1/*
2 * ipmi_msghandler.c
3 *
4 * Incoming and outgoing message routing for an IPMI interface.
5 *
6 * Author: MontaVista Software, Inc.
7 *         Corey Minyard <minyard@mvista.com>
8 *         source@mvista.com
9 *
10 * Copyright 2002 MontaVista Software Inc.
11 *
12 *  This program is free software; you can redistribute it and/or modify it
13 *  under the terms of the GNU General Public License as published by the
14 *  Free Software Foundation; either version 2 of the License, or (at your
15 *  option) any later version.
16 *
17 *
18 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 *  You should have received a copy of the GNU General Public License along
30 *  with this program; if not, write to the Free Software Foundation, Inc.,
31 *  675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/module.h>
35#include <linux/errno.h>
36#include <linux/poll.h>
37#include <linux/sched.h>
38#include <linux/seq_file.h>
39#include <linux/spinlock.h>
40#include <linux/mutex.h>
41#include <linux/slab.h>
42#include <linux/ipmi.h>
43#include <linux/ipmi_smi.h>
44#include <linux/notifier.h>
45#include <linux/init.h>
46#include <linux/proc_fs.h>
47#include <linux/rcupdate.h>
48#include <linux/interrupt.h>
49
50#define PFX "IPMI message handler: "
51
52#define IPMI_DRIVER_VERSION "39.2"
53
54static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55static int ipmi_init_msghandler(void);
56static void smi_recv_tasklet(unsigned long);
57static void handle_new_recv_msgs(ipmi_smi_t intf);
58static void need_waiter(ipmi_smi_t intf);
59static int handle_one_recv_msg(ipmi_smi_t          intf,
60			       struct ipmi_smi_msg *msg);
61
62static int initialized;
63
64#ifdef CONFIG_PROC_FS
65static struct proc_dir_entry *proc_ipmi_root;
66#endif /* CONFIG_PROC_FS */
67
68/* Remain in auto-maintenance mode for this amount of time (in ms). */
69#define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70
71#define MAX_EVENTS_IN_QUEUE	25
72
73/*
74 * Don't let a message sit in a queue forever, always time it with at lest
75 * the max message timer.  This is in milliseconds.
76 */
77#define MAX_MSG_TIMEOUT		60000
78
79/* Call every ~1000 ms. */
80#define IPMI_TIMEOUT_TIME	1000
81
82/* How many jiffies does it take to get to the timeout time. */
83#define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
84
85/*
86 * Request events from the queue every second (this is the number of
87 * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88 * future, IPMI will add a way to know immediately if an event is in
89 * the queue and this silliness can go away.
90 */
91#define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
92
93/*
94 * The main "user" data structure.
95 */
96struct ipmi_user {
97	struct list_head link;
98
99	/* Set to false when the user is destroyed. */
100	bool valid;
101
102	struct kref refcount;
103
104	/* The upper layer that handles receive messages. */
105	struct ipmi_user_hndl *handler;
106	void             *handler_data;
107
108	/* The interface this user is bound to. */
109	ipmi_smi_t intf;
110
111	/* Does this interface receive IPMI events? */
112	bool gets_events;
113};
114
115struct cmd_rcvr {
116	struct list_head link;
117
118	ipmi_user_t   user;
119	unsigned char netfn;
120	unsigned char cmd;
121	unsigned int  chans;
122
123	/*
124	 * This is used to form a linked lised during mass deletion.
125	 * Since this is in an RCU list, we cannot use the link above
126	 * or change any data until the RCU period completes.  So we
127	 * use this next variable during mass deletion so we can have
128	 * a list and don't have to wait and restart the search on
129	 * every individual deletion of a command.
130	 */
131	struct cmd_rcvr *next;
132};
133
134struct seq_table {
135	unsigned int         inuse : 1;
136	unsigned int         broadcast : 1;
137
138	unsigned long        timeout;
139	unsigned long        orig_timeout;
140	unsigned int         retries_left;
141
142	/*
143	 * To verify on an incoming send message response that this is
144	 * the message that the response is for, we keep a sequence id
145	 * and increment it every time we send a message.
