
1247	cnd.old_rate = old_rate;
1248	cnd.new_rate = new_rate;
1249
1250	list_for_each_entry(cn, &clk_notifier_list, node) {
1251		if (cn->clk->core == clk) {
1252			cnd.clk = cn->clk;
1253			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1254					&cnd);
1255		}
1256	}
1257
1258	return ret;
1259}
1260
1261/**
1262 * __clk_recalc_accuracies
1263 * @clk: first clk in the subtree
1264 *
1265 * Walks the subtree of clks starting with clk and recalculates accuracies as
1266 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1267 * callback then it is assumed that the clock will take on the accuracy of it's
1268 * parent.
1269 *
1270 * Caller must hold prepare_lock.
1271 */
1272static void __clk_recalc_accuracies(struct clk_core *clk)
1273{
1274	unsigned long parent_accuracy = 0;
1275	struct clk_core *child;
1276
1277	lockdep_assert_held(&prepare_lock);
1278
1279	if (clk->parent)
1280		parent_accuracy = clk->parent->accuracy;
1281
1282	if (clk->ops->recalc_accuracy)
1283		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1284							  parent_accuracy);
1285	else
1286		clk->accuracy = parent_accuracy;
1287
1288	hlist_for_each_entry(child, &clk->children, child_node)
1289		__clk_recalc_accuracies(child);
1290}
1291
1292static long clk_core_get_accuracy(struct clk_core *clk)
1293{
1294	unsigned long accuracy;
1295
1296	clk_prepare_lock();
1297	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1298		__clk_recalc_accuracies(clk);
1299
1300	accuracy = __clk_get_accuracy(clk);
1301	clk_prepare_unlock();
1302
1303	return accuracy;
1304}
1305
1306/**
1307 * clk_get_accuracy - return the accuracy of clk
1308 * @clk: the clk whose accuracy is being returned
1309 *
1310 * Simply returns the cached accuracy of the clk, unless
1311 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1312 * issued.
1313 * If clk is NULL then returns 0.
1314 */
1315long clk_get_accuracy(struct clk *clk)
1316{
1317	if (!clk)
1318		return 0;
1319
1320	return clk_core_get_accuracy(clk->core);
1321}
1322EXPORT_SYMBOL_GPL(clk_get_accuracy);
1323
1324static unsigned long clk_recalc(struct clk_core *clk,
1325				unsigned long parent_rate)
1326{
1327	if (clk->ops->recalc_rate)
1328		return clk->ops->recalc_rate(clk->hw, parent_rate);
1329	return parent_rate;
1330}
1331
1332/**
1333 * __clk_recalc_rates
1334 * @clk: first clk in the subtree
1335 * @msg: notification type (see include/linux/clk.h)
1336 *
1337 * Walks the subtree of clks starting with clk and recalculates rates as it
1338 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1339 * it is assumed that the clock will take on the rate of its parent.
1340 *
1341 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1342 * if necessary.
1343 *
1344 * Caller must hold prepare_lock.
1345 */
1346static void __clk_recalc_rates(struct clk_core *clk, unsigned long msg)
1347{
1348	unsigned long old_rate;
1349	unsigned long parent_rate = 0;
1350	struct clk_core *child;
1351
1352	lockdep_assert_held(&prepare_lock);
1353
1354	old_rate = clk->rate;
1355
1356	if (clk->parent)
1357		parent_rate = clk->parent->rate;
1358
1359	clk->rate = clk_recalc(clk, parent_rate);
1360
1361	/*
1362	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1363	 * & ABORT_RATE_CHANGE notifiers
1364	 */
1365	if (clk->notifier_count && msg)
1366		__clk_notify(clk, msg, old_rate, clk->rate);
1367
1368	hlist_for_each_entry(child, &clk->children, child_node)
1369		__clk_recalc_rates(child, msg);
1370}
1371
1372static unsigned long clk_core_get_rate(struct clk_core *clk)
1373{
1374	unsigned long rate;
1375
1376	clk_prepare_lock();
1377
1378	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1379		__clk_recalc_rates(clk, 0);
1380
1381	rate = clk_core_get_rate_nolock(clk);
1382	clk_prepare_unlock();
1383
1384	return rate;
1385}
1386
1387/**
1388 * clk_get_rate - return the rate of clk
1389 * @clk: the clk whose rate is being returned
1390 *
1391 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1392 * is set, which means a recalc_rate will be issued.
1393 * If clk is NULL then returns 0.
1394 */
1395unsigned long clk_get_rate(struct clk *clk)
1396{
1397	if (!clk)
1398		return 0;
1399
1400	return clk_core_get_rate(clk->core);
1401}
1402EXPORT_SYMBOL_GPL(clk_get_rate);
1403
1404static int clk_fetch_parent_index(struct clk_core *clk,
1405				  struct clk_core *parent)
1406{
1407	int i;
1408
1409	if (!clk->parents) {
1410		clk->parents = kcalloc(clk->num_parents,
1411					sizeof(struct clk *), GFP_KERNEL);
1412		if (!clk->parents)
1413			return -ENOMEM;
1414	}
1415
1416	/*
1417	 * find index of new parent clock using cached parent ptrs,
1418	 * or if not yet cached, use string name comparison and cache
1419	 * them now to avoid future calls to clk_core_lookup.
1420	 */
1421	for (i = 0; i < clk->num_parents; i++) {
1422		if (clk->parents[i] == parent)
1423			return i;
1424
1425		if (clk->parents[i])
1426			continue;
1427
1428		if (!strcmp(clk->parent_names[i], parent->name)) {
1429			clk->parents[i] = clk_core_lookup(parent->name);
1430			return i;
1431		}
1432	}
1433
1434	return -EINVAL;
1435}
1436
1437static void clk_reparent(struct clk_core *clk, struct clk_core *new_parent)
1438{
1439	hlist_del(&clk->child_node);
1440
1441	if (new_parent) {
1442		/* avoid duplicate POST_RATE_CHANGE notifications */
1443		if (new_parent->new_child == clk)
1444			new_parent->new_child = NULL;
1445
1446		hlist_add_head(&clk->child_node, &new_parent->children);
1447	} else {
1448		hlist_add_head(&clk->child_node, &clk_orphan_list);
1449	}
1450
1451	clk->parent = new_parent;
1452}
1453
1454static struct clk_core *__clk_set_parent_before(struct clk_core *clk,
1455					   struct clk_core *parent)
1456{
1457	unsigned long flags;
1458	struct clk_core *old_parent = clk->parent;
1459
1460	/*
1461	 * Migrate prepare state between parents and prevent race with
1462	 * clk_enable().
1463	 *
1464	 * If the clock is not prepared, then a race with
1465	 * clk_enable/disable() is impossible since we already have the
1466	 * prepare lock (future calls to clk_enable() need to be preceded by
1467	 * a clk_prepare()).
1468	 *
1469	 * If the clock is prepared, migrate the prepared state to the new
1470	 * parent and also protect against a race with clk_enable() by
1471	 * forcing the clock and the new parent on.  This ensures that all
1472	 * future calls to clk_enable() are practically NOPs with respect to
1473	 * hardware and software states.
1474	 *
1475	 * See also: Comment for clk_set_parent() below.
