1/* 2 * Copyright (c) 2014 Marvell Technology Group Ltd. 3 * 4 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> 5 * Alexandre Belloni <alexandre.belloni@free-electrons.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19#include <linux/clk-provider.h> 20#include <linux/io.h> 21#include <linux/kernel.h> 22#include <linux/of.h> 23#include <linux/of_address.h> 24#include <linux/slab.h> 25 26#include "berlin2-avpll.h" 27 28/* 29 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a 30 * VCO with 8 channels each, channel 8 is the odd-one-out and does 31 * not provide mul/div. 32 * 33 * Unfortunately, its registers are not named but just numbered. To 34 * get in at least some kind of structure, we split each AVPLL into 35 * the VCOs and each channel into separate clock drivers. 36 * 37 * Also, here and there the VCO registers are a bit different with 38 * respect to bit shifts. Make sure to add a comment for those. 39 */ 40#define NUM_CHANNELS 8 41 42#define AVPLL_CTRL(x) ((x) * 0x4) 43 44#define VCO_CTRL0 AVPLL_CTRL(0) 45/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */ 46#define VCO_RESET BIT(0) 47#define VCO_POWERUP BIT(1) 48#define VCO_INTERPOL_SHIFT 2 49#define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT) 50#define VCO_REG1V45_SEL_SHIFT 6 51#define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT) 52#define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0) 53#define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1) 54#define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2) 55#define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3) 56#define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3) 57#define VCO_REG0V9_SEL_SHIFT 8 58#define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT) 59#define VCO_VTHCAL_SHIFT 12 60#define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT) 61#define VCO_VTHCAL_0V90 VCO_VTHCAL(0) 62#define VCO_VTHCAL_0V95 VCO_VTHCAL(1) 63#define VCO_VTHCAL_1V00 VCO_VTHCAL(2) 64#define VCO_VTHCAL_1V05 VCO_VTHCAL(3) 65#define VCO_VTHCAL_MASK VCO_VTHCAL(3) 66#define VCO_KVCOEXT_SHIFT 14 67#define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT) 68#define VCO_KVCOEXT_ENABLE BIT(17) 69#define VCO_V2IEXT_SHIFT 18 70#define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT) 71#define VCO_V2IEXT_ENABLE BIT(22) 72#define VCO_SPEED_SHIFT 23 73#define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT) 74#define VCO_SPEED_1G08_1G21 VCO_SPEED(0) 75#define VCO_SPEED_1G21_1G40 VCO_SPEED(1) 76#define VCO_SPEED_1G40_1G61 VCO_SPEED(2) 77#define VCO_SPEED_1G61_1G86 VCO_SPEED(3) 78#define VCO_SPEED_1G86_2G00 VCO_SPEED(4) 79#define VCO_SPEED_2G00_2G22 VCO_SPEED(5) 80#define VCO_SPEED_2G22 VCO_SPEED(6) 81#define VCO_SPEED_MASK VCO_SPEED(0x7) 82#define VCO_CLKDET_ENABLE BIT(26) 83#define VCO_CTRL1 AVPLL_CTRL(1) 84#define VCO_REFDIV_SHIFT 0 85#define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT) 86#define VCO_REFDIV_1 VCO_REFDIV(0) 87#define VCO_REFDIV_2 VCO_REFDIV(1) 88#define VCO_REFDIV_4 VCO_REFDIV(2) 89#define VCO_REFDIV_3 VCO_REFDIV(3) 90#define VCO_REFDIV_MASK VCO_REFDIV(0x3f) 91#define VCO_FBDIV_SHIFT 6 92#define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT) 93#define VCO_FBDIV_MASK VCO_FBDIV(0xff) 94#define VCO_ICP_SHIFT 14 95/* PLL Charge Pump Current = 10uA * (x + 1) */ 96#define VCO_ICP(x) ((x) << VCO_ICP_SHIFT) 97#define VCO_ICP_MASK VCO_ICP(0xf) 98#define VCO_LOAD_CAP BIT(18) 99#define VCO_CALIBRATION_START BIT(19) 100#define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x)) 101#define VCO_FREQOFFSET_MASK 0x7ffff 102#define VCO_CTRL10 AVPLL_CTRL(10) 103#define VCO_POWERUP_CH1 BIT(20) 104#define VCO_CTRL11 AVPLL_CTRL(11) 105#define VCO_CTRL12 AVPLL_CTRL(12) 106#define VCO_CTRL13 AVPLL_CTRL(13) 107#define VCO_CTRL14 AVPLL_CTRL(14) 108#define VCO_CTRL15 AVPLL_CTRL(15) 109#define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x)) 110#define VCO_SYNC1_MASK 0x1ffff 