146	 */
147	long                 seqid;
148
149	/*
150	 * This is held so we can properly respond to the message on a
151	 * timeout, and it is used to hold the temporary data for
152	 * retransmission, too.
153	 */
154	struct ipmi_recv_msg *recv_msg;
155};
156
157/*
158 * Store the information in a msgid (long) to allow us to find a
159 * sequence table entry from the msgid.
160 */
161#define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162
163#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164	do {								\
165		seq = ((msgid >> 26) & 0x3f);				\
166		seqid = (msgid & 0x3fffff);				\
167	} while (0)
168
169#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170
171struct ipmi_channel {
172	unsigned char medium;
173	unsigned char protocol;
174
175	/*
176	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177	 * but may be changed by the user.
178	 */
179	unsigned char address;
180
181	/*
182	 * My LUN.  This should generally stay the SMS LUN, but just in
183	 * case...
184	 */
185	unsigned char lun;
186};
187
188#ifdef CONFIG_PROC_FS
189struct ipmi_proc_entry {
190	char                   *name;
191	struct ipmi_proc_entry *next;
192};
193#endif
194
195struct bmc_device {
196	struct platform_device pdev;
197	struct ipmi_device_id  id;
198	unsigned char          guid[16];
199	int                    guid_set;
200	char                   name[16];
201	struct kref	       usecount;
202};
203#define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204
205/*
206 * Various statistics for IPMI, these index stats[] in the ipmi_smi
207 * structure.
208 */
209enum ipmi_stat_indexes {
210	/* Commands we got from the user that were invalid. */
211	IPMI_STAT_sent_invalid_commands = 0,
212
213	/* Commands we sent to the MC. */
214	IPMI_STAT_sent_local_commands,
215
216	/* Responses from the MC that were delivered to a user. */
217	IPMI_STAT_handled_local_responses,
218
219	/* Responses from the MC that were not delivered to a user. */
220	IPMI_STAT_unhandled_local_responses,
221
222	/* Commands we sent out to the IPMB bus. */
223	IPMI_STAT_sent_ipmb_commands,
224
225	/* Commands sent on the IPMB that had errors on the SEND CMD */
226	IPMI_STAT_sent_ipmb_command_errs,
227
228	/* Each retransmit increments this count. */
229	IPMI_STAT_retransmitted_ipmb_commands,
230
231	/*
232	 * When a message times out (runs out of retransmits) this is
233	 * incremented.
234	 */
235	IPMI_STAT_timed_out_ipmb_commands,
236
237	/*
238	 * This is like above, but for broadcasts.  Broadcasts are
239	 * *not* included in the above count (they are expected to
240	 * time out).
241	 */
242	IPMI_STAT_timed_out_ipmb_broadcasts,
243
244	/* Responses I have sent to the IPMB bus. */
245	IPMI_STAT_sent_ipmb_responses,
246
247	/* The response was delivered to the user. */
248	IPMI_STAT_handled_ipmb_responses,
249
250	/* The response had invalid data in it. */
251	IPMI_STAT_invalid_ipmb_responses,
252
253	/* The response didn't have anyone waiting for it. */
254	IPMI_STAT_unhandled_ipmb_responses,
255
256	/* Commands we sent out to the IPMB bus. */
257	IPMI_STAT_sent_lan_commands,
258
259	/* Commands sent on the IPMB that had errors on the SEND CMD */
260	IPMI_STAT_sent_lan_command_errs,
261
262	/* Each retransmit increments this count. */
263	IPMI_STAT_retransmitted_lan_commands,
264
265	/*
266	 * When a message times out (runs out of retransmits) this is
267	 * incremented.