1476	 */
1477	if (clk->prepare_count) {
1478		clk_core_prepare(parent);
1479		flags = clk_enable_lock();
1480		clk_core_enable(parent);
1481		clk_core_enable(clk);
1482		clk_enable_unlock(flags);
1483	}
1484
1485	/* update the clk tree topology */
1486	flags = clk_enable_lock();
1487	clk_reparent(clk, parent);
1488	clk_enable_unlock(flags);
1489
1490	return old_parent;
1491}
1492
1493static void __clk_set_parent_after(struct clk_core *core,
1494				   struct clk_core *parent,
1495				   struct clk_core *old_parent)
1496{
1497	unsigned long flags;
1498
1499	/*
1500	 * Finish the migration of prepare state and undo the changes done
1501	 * for preventing a race with clk_enable().
1502	 */
1503	if (core->prepare_count) {
1504		flags = clk_enable_lock();
1505		clk_core_disable(core);
1506		clk_core_disable(old_parent);
1507		clk_enable_unlock(flags);
1508		clk_core_unprepare(old_parent);
1509	}
1510}
1511
1512static int __clk_set_parent(struct clk_core *clk, struct clk_core *parent,
1513			    u8 p_index)
1514{
1515	unsigned long flags;
1516	int ret = 0;
1517	struct clk_core *old_parent;
1518
1519	old_parent = __clk_set_parent_before(clk, parent);
1520
1521	trace_clk_set_parent(clk, parent);
1522
1523	/* change clock input source */
1524	if (parent && clk->ops->set_parent)
1525		ret = clk->ops->set_parent(clk->hw, p_index);
1526
1527	trace_clk_set_parent_complete(clk, parent);
1528
1529	if (ret) {
1530		flags = clk_enable_lock();
1531		clk_reparent(clk, old_parent);
1532		clk_enable_unlock(flags);
1533
1534		if (clk->prepare_count) {
1535			flags = clk_enable_lock();
1536			clk_core_disable(clk);
1537			clk_core_disable(parent);
1538			clk_enable_unlock(flags);
1539			clk_core_unprepare(parent);
1540		}
1541		return ret;
1542	}
1543
1544	__clk_set_parent_after(clk, parent, old_parent);
1545
1546	return 0;
1547}
1548
1549/**
1550 * __clk_speculate_rates
1551 * @clk: first clk in the subtree
1552 * @parent_rate: the "future" rate of clk's parent
1553 *
1554 * Walks the subtree of clks starting with clk, speculating rates as it
1555 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1556 *
1557 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1558 * pre-rate change notifications and returns early if no clks in the
1559 * subtree have subscribed to the notifications.  Note that if a clk does not
1560 * implement the .recalc_rate callback then it is assumed that the clock will
1561 * take on the rate of its parent.
1562 *
1563 * Caller must hold prepare_lock.
1564 */
1565static int __clk_speculate_rates(struct clk_core *clk,
1566				 unsigned long parent_rate)
1567{
1568	struct clk_core *child;
1569	unsigned long new_rate;
1570	int ret = NOTIFY_DONE;
1571
1572	lockdep_assert_held(&prepare_lock);
1573
1574	new_rate = clk_recalc(clk, parent_rate);
1575
1576	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1577	if (clk->notifier_count)
1578		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1579
1580	if (ret & NOTIFY_STOP_MASK) {
1581		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1582				__func__, clk->name, ret);
1583		goto out;
1584	}
1585
1586	hlist_for_each_entry(child, &clk->children, child_node) {
1587		ret = __clk_speculate_rates(child, new_rate);
1588		if (ret & NOTIFY_STOP_MASK)
1589			break;
1590	}
1591
1592out:
1593	return ret;
1594}
1595
1596static void clk_calc_subtree(struct clk_core *clk, unsigned long new_rate,
1597			     struct clk_core *new_parent, u8 p_index)
1598{
1599	struct clk_core *child;
1600
1601	clk->new_rate = new_rate;
1602	clk->new_parent = new_parent;
1603	clk->new_parent_index = p_index;
1604	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1605	clk->new_child = NULL;
1606	if (new_parent && new_parent != clk->parent)
1607		new_parent->new_child = clk;
1608
1609	hlist_for_each_entry(child, &clk->children, child_node) {
1610		child->new_rate = clk_recalc(child, new_rate);
1611		clk_calc_subtree(child, child->new_rate, NULL, 0);
1612	}
1613}
1614
1615/*
1616 * calculate the new rates returning the topmost clock that has to be
1617 * changed.
1618 */
1619static struct clk_core *clk_calc_new_rates(struct clk_core *clk,
1620					   unsigned long rate)
1621{
1622	struct clk_core *top = clk;
1623	struct clk_core *old_parent, *parent;
1624	struct clk_hw *parent_hw;
1625	unsigned long best_parent_rate = 0;
1626	unsigned long new_rate;
1627	unsigned long min_rate;
1628	unsigned long max_rate;
1629	int p_index = 0;
1630	long ret;
1631
1632	/* sanity */
1633	if (IS_ERR_OR_NULL(clk))
1634		return NULL;
1635
1636	/* save parent rate, if it exists */
1637	parent = old_parent = clk->parent;
1638	if (parent)
1639		best_parent_rate = parent->rate;
1640
1641	clk_core_get_boundaries(clk, &min_rate, &max_rate);
1642
1643	/* find the closest rate and parent clk/rate */
1644	if (clk->ops->determine_rate) {
1645		parent_hw = parent ? parent->hw : NULL;
1646		ret = clk->ops->determine_rate(clk->hw, rate,
1647					       min_rate,
1648					       max_rate,
1649					       &best_parent_rate,
1650					       &parent_hw);
1651		if (ret < 0)
1652			return NULL;
1653
1654		new_rate = ret;
1655		parent = parent_hw ? parent_hw->core : NULL;
1656	} else if (clk->ops->round_rate) {
1657		ret = clk->ops->round_rate(clk->hw, rate,
1658					   &best_parent_rate);
1659		if (ret < 0)
1660			return NULL;
1661
1662		new_rate = ret;
1663		if (new_rate < min_rate || new_rate > max_rate)
1664			return NULL;
1665	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1666		/* pass-through clock without adjustable parent */
1667		clk->new_rate = clk->rate;
1668		return NULL;
1669	} else {
1670		/* pass-through clock with adjustable parent */
1671		top = clk_calc_new_rates(parent, rate);
1672		new_rate = parent->new_rate;
1673		goto out;
1674	}
1675
1676	/* some clocks must be gated to change parent */
1677	if (parent != old_parent &&
1678	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1679		pr_debug("%s: %s not gated but wants to reparent\n",
1680			 __func__, clk->name);
1681		return NULL;
1682	}
1683
1684	/* try finding the new parent index */
1685	if (parent && clk->num_parents > 1) {
1686		p_index = clk_fetch_parent_index(clk, parent);
1687		if (p_index < 0) {
1688			pr_debug("%s: clk %s can not be parent of clk %s\n",
1689				 __func__, parent->name, clk->name);
1690			return NULL;
1691		}
1692	}
1693
1694	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1695	    best_parent_rate != parent->rate)
1696		top = clk_calc_new_rates(parent, best_parent_rate);
1697
1698out:
1699	clk_calc_subtree(clk, new_rate, parent, p_index);
1700
1701	return top;
1702}
1703
1704/*
1705 * Notify about rate changes in a subtree. Always walk down the whole tree
1706 * so that in case of an error we can walk down the whole tree again and
1707 * abort the change.
