1/*
2 * Copyright (c) 2014 Marvell Technology Group Ltd.
3 *
4 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
5 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program.  If not, see <http://www.gnu.org/licenses/>.
18 */
19#include <linux/clk-provider.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/of.h>
23#include <linux/of_address.h>
24#include <linux/slab.h>
25
26#include "berlin2-avpll.h"
27
28/*
29 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
30 * VCO with 8 channels each, channel 8 is the odd-one-out and does
31 * not provide mul/div.
32 *
33 * Unfortunately, its registers are not named but just numbered. To
34 * get in at least some kind of structure, we split each AVPLL into
35 * the VCOs and each channel into separate clock drivers.
36 *
37 * Also, here and there the VCO registers are a bit different with
38 * respect to bit shifts. Make sure to add a comment for those.
39 */
40#define NUM_CHANNELS	8
41
42#define AVPLL_CTRL(x)		((x) * 0x4)
43
44#define VCO_CTRL0		AVPLL_CTRL(0)
45/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
46#define  VCO_RESET		BIT(0)
47#define  VCO_POWERUP		BIT(1)
48#define  VCO_INTERPOL_SHIFT	2
49#define  VCO_INTERPOL_MASK	(0xf << VCO_INTERPOL_SHIFT)
50#define  VCO_REG1V45_SEL_SHIFT	6
51#define  VCO_REG1V45_SEL(x)	((x) << VCO_REG1V45_SEL_SHIFT)
52#define  VCO_REG1V45_SEL_1V40	VCO_REG1V45_SEL(0)
53#define  VCO_REG1V45_SEL_1V45	VCO_REG1V45_SEL(1)
54#define  VCO_REG1V45_SEL_1V50	VCO_REG1V45_SEL(2)
55#define  VCO_REG1V45_SEL_1V55	VCO_REG1V45_SEL(3)
56#define  VCO_REG1V45_SEL_MASK	VCO_REG1V45_SEL(3)
57#define  VCO_REG0V9_SEL_SHIFT	8
58#define  VCO_REG0V9_SEL_MASK	(0xf << VCO_REG0V9_SEL_SHIFT)
59#define  VCO_VTHCAL_SHIFT	12
60#define  VCO_VTHCAL(x)		((x) << VCO_VTHCAL_SHIFT)
61#define  VCO_VTHCAL_0V90	VCO_VTHCAL(0)
62#define  VCO_VTHCAL_0V95	VCO_VTHCAL(1)
63#define  VCO_VTHCAL_1V00	VCO_VTHCAL(2)
64#define  VCO_VTHCAL_1V05	VCO_VTHCAL(3)
65#define  VCO_VTHCAL_MASK	VCO_VTHCAL(3)
66#define  VCO_KVCOEXT_SHIFT	14
67#define  VCO_KVCOEXT_MASK	(0x3 << VCO_KVCOEXT_SHIFT)
68#define  VCO_KVCOEXT_ENABLE	BIT(17)
69#define  VCO_V2IEXT_SHIFT	18
70#define  VCO_V2IEXT_MASK	(0xf << VCO_V2IEXT_SHIFT)
71#define  VCO_V2IEXT_ENABLE	BIT(22)
72#define  VCO_SPEED_SHIFT	23
73#define  VCO_SPEED(x)		((x) << VCO_SPEED_SHIFT)
74#define  VCO_SPEED_1G08_1G21	VCO_SPEED(0)
75#define  VCO_SPEED_1G21_1G40	VCO_SPEED(1)
76#define  VCO_SPEED_1G40_1G61	VCO_SPEED(2)
77#define  VCO_SPEED_1G61_1G86	VCO_SPEED(3)
78#define  VCO_SPEED_1G86_2G00	VCO_SPEED(4)
79#define  VCO_SPEED_2G00_2G22	VCO_SPEED(5)
80#define  VCO_SPEED_2G22		VCO_SPEED(6)
81#define  VCO_SPEED_MASK		VCO_SPEED(0x7)
82#define  VCO_CLKDET_ENABLE	BIT(26)
83#define VCO_CTRL1		AVPLL_CTRL(1)
84#define  VCO_REFDIV_SHIFT	0
85#define  VCO_REFDIV(x)		((x) << VCO_REFDIV_SHIFT)
86#define  VCO_REFDIV_1		VCO_REFDIV(0)
87#define  VCO_REFDIV_2		VCO_REFDIV(1)
88#define  VCO_REFDIV_4		VCO_REFDIV(2)
89#define  VCO_REFDIV_3		VCO_REFDIV(3)
90#define  VCO_REFDIV_MASK	VCO_REFDIV(0x3f)
91#define  VCO_FBDIV_SHIFT	6
92#define  VCO_FBDIV(x)		((x) << VCO_FBDIV_SHIFT)
93#define  VCO_FBDIV_MASK		VCO_FBDIV(0xff)
94#define  VCO_ICP_SHIFT		14
95/* PLL Charge Pump Current = 10uA * (x + 1) */
96#define  VCO_ICP(x)		((x) << VCO_ICP_SHIFT)
97#define  VCO_ICP_MASK		VCO_ICP(0xf)
98#define  VCO_LOAD_CAP		BIT(18)
99#define  VCO_CALIBRATION_START	BIT(19)
100#define VCO_FREQOFFSETn(x)	AVPLL_CTRL(3 + (x))
101#define  VCO_FREQOFFSET_MASK	0x7ffff
102#define VCO_CTRL10		AVPLL_CTRL(10)
103#define  VCO_POWERUP_CH1	BIT(20)
104#define VCO_CTRL11		AVPLL_CTRL(11)
105#define VCO_CTRL12		AVPLL_CTRL(12)
106#define VCO_CTRL13		AVPLL_CTRL(13)
107#define VCO_CTRL14		AVPLL_CTRL(14)
108#define VCO_CTRL15		AVPLL_CTRL(15)
109#define VCO_SYNC1n(x)		AVPLL_CTRL(15 + (x))
110#define  VCO_SYNC1_MASK		0x1ffff
111#define VCO_SYNC2n(x)		AVPLL_CTRL(23 + (x))
112#define  VCO_SYNC2_MASK		0x1ffff
113#define VCO_CTRL30		AVPLL_CTRL(30)