268	 */
269	IPMI_STAT_timed_out_lan_commands,
270
271	/* Responses I have sent to the IPMB bus. */
272	IPMI_STAT_sent_lan_responses,
273
274	/* The response was delivered to the user. */
275	IPMI_STAT_handled_lan_responses,
276
277	/* The response had invalid data in it. */
278	IPMI_STAT_invalid_lan_responses,
279
280	/* The response didn't have anyone waiting for it. */
281	IPMI_STAT_unhandled_lan_responses,
282
283	/* The command was delivered to the user. */
284	IPMI_STAT_handled_commands,
285
286	/* The command had invalid data in it. */
287	IPMI_STAT_invalid_commands,
288
289	/* The command didn't have anyone waiting for it. */
290	IPMI_STAT_unhandled_commands,
291
292	/* Invalid data in an event. */
293	IPMI_STAT_invalid_events,
294
295	/* Events that were received with the proper format. */
296	IPMI_STAT_events,
297
298	/* Retransmissions on IPMB that failed. */
299	IPMI_STAT_dropped_rexmit_ipmb_commands,
300
301	/* Retransmissions on LAN that failed. */
302	IPMI_STAT_dropped_rexmit_lan_commands,
303
304	/* This *must* remain last, add new values above this. */
305	IPMI_NUM_STATS
306};
307
308
309#define IPMI_IPMB_NUM_SEQ	64
310#define IPMI_MAX_CHANNELS       16
311struct ipmi_smi {
312	/* What interface number are we? */
313	int intf_num;
314
315	struct kref refcount;
316
317	/* Set when the interface is being unregistered. */
318	bool in_shutdown;
319
320	/* Used for a list of interfaces. */
321	struct list_head link;
322
323	/*
324	 * The list of upper layers that are using me.  seq_lock
325	 * protects this.
326	 */
327	struct list_head users;
328
329	/* Information to supply to users. */
330	unsigned char ipmi_version_major;
331	unsigned char ipmi_version_minor;
332
333	/* Used for wake ups at startup. */
334	wait_queue_head_t waitq;
335
336	struct bmc_device *bmc;
337	char *my_dev_name;
338
339	/*
340	 * This is the lower-layer's sender routine.  Note that you
341	 * must either be holding the ipmi_interfaces_mutex or be in
342	 * an umpreemptible region to use this.  You must fetch the
343	 * value into a local variable and make sure it is not NULL.
344	 */
345	struct ipmi_smi_handlers *handlers;
346	void                     *send_info;
347
348#ifdef CONFIG_PROC_FS
349	/* A list of proc entries for this interface. */
350	struct mutex           proc_entry_lock;
351	struct ipmi_proc_entry *proc_entries;
352#endif
353
354	/* Driver-model device for the system interface. */
355	struct device          *si_dev;
356
357	/*
358	 * A table of sequence numbers for this interface.  We use the
359	 * sequence numbers for IPMB messages that go out of the
360	 * interface to match them up with their responses.  A routine
361	 * is called periodically to time the items in this list.
362	 */
363	spinlock_t       seq_lock;
364	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365	int curr_seq;
366
367	/*
368	 * Messages queued for delivery.  If delivery fails (out of memory
369	 * for instance), They will stay in here to be processed later in a
370	 * periodic timer interrupt.  The tasklet is for handling received
371	 * messages directly from the handler.
372	 */
373	spinlock_t       waiting_rcv_msgs_lock;
374	struct list_head waiting_rcv_msgs;
375	atomic_t	 watchdog_pretimeouts_to_deliver;
376	struct tasklet_struct recv_tasklet;
377
378	spinlock_t             xmit_msgs_lock;
379	struct list_head       xmit_msgs;
380	struct ipmi_smi_msg    *curr_msg;
381	struct list_head       hp_xmit_msgs;
382
383	/*
384	 * The list of command receivers that are registered for commands
385	 * on this interface.
386	 */
387	struct mutex     cmd_rcvrs_mutex;
388	struct list_head cmd_rcvrs;
389
390	/*
391	 * Events that were queues because no one was there to receive
392	 * them.
393	 */
394	spinlock_t       events_lock; /* For dealing with event stuff. */
395	struct list_head waiting_events;
396	unsigned int     waiting_events_count; /* How many events in queue? */
397	char             delivering_events;
398	char             event_msg_printed;
399	atomic_t         event_waiters;
400	unsigned int     ticks_to_req_ev;
401	int              last_needs_timer;
402
403	/*
404	 * The event receiver for my BMC, only really used at panic
405	 * shutdown as a place to store this.