1708 */
1709static struct clk_core *clk_propagate_rate_change(struct clk_core *clk,
1710						  unsigned long event)
1711{
1712	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1713	int ret = NOTIFY_DONE;
1714
1715	if (clk->rate == clk->new_rate)
1716		return NULL;
1717
1718	if (clk->notifier_count) {
1719		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1720		if (ret & NOTIFY_STOP_MASK)
1721			fail_clk = clk;
1722	}
1723
1724	hlist_for_each_entry(child, &clk->children, child_node) {
1725		/* Skip children who will be reparented to another clock */
1726		if (child->new_parent && child->new_parent != clk)
1727			continue;
1728		tmp_clk = clk_propagate_rate_change(child, event);
1729		if (tmp_clk)
1730			fail_clk = tmp_clk;
1731	}
1732
1733	/* handle the new child who might not be in clk->children yet */
1734	if (clk->new_child) {
1735		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1736		if (tmp_clk)
1737			fail_clk = tmp_clk;
1738	}
1739
1740	return fail_clk;
1741}
1742
1743/*
1744 * walk down a subtree and set the new rates notifying the rate
1745 * change on the way
1746 */
1747static void clk_change_rate(struct clk_core *clk)
1748{
1749	struct clk_core *child;
1750	struct hlist_node *tmp;
1751	unsigned long old_rate;
1752	unsigned long best_parent_rate = 0;
1753	bool skip_set_rate = false;
1754	struct clk_core *old_parent;
1755
1756	old_rate = clk->rate;
1757
1758	if (clk->new_parent)
1759		best_parent_rate = clk->new_parent->rate;
1760	else if (clk->parent)
1761		best_parent_rate = clk->parent->rate;
1762
1763	if (clk->new_parent && clk->new_parent != clk->parent) {
1764		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1765		trace_clk_set_parent(clk, clk->new_parent);
1766
1767		if (clk->ops->set_rate_and_parent) {
1768			skip_set_rate = true;
1769			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1770					best_parent_rate,
1771					clk->new_parent_index);
1772		} else if (clk->ops->set_parent) {
1773			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1774		}
1775
1776		trace_clk_set_parent_complete(clk, clk->new_parent);
1777		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1778	}
1779
1780	trace_clk_set_rate(clk, clk->new_rate);
1781
1782	if (!skip_set_rate && clk->ops->set_rate)
1783		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1784
1785	trace_clk_set_rate_complete(clk, clk->new_rate);
1786
1787	clk->rate = clk_recalc(clk, best_parent_rate);
1788
1789	if (clk->notifier_count && old_rate != clk->rate)
1790		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1791
1792	/*
1793	 * Use safe iteration, as change_rate can actually swap parents
1794	 * for certain clock types.
1795	 */
1796	hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) {
1797		/* Skip children who will be reparented to another clock */
1798		if (child->new_parent && child->new_parent != clk)
1799			continue;
1800		clk_change_rate(child);
1801	}
1802
1803	/* handle the new child who might not be in clk->children yet */
1804	if (clk->new_child)
1805		clk_change_rate(clk->new_child);
1806}
1807
1808static int clk_core_set_rate_nolock(struct clk_core *clk,
1809				    unsigned long req_rate)
1810{
1811	struct clk_core *top, *fail_clk;
1812	unsigned long rate = req_rate;
1813	int ret = 0;
1814
1815	if (!clk)
1816		return 0;
1817
1818	/* bail early if nothing to do */
1819	if (rate == clk_core_get_rate_nolock(clk))
1820		return 0;
1821
1822	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count)
1823		return -EBUSY;
1824
1825	/* calculate new rates and get the topmost changed clock */
1826	top = clk_calc_new_rates(clk, rate);
1827	if (!top)
1828		return -EINVAL;
1829
1830	/* notify that we are about to change rates */
1831	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1832	if (fail_clk) {
1833		pr_debug("%s: failed to set %s rate\n", __func__,
1834				fail_clk->name);
1835		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1836		return -EBUSY;
1837	}
1838
1839	/* change the rates */
1840	clk_change_rate(top);
1841
1842	clk->req_rate = req_rate;
1843
1844	return ret;
1845}
1846
1847/**
1848 * clk_set_rate - specify a new rate for clk
1849 * @clk: the clk whose rate is being changed
1850 * @rate: the new rate for clk
1851 *
1852 * In the simplest case clk_set_rate will only adjust the rate of clk.
1853 *
1854 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1855 * propagate up to clk's parent; whether or not this happens depends on the
1856 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1857 * after calling .round_rate then upstream parent propagation is ignored.  If
1858 * *parent_rate comes back with a new rate for clk's parent then we propagate
1859 * up to clk's parent and set its rate.  Upward propagation will continue
1860 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1861 * .round_rate stops requesting changes to clk's parent_rate.
1862 *
1863 * Rate changes are accomplished via tree traversal that also recalculates the
1864 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1865 *
1866 * Returns 0 on success, -EERROR otherwise.
1867 */
1868int clk_set_rate(struct clk *clk, unsigned long rate)
1869{
1870	int ret;
1871
1872	if (!clk)
1873		return 0;
1874
1875	/* prevent racing with updates to the clock topology */
1876	clk_prepare_lock();
1877
1878	ret = clk_core_set_rate_nolock(clk->core, rate);
1879
1880	clk_prepare_unlock();
1881
1882	return ret;
1883}
1884EXPORT_SYMBOL_GPL(clk_set_rate);
1885
1886/**
1887 * clk_set_rate_range - set a rate range for a clock source
1888 * @clk: clock source
1889 * @min: desired minimum clock rate in Hz, inclusive
1890 * @max: desired maximum clock rate in Hz, inclusive
1891 *
1892 * Returns success (0) or negative errno.
1893 */
1894int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1895{
1896	int ret = 0;
1897
1898	if (!clk)
1899		return 0;
1900
1901	if (min > max) {
1902		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1903		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1904		       min, max);
1905		return -EINVAL;
1906	}
1907
1908	clk_prepare_lock();
1909
1910	if (min != clk->min_rate || max != clk->max_rate) {
1911		clk->min_rate = min;
1912		clk->max_rate = max;
1913		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1914	}
1915
1916	clk_prepare_unlock();
1917
1918	return ret;
1919}
1920EXPORT_SYMBOL_GPL(clk_set_rate_range);
1921
1922/**
1923 * clk_set_min_rate - set a minimum clock rate for a clock source
1924 * @clk: clock source
1925 * @rate: desired minimum clock rate in Hz, inclusive
1926 *
1927 * Returns success (0) or negative errno.
1928 */
1929int clk_set_min_rate(struct clk *clk, unsigned long rate)
1930{
1931	if (!clk)
1932		return 0;
1933
1934	return clk_set_rate_range(clk, rate, clk->max_rate);
1935}
1936EXPORT_SYMBOL_GPL(clk_set_min_rate);
1937
1938/**
1939 * clk_set_max_rate - set a maximum clock rate for a clock source
1940 * @clk: clock source
1941 * @rate: desired maximum clock rate in Hz, inclusive
1942 *
1943 * Returns success (0) or negative errno.
1944 */
1945int clk_set_max_rate(struct clk *clk, unsigned long rate)
1946{
1947	if (!clk)
1948		return 0;
1949
1950	return clk_set_rate_range(clk, clk->min_rate, rate);
1951}
1952EXPORT_SYMBOL_GPL(clk_set_max_rate);
1953
1954/**
1955 * clk_get_parent - return the parent of a clk
1956 * @clk: the clk whose parent gets returned
1957 *
1958 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1959 */
1960struct clk *clk_get_parent(struct clk *clk)
1961{
1962	struct clk *parent;
1963
1964	clk_prepare_lock();
1965	parent = __clk_get_parent(clk);
1966	clk_prepare_unlock();
1967
1968	return parent;
1969}
1970EXPORT_SYMBOL_GPL(clk_get_parent);
1971
1972/*
1973 * .get_parent is mandatory for clocks with multiple possible parents.  It is
1974 * optional for single-parent clocks.  Always call .get_parent if it is
1975 * available and WARN if it is missing for multi-parent clocks.