114#define  VCO_DPLL_CH1_ENABLE	BIT(17)
115
116struct berlin2_avpll_vco {
117	struct clk_hw hw;
118	void __iomem *base;
119	u8 flags;
120};
121
122#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
123
124static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
125{
126	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
127	u32 reg;
128
129	reg = readl_relaxed(vco->base + VCO_CTRL0);
130	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
131		reg >>= 4;
132
133	return !!(reg & VCO_POWERUP);
134}
135
136static int berlin2_avpll_vco_enable(struct clk_hw *hw)
137{
138	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
139	u32 reg;
140
141	reg = readl_relaxed(vco->base + VCO_CTRL0);
142	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
143		reg |= VCO_POWERUP << 4;
144	else
145		reg |= VCO_POWERUP;
146	writel_relaxed(reg, vco->base + VCO_CTRL0);
147
148	return 0;
149}
150
151static void berlin2_avpll_vco_disable(struct clk_hw *hw)
152{
153	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
154	u32 reg;
155
156	reg = readl_relaxed(vco->base + VCO_CTRL0);
157	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
158		reg &= ~(VCO_POWERUP << 4);
159	else
160		reg &= ~VCO_POWERUP;
161	writel_relaxed(reg, vco->base + VCO_CTRL0);
162}
163
164static u8 vco_refdiv[] = { 1, 2, 4, 3 };
165
166static unsigned long
167berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
168{
169	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
170	u32 reg, refdiv, fbdiv;
171	u64 freq = parent_rate;
172
173	/* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
174	reg = readl_relaxed(vco->base + VCO_CTRL1);
175	refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
176	refdiv = vco_refdiv[refdiv];
177	fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
178	freq *= fbdiv;
179	do_div(freq, refdiv);
180
181	return (unsigned long)freq;
182}
183
184static const struct clk_ops berlin2_avpll_vco_ops = {
185	.is_enabled	= berlin2_avpll_vco_is_enabled,
186	.enable		= berlin2_avpll_vco_enable,
187	.disable	= berlin2_avpll_vco_disable,
188	.recalc_rate	= berlin2_avpll_vco_recalc_rate,
189};
190
191struct clk * __init berlin2_avpll_vco_register(void __iomem *base,
192			       const char *name, const char *parent_name,
193			       u8 vco_flags, unsigned long flags)
194{
195	struct berlin2_avpll_vco *vco;
196	struct clk_init_data init;
197
198	vco = kzalloc(sizeof(*vco), GFP_KERNEL);
199	if (!vco)
200		return ERR_PTR(-ENOMEM);
201
202	vco->base = base;
203	vco->flags = vco_flags;
204	vco->hw.init = &init;
205	init.name = name;
206	init.ops = &berlin2_avpll_vco_ops;
207	init.parent_names = &parent_name;
208	init.num_parents = 1;
209	init.flags = flags;
210
211	return clk_register(NULL, &vco->hw);
212}
213
214struct berlin2_avpll_channel {
215	struct clk_hw hw;
216	void __iomem *base;
217	u8 flags;
218	u8 index;
219};
220
221#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
222
223static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
224{
225	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
226	u32 reg;
227
228	if (ch->index == 7)
229		return 1;
230
231	reg = readl_relaxed(ch->base + VCO_CTRL10);
232	reg &= VCO_POWERUP_CH1 << ch->index;
233
234	return !!reg;
235}
236
237static int berlin2_avpll_channel_enable(struct clk_hw *hw)
238{
239	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
240	u32 reg;
241
242	reg = readl_relaxed(ch->base + VCO_CTRL10);
243	reg |= VCO_POWERUP_CH1 << ch->index;
244	writel_relaxed(reg, ch->base + VCO_CTRL10);
245
246	return 0;
247}
248
249static void berlin2_avpll_channel_disable(struct clk_hw *hw)
250{
251	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
252	u32 reg;
253
254	reg = readl_relaxed(ch->base + VCO_CTRL10);
255	reg &= ~(VCO_POWERUP_CH1 << ch->index);
256	writel_relaxed(reg, ch->base + VCO_CTRL10);
257}
258
259static const u8 div_hdmi[] = { 1, 2, 4, 6 };
260static const u8 div_av1[] = { 1, 2, 5, 5 };
261