406	 */
407	unsigned char event_receiver;
408	unsigned char event_receiver_lun;
409	unsigned char local_sel_device;
410	unsigned char local_event_generator;
411
412	/* For handling of maintenance mode. */
413	int maintenance_mode;
414	bool maintenance_mode_enable;
415	int auto_maintenance_timeout;
416	spinlock_t maintenance_mode_lock; /* Used in a timer... */
417
418	/*
419	 * A cheap hack, if this is non-null and a message to an
420	 * interface comes in with a NULL user, call this routine with
421	 * it.  Note that the message will still be freed by the
422	 * caller.  This only works on the system interface.
423	 */
424	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425
426	/*
427	 * When we are scanning the channels for an SMI, this will
428	 * tell which channel we are scanning.
429	 */
430	int curr_channel;
431
432	/* Channel information */
433	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434
435	/* Proc FS stuff. */
436	struct proc_dir_entry *proc_dir;
437	char                  proc_dir_name[10];
438
439	atomic_t stats[IPMI_NUM_STATS];
440
441	/*
442	 * run_to_completion duplicate of smb_info, smi_info
443	 * and ipmi_serial_info structures. Used to decrease numbers of
444	 * parameters passed by "low" level IPMI code.
445	 */
446	int run_to_completion;
447};
448#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449
450/**
451 * The driver model view of the IPMI messaging driver.
452 */
453static struct platform_driver ipmidriver = {
454	.driver = {
455		.name = "ipmi",
456		.bus = &platform_bus_type
457	}
458};
459static DEFINE_MUTEX(ipmidriver_mutex);
460
461static LIST_HEAD(ipmi_interfaces);
462static DEFINE_MUTEX(ipmi_interfaces_mutex);
463
464/*
465 * List of watchers that want to know when smi's are added and deleted.
466 */
467static LIST_HEAD(smi_watchers);
468static DEFINE_MUTEX(smi_watchers_mutex);
469
470#define ipmi_inc_stat(intf, stat) \
471	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472#define ipmi_get_stat(intf, stat) \
473	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474
475static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476				   "ACPI", "SMBIOS", "PCI",
477				   "device-tree", "default" };
478
479const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
480{
481	if (src > SI_DEFAULT)
482		src = 0; /* Invalid */
483	return addr_src_to_str[src];
484}
485EXPORT_SYMBOL(ipmi_addr_src_to_str);
486
487static int is_lan_addr(struct ipmi_addr *addr)
488{
489	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
490}
491
492static int is_ipmb_addr(struct ipmi_addr *addr)
493{
494	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
495}
496
497static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
498{
499	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
500}
501
502static void free_recv_msg_list(struct list_head *q)
503{
504	struct ipmi_recv_msg *msg, *msg2;
505
506	list_for_each_entry_safe(msg, msg2, q, link) {
507		list_del(&msg->link);
508		ipmi_free_recv_msg(msg);
509	}
510}
511
512static void free_smi_msg_list(struct list_head *q)
513{
514	struct ipmi_smi_msg *msg, *msg2;
515
516	list_for_each_entry_safe(msg, msg2, q, link) {
517		list_del(&msg->link);
518		ipmi_free_smi_msg(msg);
519	}
520}
521
522static void clean_up_interface_data(ipmi_smi_t intf)
523{
524	int              i;
525	struct cmd_rcvr  *rcvr, *rcvr2;
526	struct list_head list;
527
528	tasklet_kill(&intf->recv_tasklet);
529
530	free_smi_msg_list(&intf->waiting_rcv_msgs);
531	free_recv_msg_list(&intf->waiting_events);
532
533	/*
534	 * Wholesale remove all the entries from the list in the
535	 * interface and wait for RCU to know that none are in use.