1976 *
1977 * For single-parent clocks without .get_parent, first check to see if the
1978 * .parents array exists, and if so use it to avoid an expensive tree
1979 * traversal.  If .parents does not exist then walk the tree.
1980 */
1981static struct clk_core *__clk_init_parent(struct clk_core *clk)
1982{
1983	struct clk_core *ret = NULL;
1984	u8 index;
1985
1986	/* handle the trivial cases */
1987
1988	if (!clk->num_parents)
1989		goto out;
1990
1991	if (clk->num_parents == 1) {
1992		if (IS_ERR_OR_NULL(clk->parent))
1993			clk->parent = clk_core_lookup(clk->parent_names[0]);
1994		ret = clk->parent;
1995		goto out;
1996	}
1997
1998	if (!clk->ops->get_parent) {
1999		WARN(!clk->ops->get_parent,
2000			"%s: multi-parent clocks must implement .get_parent\n",
2001			__func__);
2002		goto out;
2003	};
2004
2005	/*
2006	 * Do our best to cache parent clocks in clk->parents.  This prevents
2007	 * unnecessary and expensive lookups.  We don't set clk->parent here;
2008	 * that is done by the calling function.
2009	 */
2010
2011	index = clk->ops->get_parent(clk->hw);
2012
2013	if (!clk->parents)
2014		clk->parents =
2015			kcalloc(clk->num_parents, sizeof(struct clk *),
2016					GFP_KERNEL);
2017
2018	ret = clk_core_get_parent_by_index(clk, index);
2019
2020out:
2021	return ret;
2022}
2023
2024static void clk_core_reparent(struct clk_core *clk,
2025				  struct clk_core *new_parent)
2026{
2027	clk_reparent(clk, new_parent);
2028	__clk_recalc_accuracies(clk);
2029	__clk_recalc_rates(clk, POST_RATE_CHANGE);
2030}
2031
2032/**
2033 * clk_has_parent - check if a clock is a possible parent for another
2034 * @clk: clock source
2035 * @parent: parent clock source
2036 *
2037 * This function can be used in drivers that need to check that a clock can be
2038 * the parent of another without actually changing the parent.
2039 *
2040 * Returns true if @parent is a possible parent for @clk, false otherwise.
2041 */
2042bool clk_has_parent(struct clk *clk, struct clk *parent)
2043{
2044	struct clk_core *core, *parent_core;
2045	unsigned int i;
2046
2047	/* NULL clocks should be nops, so return success if either is NULL. */
2048	if (!clk || !parent)
2049		return true;
2050
2051	core = clk->core;
2052	parent_core = parent->core;
2053
2054	/* Optimize for the case where the parent is already the parent. */
2055	if (core->parent == parent_core)
2056		return true;
2057
2058	for (i = 0; i < core->num_parents; i++)
2059		if (strcmp(core->parent_names[i], parent_core->name) == 0)
2060			return true;
2061
2062	return false;
2063}
2064EXPORT_SYMBOL_GPL(clk_has_parent);
2065
2066static int clk_core_set_parent(struct clk_core *clk, struct clk_core *parent)
2067{
2068	int ret = 0;
2069	int p_index = 0;
2070	unsigned long p_rate = 0;
2071
2072	if (!clk)
2073		return 0;
2074
2075	/* prevent racing with updates to the clock topology */
2076	clk_prepare_lock();
2077
2078	if (clk->parent == parent)
2079		goto out;
2080
2081	/* verify ops for for multi-parent clks */
2082	if ((clk->num_parents > 1) && (!clk->ops->set_parent)) {
2083		ret = -ENOSYS;
2084		goto out;
2085	}
2086
2087	/* check that we are allowed to re-parent if the clock is in use */
2088	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
2089		ret = -EBUSY;
2090		goto out;
2091	}
2092
2093	/* try finding the new parent index */
2094	if (parent) {
2095		p_index = clk_fetch_parent_index(clk, parent);
2096		p_rate = parent->rate;
2097		if (p_index < 0) {
2098			pr_debug("%s: clk %s can not be parent of clk %s\n",
2099					__func__, parent->name, clk->name);
2100			ret = p_index;
2101			goto out;
2102		}
2103	}
2104
2105	/* propagate PRE_RATE_CHANGE notifications */
2106	ret = __clk_speculate_rates(clk, p_rate);
2107
2108	/* abort if a driver objects */
2109	if (ret & NOTIFY_STOP_MASK)
2110		goto out;
2111
2112	/* do the re-parent */
2113	ret = __clk_set_parent(clk, parent, p_index);
2114
2115	/* propagate rate an accuracy recalculation accordingly */
2116	if (ret) {
2117		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
2118	} else {
2119		__clk_recalc_rates(clk, POST_RATE_CHANGE);
2120		__clk_recalc_accuracies(clk);
2121	}
2122
2123out:
2124	clk_prepare_unlock();
2125
2126	return ret;
2127}
2128
2129/**
2130 * clk_set_parent - switch the parent of a mux clk
2131 * @clk: the mux clk whose input we are switching
2132 * @parent: the new input to clk
2133 *
2134 * Re-parent clk to use parent as its new input source.  If clk is in
2135 * prepared state, the clk will get enabled for the duration of this call. If
2136 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2137 * that, the reparenting is glitchy in hardware, etc), use the
2138 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2139 *
2140 * After successfully changing clk's parent clk_set_parent will update the
2141 * clk topology, sysfs topology and propagate rate recalculation via
2142 * __clk_recalc_rates.
2143 *
2144 * Returns 0 on success, -EERROR otherwise.
2145 */
2146int clk_set_parent(struct clk *clk, struct clk *parent)
2147{
2148	if (!clk)
2149		return 0;
2150
2151	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
2152}
2153EXPORT_SYMBOL_GPL(clk_set_parent);
2154
2155/**
2156 * clk_set_phase - adjust the phase shift of a clock signal
2157 * @clk: clock signal source
2158 * @degrees: number of degrees the signal is shifted
2159 *
2160 * Shifts the phase of a clock signal by the specified
2161 * degrees. Returns 0 on success, -EERROR otherwise.
2162 *
2163 * This function makes no distinction about the input or reference
2164 * signal that we adjust the clock signal phase against. For example
2165 * phase locked-loop clock signal generators we may shift phase with
2166 * respect to feedback clock signal input, but for other cases the
2167 * clock phase may be shifted with respect to some other, unspecified
2168 * signal.
2169 *
2170 * Additionally the concept of phase shift does not propagate through
2171 * the clock tree hierarchy, which sets it apart from clock rates and
2172 * clock accuracy. A parent clock phase attribute does not have an
2173 * impact on the phase attribute of a child clock.