262static unsigned long
263berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
264{
265	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
266	u32 reg, div_av2, div_av3, divider = 1;
267	u64 freq = parent_rate;
268
269	reg = readl_relaxed(ch->base + VCO_CTRL30);
270	if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
271		goto skip_div;
272
273	/*
274	 * Fch = (Fref * sync2) /
275	 *    (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
276	 */
277
278	reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
279	/* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
280	if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
281		reg >>= 4;
282	divider = reg & VCO_SYNC1_MASK;
283
284	reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
285	freq *= reg & VCO_SYNC2_MASK;
286
287	/* Channel 8 has no dividers */
288	if (ch->index == 7)
289		goto skip_div;
290
291	/*
292	 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
293	 * determine divider.
294	 */
295	reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
296	reg = (reg >> (ch->index * 3));
297	if (reg & BIT(2))
298		divider *= div_hdmi[reg & 0x3];
299
300	/*
301	 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
302	 * determine divider.
303	 */
304	if (ch->index == 0) {
305		reg = readl_relaxed(ch->base + VCO_CTRL11);
306		reg >>= 28;
307	} else {
308		reg = readl_relaxed(ch->base + VCO_CTRL12);
309		reg >>= (ch->index-1) * 3;
310	}
311	if (reg & BIT(2))
312		divider *= div_av1[reg & 0x3];
313
314	/*
315	 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
316	 * zero is not a valid value.
317	 */
318	if (ch->index < 2) {
319		reg = readl_relaxed(ch->base + VCO_CTRL12);
320		reg >>= 18 + (ch->index * 7);
321	} else if (ch->index < 7) {
322		reg = readl_relaxed(ch->base + VCO_CTRL13);
323		reg >>= (ch->index - 2) * 7;
324	} else {
325		reg = readl_relaxed(ch->base + VCO_CTRL14);
326	}
327	div_av2 = reg & 0x7f;
328	if (div_av2)
329		divider *= div_av2;
330
331	/*
332	 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
333	 * AV2/AV3 form a fractional divider, where only specfic values for AV3
334	 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
335	 */
336	if (ch->index < 6) {
337		reg = readl_relaxed(ch->base + VCO_CTRL14);
338		reg >>= 7 + (ch->index * 4);
339	} else {
340		reg = readl_relaxed(ch->base + VCO_CTRL15);
341	}
342	div_av3 = reg & 0xf;
343	if (div_av2 && div_av3)
344		freq *= 2;
345
346skip_div:
347	do_div(freq, divider);
348	return (unsigned long)freq;
349}
350
351static const struct clk_ops berlin2_avpll_channel_ops = {
352	.is_enabled	= berlin2_avpll_channel_is_enabled,
353	.enable		= berlin2_avpll_channel_enable,
354	.disable	= berlin2_avpll_channel_disable,
355	.recalc_rate	= berlin2_avpll_channel_recalc_rate,
356};
357
358/*
359 * Another nice quirk:
360 * On some production SoCs, AVPLL channels are scrambled with respect
361 * to the channel numbering in the registers but still referenced by
362 * their original channel numbers. We deal with it by having a flag
363 * and a translation table for the index.
364 */
365static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
366
367struct clk * __init berlin2_avpll_channel_register(void __iomem *base,
368			   const char *name, u8 index, const char *parent_name,
369			   u8 ch_flags, unsigned long flags)
370{
371	struct berlin2_avpll_channel *ch;
372	struct clk_init_data init;
373
374	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
375	if (!ch)
376		return ERR_PTR(-ENOMEM);
377
378	ch->base = base;
379	if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
380		ch->index = quirk_index[index];
381	else
382		ch->index = index;
383
384	ch->flags = ch_flags;
385	ch->hw.init = &init;
386	init.name = name;
387	init.ops = &berlin2_avpll_channel_ops;
388	init.parent_names = &parent_name;
389	init.num_parents = 1;
390	init.flags = flags;
391
392	return clk_register(NULL, &ch->hw);
393}
394