111#define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x)) 112#define VCO_SYNC2_MASK 0x1ffff 113#define VCO_CTRL30 AVPLL_CTRL(30) 114#define VCO_DPLL_CH1_ENABLE BIT(17) 115 116struct berlin2_avpll_vco { 117 struct clk_hw hw; 118 void __iomem *base; 119 u8 flags; 120}; 121 122#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw) 123 124static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw) 125{ 126 struct berlin2_avpll_vco *vco = to_avpll_vco(hw); 127 u32 reg; 128 129 reg = readl_relaxed(vco->base + VCO_CTRL0); 130 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) 131 reg >>= 4; 132 133 return !!(reg & VCO_POWERUP); 134} 135 136static int berlin2_avpll_vco_enable(struct clk_hw *hw) 137{ 138 struct berlin2_avpll_vco *vco = to_avpll_vco(hw); 139 u32 reg; 140 141 reg = readl_relaxed(vco->base + VCO_CTRL0); 142 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) 143 reg |= VCO_POWERUP << 4; 144 else 145 reg |= VCO_POWERUP; 146 writel_relaxed(reg, vco->base + VCO_CTRL0); 147 148 return 0; 149} 150 151static void berlin2_avpll_vco_disable(struct clk_hw *hw) 152{ 153 struct berlin2_avpll_vco *vco = to_avpll_vco(hw); 154 u32 reg; 155 156 reg = readl_relaxed(vco->base + VCO_CTRL0); 157 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK) 158 reg &= ~(VCO_POWERUP << 4); 159 else 160 reg &= ~VCO_POWERUP; 161 writel_relaxed(reg, vco->base + VCO_CTRL0); 162} 163 164static u8 vco_refdiv[] = { 1, 2, 4, 3 }; 165 166static unsigned long 167berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) 168{ 169 struct berlin2_avpll_vco *vco = to_avpll_vco(hw); 170 u32 reg, refdiv, fbdiv; 171 u64 freq = parent_rate; 172 173 /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */ 174 reg = readl_relaxed(vco->base + VCO_CTRL1); 175 refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT; 176 refdiv = vco_refdiv[refdiv]; 177 fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT; 178 freq *= fbdiv; 179 do_div(freq, refdiv); 180 181 return (unsigned long)freq; 182} 183 184static const struct clk_ops berlin2_avpll_vco_ops = { 185 .is_enabled = berlin2_avpll_vco_is_enabled, 186 .enable = berlin2_avpll_vco_enable, 187 .disable = berlin2_avpll_vco_disable, 188 .recalc_rate = berlin2_avpll_vco_recalc_rate, 189}; 190 191struct clk * __init berlin2_avpll_vco_register(void __iomem *base, 192 const char *name, const char *parent_name, 193 u8 vco_flags, unsigned long flags) 194{ 195 struct berlin2_avpll_vco *vco; 196 struct clk_init_data init; 197 198 vco = kzalloc(sizeof(*vco), GFP_KERNEL); 199 if (!vco) 200 return ERR_PTR(-ENOMEM); 201 202 vco->base = base; 203 vco->flags = vco_flags; 204 vco->hw.init = &init; 205 init.name = name; 206 init.ops = &berlin2_avpll_vco_ops; 207 init.parent_names = &parent_name; 208 init.num_parents = 1; 209 init.flags = flags; 210 211 return clk_register(NULL, &vco->hw); 212} 213 214struct berlin2_avpll_channel { 215 struct clk_hw hw; 216 void __iomem *base; 217 u8 flags; 218 u8 index; 219}; 220 221#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw) 222 223static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw) 224{ 225 struct berlin2_avpll_channel *ch = to_avpll_channel(hw); 226 u32 reg; 227 228 if (ch->index == 7) 229 return 1; 230 231 reg = readl_relaxed(ch->base + VCO_CTRL10); 232 reg &= VCO_POWERUP_CH1 << ch->index; 233 234 return !!reg; 235} 236 237static int berlin2_avpll_channel_enable(struct clk_hw *hw) 238{ 239 struct berlin2_avpll_channel *ch = to_avpll_channel(hw); 240 u32 reg; 241 242 reg = readl_relaxed(ch->base + VCO_CTRL10); 243 reg |= VCO_POWERUP_CH1 << ch->index; 244 writel_relaxed(reg, ch->base + VCO_CTRL10); 245 246 return 0; 247} 248 249static void berlin2_avpll_channel_disable(struct clk_hw *hw) 250{ 251 struct berlin2_avpll_channel *ch = to_avpll_channel(hw); 252 u32 reg; 253 254 reg = readl_relaxed(ch->base + VCO_CTRL10); 255 reg &= ~(VCO_POWERUP_CH1 << ch->index); 256 writel_relaxed(reg, ch->base + VCO_CTRL10); 257} 258 259static const u8 div_hdmi[] = { 1, 2, 