536	 */
537	mutex_lock(&intf->cmd_rcvrs_mutex);
538	INIT_LIST_HEAD(&list);
539	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
540	mutex_unlock(&intf->cmd_rcvrs_mutex);
541
542	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
543		kfree(rcvr);
544
545	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
546		if ((intf->seq_table[i].inuse)
547					&& (intf->seq_table[i].recv_msg))
548			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
549	}
550}
551
552static void intf_free(struct kref *ref)
553{
554	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
555
556	clean_up_interface_data(intf);
557	kfree(intf);
558}
559
560struct watcher_entry {
561	int              intf_num;
562	ipmi_smi_t       intf;
563	struct list_head link;
564};
565
566int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
567{
568	ipmi_smi_t intf;
569	LIST_HEAD(to_deliver);
570	struct watcher_entry *e, *e2;
571
572	mutex_lock(&smi_watchers_mutex);
573
574	mutex_lock(&ipmi_interfaces_mutex);
575
576	/* Build a list of things to deliver. */
577	list_for_each_entry(intf, &ipmi_interfaces, link) {
578		if (intf->intf_num == -1)
579			continue;
580		e = kmalloc(sizeof(*e), GFP_KERNEL);
581		if (!e)
582			goto out_err;
583		kref_get(&intf->refcount);
584		e->intf = intf;
585		e->intf_num = intf->intf_num;
586		list_add_tail(&e->link, &to_deliver);
587	}
588
589	/* We will succeed, so add it to the list. */
590	list_add(&watcher->link, &smi_watchers);
591
592	mutex_unlock(&ipmi_interfaces_mutex);
593
594	list_for_each_entry_safe(e, e2, &to_deliver, link) {
595		list_del(&e->link);
596		watcher->new_smi(e->intf_num, e->intf->si_dev);
597		kref_put(&e->intf->refcount, intf_free);
598		kfree(e);
599	}
600
601	mutex_unlock(&smi_watchers_mutex);
602
603	return 0;
604
605 out_err:
606	mutex_unlock(&ipmi_interfaces_mutex);
607	mutex_unlock(&smi_watchers_mutex);
608	list_for_each_entry_safe(e, e2, &to_deliver, link) {
609		list_del(&e->link);
610		kref_put(&e->intf->refcount, intf_free);
611		kfree(e);
612	}
613	return -ENOMEM;
614}
615EXPORT_SYMBOL(ipmi_smi_watcher_register);
616
617int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
618{
619	mutex_lock(&smi_watchers_mutex);
620	list_del(&(watcher->link));
621	mutex_unlock(&smi_watchers_mutex);
622	return 0;
623}
624EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
625
626/*
627 * Must be called with smi_watchers_mutex held.
628 */
629static void
630call_smi_watchers(int i, struct device *dev)
631{
632	struct ipmi_smi_watcher *w;
633
634	list_for_each_entry(w, &smi_watchers, link) {
635		if (try_module_get(w->owner)) {
636			w->new_smi(i, dev);
637			module_put(w->owner);
638		}
639	}
640}
641
642static int
643ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
644{
645	if (addr1->addr_type != addr2->addr_type)
646		return 0;
647
648	if (addr1->channel != addr2->channel)
649		return 0;
650
651	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
652		struct ipmi_system_interface_addr *smi_addr1
653		    = (struct ipmi_system_interface_addr *) addr1;
654		struct ipmi_system_interface_addr *smi_addr2
655		    = (struct ipmi_system_interface_addr *) addr2;
656		return (smi_addr1->lun == smi_addr2->lun);
657	}
658
659	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
660		struct ipmi_ipmb_addr *ipmb_addr1
661		    = (struct ipmi_ipmb_addr *) addr1;
662		struct ipmi_ipmb_addr *ipmb_addr2
663		    = (struct ipmi_ipmb_addr *) addr2;
664
665		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
666			&& (ipmb_addr1->lun == ipmb_addr2->lun));
667	}
668
669	if (is_lan_addr(addr1)) {
670		struct ipmi_lan_addr *lan_addr1
671			= (struct ipmi_lan_addr *) addr1;
672		struct ipmi_lan_addr *lan_addr2
673		    = (struct ipmi_lan_addr *) addr2;
674
675		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
676			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
677			&& (lan_addr1->session_handle
678			    == lan_addr2->session_handle)
679			&& (lan_addr1->lun == lan_addr2->lun));