2174 */
2175int clk_set_phase(struct clk *clk, int degrees)
2176{
2177	int ret = -EINVAL;
2178
2179	if (!clk)
2180		return 0;
2181
2182	/* sanity check degrees */
2183	degrees %= 360;
2184	if (degrees < 0)
2185		degrees += 360;
2186
2187	clk_prepare_lock();
2188
2189	trace_clk_set_phase(clk->core, degrees);
2190
2191	if (clk->core->ops->set_phase)
2192		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2193
2194	trace_clk_set_phase_complete(clk->core, degrees);
2195
2196	if (!ret)
2197		clk->core->phase = degrees;
2198
2199	clk_prepare_unlock();
2200
2201	return ret;
2202}
2203EXPORT_SYMBOL_GPL(clk_set_phase);
2204
2205static int clk_core_get_phase(struct clk_core *clk)
2206{
2207	int ret = 0;
2208
2209	if (!clk)
2210		goto out;
2211
2212	clk_prepare_lock();
2213	ret = clk->phase;
2214	clk_prepare_unlock();
2215
2216out:
2217	return ret;
2218}
2219EXPORT_SYMBOL_GPL(clk_get_phase);
2220
2221/**
2222 * clk_get_phase - return the phase shift of a clock signal
2223 * @clk: clock signal source
2224 *
2225 * Returns the phase shift of a clock node in degrees, otherwise returns
2226 * -EERROR.
2227 */
2228int clk_get_phase(struct clk *clk)
2229{
2230	if (!clk)
2231		return 0;
2232
2233	return clk_core_get_phase(clk->core);
2234}
2235
2236/**
2237 * clk_is_match - check if two clk's point to the same hardware clock
2238 * @p: clk compared against q
2239 * @q: clk compared against p
2240 *
2241 * Returns true if the two struct clk pointers both point to the same hardware
2242 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2243 * share the same struct clk_core object.
2244 *
2245 * Returns false otherwise. Note that two NULL clks are treated as matching.
2246 */
2247bool clk_is_match(const struct clk *p, const struct clk *q)
2248{
2249	/* trivial case: identical struct clk's or both NULL */
2250	if (p == q)
2251		return true;
2252
2253	/* true if clk->core pointers match. Avoid derefing garbage */
2254	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2255		if (p->core == q->core)
2256			return true;
2257
2258	return false;
2259}
2260EXPORT_SYMBOL_GPL(clk_is_match);
2261
2262/**
2263 * __clk_init - initialize the data structures in a struct clk
2264 * @dev:	device initializing this clk, placeholder for now
2265 * @clk:	clk being initialized
2266 *
2267 * Initializes the lists in struct clk_core, queries the hardware for the
2268 * parent and rate and sets them both.
2269 */
2270static int __clk_init(struct device *dev, struct clk *clk_user)
2271{
2272	int i, ret = 0;
2273	struct clk_core *orphan;
2274	struct hlist_node *tmp2;
2275	struct clk_core *clk;
2276	unsigned long rate;
2277
2278	if (!clk_user)
2279		return -EINVAL;
2280
2281	clk = clk_user->core;
2282
2283	clk_prepare_lock();
2284
2285	/* check to see if a clock with this name is already registered */
2286	if (clk_core_lookup(clk->name)) {
2287		pr_debug("%s: clk %s already initialized\n",
2288				__func__, clk->name);
2289		ret = -EEXIST;
2290		goto out;
2291	}
2292
2293	/* check that clk_ops are sane.  See Documentation/clk.txt */
2294	if (clk->ops->set_rate &&
2295	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
2296	      clk->ops->recalc_rate)) {
2297		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2298				__func__, clk->name);
2299		ret = -EINVAL;
2300		goto out;
2301	}
2302
2303	if (clk->ops->set_parent && !clk->ops->get_parent) {
2304		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2305				__func__, clk->name);
2306		ret = -EINVAL;
2307		goto out;
2308	}
2309
2310	if (clk->ops->set_rate_and_parent &&
2311			!(clk->ops->set_parent && clk->ops->set_rate)) {
2312		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2313				__func__, clk->name);
2314		ret = -EINVAL;
2315		goto out;
2316	}
2317
2318	/* throw a WARN if any entries in parent_names are NULL */
2319	for (i = 0; i < clk->num_parents; i++)
2320		WARN(!clk->parent_names[i],
2321				"%s: invalid NULL in %s's .parent_names\n",
2322				__func__, clk->name);
2323
2324	/*
2325	 * Allocate an array of struct clk *'s to avoid unnecessary string
2326	 * look-ups of clk's possible parents.  This can fail for clocks passed
2327	 * in to clk_init during early boot; thus any access to clk->parents[]
2328	 * must always check for a NULL pointer and try to populate it if
2329	 * necessary.
2330	 *
2331	 * If clk->parents is not NULL we skip this entire block.  This allows
2332	 * for clock drivers to statically initialize clk->parents.
2333	 */
2334	if (clk->num_parents > 1 && !clk->parents) {
2335		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
2336					GFP_KERNEL);
2337		/*
2338		 * clk_core_lookup returns NULL for parents that have not been
2339		 * clk_init'd; thus any access to clk->parents[] must check
2340		 * for a NULL pointer.  We can always perform lazy lookups for
2341		 * missing parents later on.
2342		 */
2343		if (clk->parents)
2344			for (i = 0; i < clk->num_parents; i++)
2345				clk->parents[i] =
2346					clk_core_lookup(clk->parent_names[i]);
2347	}
2348
2349	clk->parent = __clk_init_parent(clk);
2350
2351	/*
2352	 * Populate clk->parent if parent has already been __clk_init'd.  If
2353	 * parent has not yet been __clk_init'd then place clk in the orphan
2354	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2355	 * clk list.
2356	 *
2357	 * Every time a new clk is clk_init'd then we walk the list of orphan
2358	 * clocks and re-parent any that are children of the clock currently
2359	 * being clk_init'd.
2360	 */
2361	if (clk->parent)
2362		hlist_add_head(&clk->child_node,
2363				&clk->parent->children);
2364	else if (clk->flags & CLK_IS_ROOT)
2365		hlist_add_head(&clk->child_node, &clk_root_list);
2366	else
2367		hlist_add_head(&clk->child_node, &clk_orphan_list);
2368
2369	/*
2370	 * Set clk's accuracy.  The preferred method is to use
2371	 * .recalc_accuracy. For simple clocks and lazy developers the default
2372	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2373	 * parent (or is orphaned) then accuracy is set to zero (perfect
2374	 * clock).
2375	 */
2376	if (clk->ops->recalc_accuracy)
2377		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
2378					__clk_get_accuracy(clk->parent));
2379	else if (clk->parent)
2380		clk->accuracy = clk->parent->accuracy;
2381	else
2382		clk->accuracy = 0;
2383
2384	/*
2385	 * Set clk's phase.
2386	 * Since a phase is by definition relative to its parent, just
2387	 * query the current clock phase, or just assume it's in phase.
2388	 */
2389	if (clk->ops->get_phase)
2390		clk->phase = clk->ops->get_phase(clk->hw);
2391	else
2392		clk->phase = 0;
2393
2394	/*
2395	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2396	 * simple clocks and lazy developers the default fallback is to use the
2397	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2398	 * then rate is set to zero.