4, 6 }; 260static const u8 div_av1[] = { 1, 2, 5, 5 }; 261 262static unsigned long 263berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) 264{ 265 struct berlin2_avpll_channel *ch = to_avpll_channel(hw); 266 u32 reg, div_av2, div_av3, divider = 1; 267 u64 freq = parent_rate; 268 269 reg = readl_relaxed(ch->base + VCO_CTRL30); 270 if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0) 271 goto skip_div; 272 273 /* 274 * Fch = (Fref * sync2) / 275 * (sync1 * div_hdmi * div_av1 * div_av2 * div_av3) 276 */ 277 278 reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index)); 279 /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */ 280 if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0) 281 reg >>= 4; 282 divider = reg & VCO_SYNC1_MASK; 283 284 reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index)); 285 freq *= reg & VCO_SYNC2_MASK; 286 287 /* Channel 8 has no dividers */ 288 if (ch->index == 7) 289 goto skip_div; 290 291 /* 292 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit 293 * determine divider. 294 */ 295 reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7; 296 reg = (reg >> (ch->index * 3)); 297 if (reg & BIT(2)) 298 divider *= div_hdmi[reg & 0x3]; 299 300 /* 301 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit 302 * determine divider. 303 */ 304 if (ch->index == 0) { 305 reg = readl_relaxed(ch->base + VCO_CTRL11); 306 reg >>= 28; 307 } else { 308 reg = readl_relaxed(ch->base + VCO_CTRL12); 309 reg >>= (ch->index-1) * 3; 310 } 311 if (reg & BIT(2)) 312 divider *= div_av1[reg & 0x3]; 313 314 /* 315 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide, 316 * zero is not a valid value. 317 */ 318 if (ch->index < 2) { 319 reg = readl_relaxed(ch->base + VCO_CTRL12); 320 reg >>= 18 + (ch->index * 7); 321 } else if (ch->index < 7) { 322 reg = readl_relaxed(ch->base + VCO_CTRL13); 323 reg >>= (ch->index - 2) * 7; 324 } else { 325 reg = readl_relaxed(ch->base + VCO_CTRL14); 326 } 327 div_av2 = reg & 0x7f; 328 if (div_av2) 329 divider *= div_av2; 330 331 /* 332 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide. 333 * AV2/AV3 form a fractional divider, where only specfic values for AV3 334 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass. 335 */ 336 if (ch->index < 6) { 337 reg = readl_relaxed(ch->base + VCO_CTRL14); 338 reg >>= 7 + (ch->index * 4); 339 } else { 340 reg = readl_relaxed(ch->base + VCO_CTRL15); 341 } 342 div_av3 = reg & 0xf; 343 if (div_av2 && div_av3) 344 freq *= 2; 345 346skip_div: 347 do_div(freq, divider); 348 return (unsigned long)freq; 349} 350 351static const struct clk_ops berlin2_avpll_channel_ops = { 352 .is_enabled = berlin2_avpll_channel_is_enabled, 353 .enable = berlin2_avpll_channel_enable, 354 .disable = berlin2_avpll_channel_disable, 355 .recalc_rate = berlin2_avpll_channel_recalc_rate, 356}; 357 358/* 359 * Another nice quirk: 360 * On some production SoCs, AVPLL channels are scrambled with respect 361 * to the channel numbering in the registers but still referenced by 362 * their original channel numbers. We deal with it by having a flag 363 * and a translation table for the index. 364 */ 365static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 }; 366 367struct clk * __init berlin2_avpll_channel_register(void __iomem *base, 368 const char *name, u8 index, const char *parent_name, 369 u8 ch_flags, unsigned long flags) 370{ 371 struct berlin2_avpll_channel *ch; 372 struct clk_init_data init; 373 374 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 375 if (!ch) 376 return ERR_PTR(-ENOMEM); 377 378 ch->base = base; 379 if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK) 380 ch->index = quirk_index[index]; 381 else 382 ch->index = index; 383 384 ch->flags = ch_flags; 385 ch->hw.init = &init; 386 init.name = name; 387 init.ops = &berlin2_avpll_channel_ops; 388 init.parent_names = &parent_name; 389 init.num_parents = 1; 390 init.flags = flags; 391 392 return clk_register(NULL, &ch->hw); 393} 394