680	}
681
682	return 1;
683}
684
685int ipmi_validate_addr(struct ipmi_addr *addr, int len)
686{
687	if (len < sizeof(struct ipmi_system_interface_addr))
688		return -EINVAL;
689
690	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
691		if (addr->channel != IPMI_BMC_CHANNEL)
692			return -EINVAL;
693		return 0;
694	}
695
696	if ((addr->channel == IPMI_BMC_CHANNEL)
697	    || (addr->channel >= IPMI_MAX_CHANNELS)
698	    || (addr->channel < 0))
699		return -EINVAL;
700
701	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
702		if (len < sizeof(struct ipmi_ipmb_addr))
703			return -EINVAL;
704		return 0;
705	}
706
707	if (is_lan_addr(addr)) {
708		if (len < sizeof(struct ipmi_lan_addr))
709			return -EINVAL;
710		return 0;
711	}
712
713	return -EINVAL;
714}
715EXPORT_SYMBOL(ipmi_validate_addr);
716
717unsigned int ipmi_addr_length(int addr_type)
718{
719	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
720		return sizeof(struct ipmi_system_interface_addr);
721
722	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
723			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
724		return sizeof(struct ipmi_ipmb_addr);
725
726	if (addr_type == IPMI_LAN_ADDR_TYPE)
727		return sizeof(struct ipmi_lan_addr);
728
729	return 0;
730}
731EXPORT_SYMBOL(ipmi_addr_length);
732
733static void deliver_response(struct ipmi_recv_msg *msg)
734{
735	if (!msg->user) {
736		ipmi_smi_t    intf = msg->user_msg_data;
737
738		/* Special handling for NULL users. */
739		if (intf->null_user_handler) {
740			intf->null_user_handler(intf, msg);
741			ipmi_inc_stat(intf, handled_local_responses);
742		} else {
743			/* No handler, so give up. */
744			ipmi_inc_stat(intf, unhandled_local_responses);
745		}
746		ipmi_free_recv_msg(msg);
747	} else {
748		ipmi_user_t user = msg->user;
749		user->handler->ipmi_recv_hndl(msg, user->handler_data);
750	}
751}
752
753static void
754deliver_err_response(struct ipmi_recv_msg *msg, int err)
755{
756	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
757	msg->msg_data[0] = err;
758	msg->msg.netfn |= 1; /* Convert to a response. */
759	msg->msg.data_len = 1;
760	msg->msg.data = msg->msg_data;
761	deliver_response(msg);
762}
763
764/*
765 * Find the next sequence number not being used and add the given
766 * message with the given timeout to the sequence table.  This must be
767 * called with the interface's seq_lock held.
768 */
769static int intf_next_seq(ipmi_smi_t           intf,
770			 struct ipmi_recv_msg *recv_msg,
771			 unsigned long        timeout,
772			 int                  retries,
773			 int                  broadcast,
774			 unsigned char        *seq,
775			 long                 *seqid)
776{
777	int          rv = 0;
778	unsigned int i;
779
780	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
781					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
782		if (!intf->seq_table[i].inuse)
783			break;
784	}
785
786	if (!intf->seq_table[i].inuse) {
787		intf->seq_table[i].recv_msg = recv_msg;
788
789		/*
790		 * Start with the maximum timeout, when the send response
791		 * comes in we will start the real timer.
792		 */
793		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
794		intf->seq_table[i].orig_timeout = timeout;
795		intf->seq_table[i].retries_left = retries;
796		intf->seq_table[i].broadcast = broadcast;
797		intf->seq_table[i].inuse = 1;
798		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
799		*seq = i;
800		*seqid = intf->seq_table[i].seqid;
801		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
802		need_waiter(intf);
803	} else {
804		rv = -EAGAIN;
805	}
806
807	return rv;
808}
809
810/*
811 * Return the receive message for the given sequence number and
812 * release the sequence number so it can be reused.  Some other data
813 * is passed in to be sure the message matches up correctly (to help
814 * guard against message coming in after their timeout and the
815 * sequence number being reused).