2399	 */
2400	if (clk->ops->recalc_rate)
2401		rate = clk->ops->recalc_rate(clk->hw,
2402				clk_core_get_rate_nolock(clk->parent));
2403	else if (clk->parent)
2404		rate = clk->parent->rate;
2405	else
2406		rate = 0;
2407	clk->rate = clk->req_rate = rate;
2408
2409	/*
2410	 * walk the list of orphan clocks and reparent any that are children of
2411	 * this clock
2412	 */
2413	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2414		if (orphan->num_parents && orphan->ops->get_parent) {
2415			i = orphan->ops->get_parent(orphan->hw);
2416			if (!strcmp(clk->name, orphan->parent_names[i]))
2417				clk_core_reparent(orphan, clk);
2418			continue;
2419		}
2420
2421		for (i = 0; i < orphan->num_parents; i++)
2422			if (!strcmp(clk->name, orphan->parent_names[i])) {
2423				clk_core_reparent(orphan, clk);
2424				break;
2425			}
2426	 }
2427
2428	/*
2429	 * optional platform-specific magic
2430	 *
2431	 * The .init callback is not used by any of the basic clock types, but
2432	 * exists for weird hardware that must perform initialization magic.
2433	 * Please consider other ways of solving initialization problems before
2434	 * using this callback, as its use is discouraged.
2435	 */
2436	if (clk->ops->init)
2437		clk->ops->init(clk->hw);
2438
2439	kref_init(&clk->ref);
2440out:
2441	clk_prepare_unlock();
2442
2443	if (!ret)
2444		clk_debug_register(clk);
2445
2446	return ret;
2447}
2448
2449struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2450			     const char *con_id)
2451{
2452	struct clk *clk;
2453
2454	/* This is to allow this function to be chained to others */
2455	if (!hw || IS_ERR(hw))
2456		return (struct clk *) hw;
2457
2458	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2459	if (!clk)
2460		return ERR_PTR(-ENOMEM);
2461
2462	clk->core = hw->core;
2463	clk->dev_id = dev_id;
2464	clk->con_id = con_id;
2465	clk->max_rate = ULONG_MAX;
2466
2467	clk_prepare_lock();
2468	hlist_add_head(&clk->clks_node, &hw->core->clks);
2469	clk_prepare_unlock();
2470
2471	return clk;
2472}
2473
2474void __clk_free_clk(struct clk *clk)
2475{
2476	clk_prepare_lock();
2477	hlist_del(&clk->clks_node);
2478	clk_prepare_unlock();
2479
2480	kfree(clk);
2481}
2482
2483/**
2484 * clk_register - allocate a new clock, register it and return an opaque cookie
2485 * @dev: device that is registering this clock
2486 * @hw: link to hardware-specific clock data
2487 *
2488 * clk_register is the primary interface for populating the clock tree with new
2489 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2490 * cannot be dereferenced by driver code but may be used in conjuction with the
2491 * rest of the clock API.  In the event of an error clk_register will return an
2492 * error code; drivers must test for an error code after calling clk_register.
2493 */
2494struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2495{
2496	int i, ret;
2497	struct clk_core *clk;
2498
2499	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2500	if (!clk) {
2501		pr_err("%s: could not allocate clk\n", __func__);
2502		ret = -ENOMEM;
2503		goto fail_out;
2504	}
2505
2506	clk->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2507	if (!clk->name) {
2508		pr_err("%s: could not allocate clk->name\n", __func__);
2509		ret = -ENOMEM;
2510		goto fail_name;
2511	}
2512	clk->ops = hw->init->ops;
2513	if (dev && dev->driver)
2514		clk->owner = dev->driver->owner;
2515	clk->hw = hw;
2516	clk->flags = hw->init->flags;
2517	clk->num_parents = hw->init->num_parents;
2518	hw->core = clk;
2519
2520	/* allocate local copy in case parent_names is __initdata */
2521	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2522					GFP_KERNEL);
2523
2524	if (!clk->parent_names) {
2525		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2526		ret = -ENOMEM;
2527		goto fail_parent_names;
2528	}
2529
2530
2531	/* copy each string name in case parent_names is __initdata */
2532	for (i = 0; i < clk->num_parents; i++) {
2533		clk->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2534						GFP_KERNEL);
2535		if (!clk->parent_names[i]) {
2536			pr_err("%s: could not copy parent_names\n", __func__);
2537			ret = -ENOMEM;
2538			goto fail_parent_names_copy;
2539		}
2540	}
2541
2542	INIT_HLIST_HEAD(&clk->clks);
2543
2544	hw->clk = __clk_create_clk(hw, NULL, NULL);
2545	if (IS_ERR(hw->clk)) {
2546		pr_err("%s: could not allocate per-user clk\n", __func__);
2547		ret = PTR_ERR(hw->clk);
2548		goto fail_parent_names_copy;
2549	}
2550
2551	ret = __clk_init(dev, hw->clk);
2552	if (!ret)
2553		return hw->clk;
2554
2555	__clk_free_clk(hw->clk);
2556	hw->clk = NULL;
2557
2558fail_parent_names_copy:
2559	while (--i >= 0)
2560		kfree_const(clk->parent_names[i]);
2561	kfree(clk->parent_names);
2562fail_parent_names:
2563	kfree_const(clk->name);
2564fail_name:
2565	kfree(clk);
2566fail_out:
2567	return ERR_PTR(ret);
2568}
2569EXPORT_SYMBOL_GPL(clk_register);
2570
2571/*
2572 * Free memory allocated for a clock.
2573 * Caller must hold prepare_lock.
2574 */
2575static void __clk_release(struct kref *ref)
2576{
2577	struct clk_core *clk = container_of(ref, struct clk_core, ref);
2578	int i = clk->num_parents;
2579
2580	lockdep_assert_held(&prepare_lock);
2581
2582	kfree(clk->parents);
2583	while (--i >= 0)
2584		kfree_const(clk->parent_names[i]);
2585
2586	kfree(clk->parent_names);
2587	kfree_const(clk->name);
2588	kfree(clk);
2589}
2590
2591/*
2592 * Empty clk_ops for unregistered clocks. These are used temporarily
2593 * after clk_unregister() was called on a clock and until last clock
2594 * consumer calls clk_put() and the struct clk object is freed.
2595 */
2596static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2597{
2598	return -ENXIO;
2599}
2600
2601static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2602{
2603	WARN_ON_ONCE(1);
2604}
2605
2606static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2607					unsigned long parent_rate)
2608{
2609	return -ENXIO;
2610}
2611
2612static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2613{
2614	return -ENXIO;
2615}
2616
2617static const struct clk_ops clk_nodrv_ops = {
2618	.enable		= clk_nodrv_prepare_enable,
2619	.disable	= clk_nodrv_disable_unprepare,
2620	.prepare	= clk_nodrv_prepare_enable,
2621	.unprepare	= clk_nodrv_disable_unprepare,
2622	.set_rate	= clk_nodrv_set_rate,
2623	.set_parent	= clk_nodrv_set_parent,
2624};
2625
2626/**
2627 * clk_unregister - unregister a currently registered clock
2628 * @clk: clock to unregister
2629 */
2630void clk_unregister(struct clk *clk)
2631{
2632	unsigned long flags;
2633
2634	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2635		return;
2636
2637	clk_debug_unregister(clk->core);
2638
2639	clk_prepare_lock();
2640
2641	if (clk->core->ops == &clk_nodrv_ops) {
2642		pr_err("%s: unregistered clock: %s\n", __func__,
2643		       clk->core->name);
2644		return;
2645	}
2646	/*
2647	 * Assign empty clock ops for consumers that might still hold
2648	 * a reference to this clock.