816 */
817static int intf_find_seq(ipmi_smi_t           intf,
818			 unsigned char        seq,
819			 short                channel,
820			 unsigned char        cmd,
821			 unsigned char        netfn,
822			 struct ipmi_addr     *addr,
823			 struct ipmi_recv_msg **recv_msg)
824{
825	int           rv = -ENODEV;
826	unsigned long flags;
827
828	if (seq >= IPMI_IPMB_NUM_SEQ)
829		return -EINVAL;
830
831	spin_lock_irqsave(&(intf->seq_lock), flags);
832	if (intf->seq_table[seq].inuse) {
833		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
834
835		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
836				&& (msg->msg.netfn == netfn)
837				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
838			*recv_msg = msg;
839			intf->seq_table[seq].inuse = 0;
840			rv = 0;
841		}
842	}
843	spin_unlock_irqrestore(&(intf->seq_lock), flags);
844
845	return rv;
846}
847
848
849/* Start the timer for a specific sequence table entry. */
850static int intf_start_seq_timer(ipmi_smi_t intf,
851				long       msgid)
852{
853	int           rv = -ENODEV;
854	unsigned long flags;
855	unsigned char seq;
856	unsigned long seqid;
857
858
859	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
860
861	spin_lock_irqsave(&(intf->seq_lock), flags);
862	/*
863	 * We do this verification because the user can be deleted
864	 * while a message is outstanding.
865	 */
866	if ((intf->seq_table[seq].inuse)
867				&& (intf->seq_table[seq].seqid == seqid)) {
868		struct seq_table *ent = &(intf->seq_table[seq]);
869		ent->timeout = ent->orig_timeout;
870		rv = 0;
871	}
872	spin_unlock_irqrestore(&(intf->seq_lock), flags);
873
874	return rv;
875}
876
877/* Got an error for the send message for a specific sequence number. */
878static int intf_err_seq(ipmi_smi_t   intf,
879			long         msgid,
880			unsigned int err)
881{
882	int                  rv = -ENODEV;
883	unsigned long        flags;
884	unsigned char        seq;
885	unsigned long        seqid;
886	struct ipmi_recv_msg *msg = NULL;
887
888
889	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
890
891	spin_lock_irqsave(&(intf->seq_lock), flags);
892	/*
893	 * We do this verification because the user can be deleted
894	 * while a message is outstanding.
895	 */
896	if ((intf->seq_table[seq].inuse)
897				&& (intf->seq_table[seq].seqid == seqid)) {
898		struct seq_table *ent = &(intf->seq_table[seq]);
899
900		ent->inuse = 0;
901		msg = ent->recv_msg;
902		rv = 0;
903	}
904	spin_unlock_irqrestore(&(intf->seq_lock), flags);
905
906	if (msg)
907		deliver_err_response(msg, err);
908
909	return rv;
910}
911
912
913int ipmi_create_user(unsigned int          if_num,
914		     struct ipmi_user_hndl *handler,
915		     void                  *handler_data,
916		     ipmi_user_t           *user)
917{
918	unsigned long flags;
919	ipmi_user_t   new_user;
920	int           rv = 0;
921	ipmi_smi_t    intf;
922
923	/*
924	 * There is no module usecount here, because it's not
925	 * required.  Since this can only be used by and called from
926	 * other modules, they will implicitly use this module, and
927	 * thus this can't be removed unless the other modules are
928	 * removed.
929	 */
930
931	if (handler == NULL)
932		return -EINVAL;
933
934	/*
935	 * Make sure the driver is actually initialized, this handles
936	 * problems with initialization order.
937	 */
938	if (!initialized) {
939		rv = ipmi_init_msghandler();
940		if (rv)
941			return rv;
942
943		/*
944		 * The init code doesn't return an error if it was turned
945		 * off, but it won't initialize.  Check that.