2649	 */
2650	flags = clk_enable_lock();
2651	clk->core->ops = &clk_nodrv_ops;
2652	clk_enable_unlock(flags);
2653
2654	if (!hlist_empty(&clk->core->children)) {
2655		struct clk_core *child;
2656		struct hlist_node *t;
2657
2658		/* Reparent all children to the orphan list. */
2659		hlist_for_each_entry_safe(child, t, &clk->core->children,
2660					  child_node)
2661			clk_core_set_parent(child, NULL);
2662	}
2663
2664	hlist_del_init(&clk->core->child_node);
2665
2666	if (clk->core->prepare_count)
2667		pr_warn("%s: unregistering prepared clock: %s\n",
2668					__func__, clk->core->name);
2669	kref_put(&clk->core->ref, __clk_release);
2670
2671	clk_prepare_unlock();
2672}
2673EXPORT_SYMBOL_GPL(clk_unregister);
2674
2675static void devm_clk_release(struct device *dev, void *res)
2676{
2677	clk_unregister(*(struct clk **)res);
2678}
2679
2680/**
2681 * devm_clk_register - resource managed clk_register()
2682 * @dev: device that is registering this clock
2683 * @hw: link to hardware-specific clock data
2684 *
2685 * Managed clk_register(). Clocks returned from this function are
2686 * automatically clk_unregister()ed on driver detach. See clk_register() for
2687 * more information.
2688 */
2689struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2690{
2691	struct clk *clk;
2692	struct clk **clkp;
2693
2694	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2695	if (!clkp)
2696		return ERR_PTR(-ENOMEM);
2697
2698	clk = clk_register(dev, hw);
2699	if (!IS_ERR(clk)) {
2700		*clkp = clk;
2701		devres_add(dev, clkp);
2702	} else {
2703		devres_free(clkp);
2704	}
2705
2706	return clk;
2707}
2708EXPORT_SYMBOL_GPL(devm_clk_register);
2709
2710static int devm_clk_match(struct device *dev, void *res, void *data)
2711{
2712	struct clk *c = res;
2713	if (WARN_ON(!c))
2714		return 0;
2715	return c == data;
2716}
2717
2718/**
2719 * devm_clk_unregister - resource managed clk_unregister()
2720 * @clk: clock to unregister
2721 *
2722 * Deallocate a clock allocated with devm_clk_register(). Normally
2723 * this function will not need to be called and the resource management
2724 * code will ensure that the resource is freed.
2725 */
2726void devm_clk_unregister(struct device *dev, struct clk *clk)
2727{
2728	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2729}
2730EXPORT_SYMBOL_GPL(devm_clk_unregister);
2731
2732/*
2733 * clkdev helpers
2734 */
2735int __clk_get(struct clk *clk)
2736{
2737	struct clk_core *core = !clk ? NULL : clk->core;
2738
2739	if (core) {
2740		if (!try_module_get(core->owner))
2741			return 0;
2742
2743		kref_get(&core->ref);
2744	}
2745	return 1;
2746}
2747
2748void __clk_put(struct clk *clk)
2749{
2750	struct module *owner;
2751
2752	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2753		return;
2754
2755	clk_prepare_lock();
2756
2757	hlist_del(&clk->clks_node);
2758	if (clk->min_rate > clk->core->req_rate ||
2759	    clk->max_rate < clk->core->req_rate)
2760		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2761
2762	owner = clk->core->owner;
2763	kref_put(&clk->core->ref, __clk_release);
2764
2765	clk_prepare_unlock();
2766
2767	module_put(owner);
2768
2769	kfree(clk);
2770}
2771
2772/***        clk rate change notifiers        ***/
2773
2774/**
2775 * clk_notifier_register - add a clk rate change notifier
2776 * @clk: struct clk * to watch
2777 * @nb: struct notifier_block * with callback info
2778 *
2779 * Request notification when clk's rate changes.  This uses an SRCU
2780 * notifier because we want it to block and notifier unregistrations are
2781 * uncommon.  The callbacks associated with the notifier must not
2782 * re-enter into the clk framework by calling any top-level clk APIs;
2783 * this will cause a nested prepare_lock mutex.
2784 *
2785 * In all notification cases cases (pre, post and abort rate change) the
2786 * original clock rate is passed to the callback via struct
2787 * clk_notifier_data.old_rate and the new frequency is passed via struct
2788 * clk_notifier_data.new_rate.
2789 *
2790 * clk_notifier_register() must be called from non-atomic context.
2791 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2792 * allocation failure; otherwise, passes along the return value of
2793 * srcu_notifier_chain_register().
2794 */
2795int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2796{
2797	struct clk_notifier *cn;
2798	int ret = -ENOMEM;
2799
2800	if (!clk || !nb)
2801		return -EINVAL;
2802
2803	clk_prepare_lock();
2804
2805	/* search the list of notifiers for this clk */
2806	list_for_each_entry(cn, &clk_notifier_list, node)
2807		if (cn->clk == clk)
2808			break;
2809
2810	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2811	if (cn->clk != clk) {
2812		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2813		if (!cn)
2814			goto out;
2815
2816		cn->clk = clk;
2817		srcu_init_notifier_head(&cn->notifier_head);
2818
2819		list_add(&cn->node, &clk_notifier_list);
2820	}
2821
2822	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2823
2824	clk->core->notifier_count++;
2825
2826out:
2827	clk_prepare_unlock();
2828
2829	return ret;
2830}
2831EXPORT_SYMBOL_GPL(clk_notifier_register);
2832
2833/**
2834 * clk_notifier_unregister - remove a clk rate change notifier
2835 * @clk: struct clk *
2836 * @nb: struct notifier_block * with callback info
2837 *
2838 * Request no further notification for changes to 'clk' and frees memory
2839 * allocated in clk_notifier_register.
2840 *
2841 * Returns -EINVAL if called with null arguments; otherwise, passes
2842 * along the return value of srcu_notifier_chain_unregister().
2843 */
2844int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2845{
2846	struct clk_notifier *cn = NULL;
2847	int ret = -EINVAL;
2848
2849	if (!clk || !nb)
2850		return -EINVAL;
2851
2852	clk_prepare_lock();
2853
2854	list_for_each_entry(cn, &clk_notifier_list, node)
2855		if (cn->clk == clk)
2856			break;
2857
2858	if (cn->clk == clk) {
2859		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2860
2861		clk->core->notifier_count--;
2862
2863		/* XXX the notifier code should handle this better */
2864		if (!cn->notifier_head.head) {
2865			srcu_cleanup_notifier_head(&cn->notifier_head);
2866			list_del(&cn->node);
2867			kfree(cn);
2868		}
2869
2870	} else {
2871		ret = -ENOENT;
2872	}
2873
2874	clk_prepare_unlock();
2875
2876	return ret;
2877}
2878EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2879
2880#ifdef CONFIG_OF
2881/**
2882 * struct of_clk_provider - Clock provider registration structure
2883 * @link: Entry in global list of clock providers
2884 * @node: Pointer to device tree node of clock provider
2885 * @get: Get clock callback.  Returns NULL or a struct clk for the
2886 *       given clock specifier
2887 * @data: context pointer to be passed into @get callback
2888 */
2889struct of_clk_provider {
2890	struct list_head link;
2891
2892	struct device_node *node;
2893	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2894	void *data;
2895};
2896
2897static const struct of_device_id __clk_of_table_sentinel
2898	__used __section(__clk_of_table_end);
2899
2900static LIST_HEAD(of_clk_providers);
2901static DEFINE_MUTEX(of_clk_mutex);
2902
2903struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2904				     void *data)
2905{
2906	return data;
2907}
2908EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2909
2910struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2911{
2912	struct clk_onecell_data *clk_data = data;
2913	unsigned int idx = clkspec->args[0];
2914
2915	if (idx >= clk_data->clk_num) {
2916		pr_err("%s: invalid clock index %d\n", __func__, idx);
2917		return ERR_PTR(-EINVAL);
2918	}
2919
2920	return clk_data->clks[idx];
2921}
2922EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2923
2924/**
2925 * of_clk_add_provider() - Register a clock provider for a node
2926 * @np: Device node pointer associated with clock provider
2927 * @clk_src_get: callback for decoding clock
2928 * @data: context pointer for @clk_src_get callback.
2929 */
2930int of_clk_add_provider(struct device_node *np,
2931			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2932						   void *data),
2933			void *data)
2934{
2935	struct of_clk_provider *cp;
2936	int ret;
2937
2938	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2939	if (!cp)
2940		return -ENOMEM;
2941
2942	cp->node = of_node_get(np);
2943	cp->data = data;
2944	cp->get = clk_src_get;
2945
2946	mutex_lock(&of_clk_mutex);
2947	list_add(&cp->link, &of_clk_providers);
2948	mutex_unlock(&of_clk_mutex);
2949	pr_debug("Added clock from %s\n", np->full_name);
2950
2951	ret = of_clk_set_defaults(np, true);
2952	if (ret < 0)
2953		of_clk_del_provider(np);
2954
2955	return ret;
2956}
2957EXPORT_SYMBOL_GPL(of_clk_add_provider);
2958
2959/**
2960 * of_clk_del_provider() - Remove a previously registered clock provider
2961 * @np: Device node pointer associated with clock provider
2962 */
2963void of_clk_del_provider(struct device_node *np)
2964{
2965	struct of_clk_provider *cp;
2966
2967	mutex_lock(&of_clk_mutex);
2968	list_for_each_entry(cp, &of_clk_providers, link) {
2969		if (cp->node == np) {
2970			list_del(&cp->link);
2971			of_node_put(cp->node);
2972			kfree(cp);
2973			break;
2974		}
2975	}
2976	mutex_unlock(&of_clk_mutex);
2977}
2978EXPORT_SYMBOL_GPL(of_clk_del_provider);
2979
2980struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2981				       const char *dev_id, const char *con_id)
2982{
2983	struct of_clk_provider *provider;
2984	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2985
2986	if (!clkspec)
2987		return ERR_PTR(-EINVAL);
2988
2989	/* Check if we have such a provider in our array */
2990	mutex_lock(&of_clk_mutex);
2991	list_for_each_entry(provider, &of_clk_providers, link) {
2992		if (provider->node == clkspec->np)
2993			clk = provider->get(clkspec, provider->data);
2994		if (!IS_ERR(clk)) {
2995			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2996					       con_id);
2997
2998			if (!IS_ERR(clk) && !__clk_get(clk)) {
2999				__clk_free_clk(clk);
3000				clk = ERR_PTR(-ENOENT);
3001			}
3002
3003			break;
3004		}
3005	}
3006	mutex_unlock(&of_clk_mutex);
3007
3008	return clk;
3009}
3010
3011/**
3012 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3013 * @clkspec: pointer to a clock specifier data structure
3014 *
3015 * This function looks up a struct clk from the registered list of clock
3016 * providers, an input is a clock specifier data structure as returned
3017 * from the of_parse_phandle_with_args() function call.
3018 */
3019struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3020{
3021	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3022}
3023
3024int of_clk_get_parent_count(struct device_node *np)
3025{
3026	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3027}
3028EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3029
3030const char *of_clk_get_parent_name(struct device_node *np, int index)
3031{
3032	struct of_phandle_args clkspec;
3033	struct property *prop;
3034	const char *clk_name;
3035	const __be32 *vp;
3036	u32 pv;
3037	int rc;
3038	int count;
3039
3040	if (index < 0)
3041		return NULL;
3042
3043	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3044					&clkspec);
3045	if (rc)
3046		return NULL;
3047
3048	index = clkspec.args_count ? clkspec.args[0] : 0;
3049	count = 0;
3050
3051	/* if there is an indices property, use it to transfer the index
3052	 * specified into an array offset for the clock-output-names property.
3053	 */
3054	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3055		if (index == pv) {
3056			index = count;
3057			break;
3058		}
3059		count++;
3060	}
3061
3062	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3063					  index,
3064					  &clk_name) < 0)
3065		clk_name = clkspec.np->name;
3066
3067	of_node_put(clkspec.np);
3068	return clk_name;
3069}
3070EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3071
3072struct clock_provider {
3073	of_clk_init_cb_t clk_init_cb;
3074	struct device_node *np;
3075	struct list_head node;
3076};
3077
3078static LIST_HEAD(clk_provider_list);
3079
3080/*
3081 * This function looks for a parent clock. If there is one, then it
3082 * checks that the provider for this parent clock was initialized, in
3083 * this case the parent clock will be ready.
3084 */
3085static int parent_ready(struct device_node *np)
3086{
3087	int i = 0;
3088
3089	while (true) {
3090		struct clk *clk = of_clk_get(np, i);
3091
3092		/* this parent is ready we can check the next one */
3093		if (!IS_ERR(clk)) {
3094			clk_put(clk);
3095			i++;
3096			continue;
3097		}
3098
3099		/* at least one parent is not ready, we exit now */
3100		if (PTR_ERR(clk) == -EPROBE_DEFER)
3101			return 0;
3102
3103		/*
3104		 * Here we make assumption that the device tree is
3105		 * written correctly. So an error means that there is
3106		 * no more parent. As we didn't exit yet, then the
3107		 * previous parent are ready. If there is no clock
3108		 * parent, no need to wait for them, then we can
3109		 * consider their absence as being ready
3110		 */
3111		return 1;
3112	}
3113}
3114
3115/**
3116 * of_clk_init() - Scan and init clock providers from the DT
3117 * @matches: array of compatible values and init functions for providers.
3118 *
3119 * This function scans the device tree for matching clock providers
3120 * and calls their initialization functions. It also does it by trying
3121 * to follow the dependencies.
3122 */
3123void __init of_clk_init(const struct of_device_id *matches)
3124{
3125	const struct of_device_id *match;
3126	struct device_node *np;
3127	struct clock_provider *clk_provider, *next;
3128	bool is_init_done;
3129	bool force = false;
3130
3131	if (!matches)
3132		matches = &__clk_of_table;
3133
3134	/* First prepare the list of the clocks providers */
3135	for_each_matching_node_and_match(np, matches, &match) {
3136		struct clock_provider *parent =
3137			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
3138
3139		parent->clk_init_cb = match->data;
3140		parent->np = np;
3141		list_add_tail(&parent->node, &clk_provider_list);
3142	}
3143
3144	while (!list_empty(&clk_provider_list)) {
3145		is_init_done = false;
3146		list_for_each_entry_safe(clk_provider, next,
3147					&clk_provider_list, node) {
3148			if (force || parent_ready(clk_provider->np)) {
3149
3150				clk_provider->clk_init_cb(clk_provider->np);
3151				of_clk_set_defaults(clk_provider->np, true);
3152
3153				list_del(&clk_provider->node);
3154				kfree(clk_provider);
3155				is_init_done = true;
3156			}
3157		}
3158
3159		/*
3160		 * We didn't manage to initialize any of the
3161		 * remaining providers during the last loop, so now we
3162		 * initialize all the remaining ones unconditionally
3163		 * in case the clock parent was not mandatory
3164		 */
3165		if (!is_init_done)
3166			force = true;
3167	}
3168}
3169#endif
3170