946		 */
947		if (!initialized)
948			return -ENODEV;
949	}
950
951	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
952	if (!new_user)
953		return -ENOMEM;
954
955	mutex_lock(&ipmi_interfaces_mutex);
956	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
957		if (intf->intf_num == if_num)
958			goto found;
959	}
960	/* Not found, return an error */
961	rv = -EINVAL;
962	goto out_kfree;
963
964 found:
965	/* Note that each existing user holds a refcount to the interface. */
966	kref_get(&intf->refcount);
967
968	kref_init(&new_user->refcount);
969	new_user->handler = handler;
970	new_user->handler_data = handler_data;
971	new_user->intf = intf;
972	new_user->gets_events = false;
973
974	if (!try_module_get(intf->handlers->owner)) {
975		rv = -ENODEV;
976		goto out_kref;
977	}
978
979	if (intf->handlers->inc_usecount) {
980		rv = intf->handlers->inc_usecount(intf->send_info);
981		if (rv) {
982			module_put(intf->handlers->owner);
983			goto out_kref;
984		}
985	}
986
987	/*
988	 * Hold the lock so intf->handlers is guaranteed to be good
989	 * until now
990	 */
991	mutex_unlock(&ipmi_interfaces_mutex);
992
993	new_user->valid = true;
994	spin_lock_irqsave(&intf->seq_lock, flags);
995	list_add_rcu(&new_user->link, &intf->users);
996	spin_unlock_irqrestore(&intf->seq_lock, flags);
997	if (handler->ipmi_watchdog_pretimeout) {
998		/* User wants pretimeouts, so make sure to watch for them. */
999		if (atomic_inc_return(&intf->event_waiters) == 1)
1000			need_waiter(intf);
1001	}
1002	*user = new_user;
1003	return 0;
1004
1005out_kref:
1006	kref_put(&intf->refcount, intf_free);
1007out_kfree:
1008	mutex_unlock(&ipmi_interfaces_mutex);
1009	kfree(new_user);
1010	return rv;
1011}
1012EXPORT_SYMBOL(ipmi_create_user);
1013
1014int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1015{
1016	int           rv = 0;
1017	ipmi_smi_t    intf;
1018	struct ipmi_smi_handlers *handlers;
1019
1020	mutex_lock(&ipmi_interfaces_mutex);
1021	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1022		if (intf->intf_num == if_num)
1023			goto found;
1024	}
1025	/* Not found, return an error */
1026	rv = -EINVAL;
1027	mutex_unlock(&ipmi_interfaces_mutex);
1028	return rv;
1029
1030found:
1031	handlers = intf->handlers;
1032	rv = -ENOSYS;
1033	if (handlers->get_smi_info)
1034		rv = handlers->get_smi_info(intf->send_info, data);
1035	mutex_unlock(&ipmi_interfaces_mutex);
1036
1037	return rv;
1038}
1039EXPORT_SYMBOL(ipmi_get_smi_info);
1040
1041static void free_user(struct kref *ref)
1042{
1043	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1044	kfree(user);
1045}
1046
1047int ipmi_destroy_user(ipmi_user_t user)
1048{
1049	ipmi_smi_t       intf = user->intf;
1050	int              i;
1051	unsigned long    flags;
1052	struct cmd_rcvr  *rcvr;
1053	struct cmd_rcvr  *rcvrs = NULL;
1054
1055	user->valid = false;
1056
1057	if (user->handler->ipmi_watchdog_pretimeout)
1058		atomic_dec(&intf->event_waiters);
1059
1060	if (user->gets_events)
1061		atomic_dec(&intf->event_waiters);
1062
1063	/* Remove the user from the interface's sequence table. */
1064	spin_lock_irqsave(&intf->seq_lock, flags);
1065	list_del_rcu(&user->link);
1066
1067	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1068		if (intf->seq_table[i].inuse
1069		    && (intf->seq_table[i].recv_msg->user == user)) {
1070			intf->seq_table[i].inuse = 0;
1071			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1072		}
1073	}
1074	spin_unlock_irqrestore(&intf->seq_lock, flags);
1075
1076	/*
1077	 * Remove the user from the command receiver's table.  First
1078	 * we build a list of everything (not using the standard link,
1079	 * since other things may be using it till we do
1080	 * synchronize_rcu()) then free everything in that list.
1081	 */
1082	mutex_lock(&intf->cmd_rcvrs_mutex);
1083	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1084		if (rcvr->user == user) {
1085			list_del_rcu(&rcvr->link);
1086			rcvr->next = rcvrs;
1087			rcvrs = rcvr;
1088		}
1089	}
1090	mutex_unlock(&intf->cmd_rcvrs_mutex);
1091	synchronize_rcu();
1092	while (rcvrs) {
1093		rcvr = rcvrs;
1094		rcvrs = rcvr->next;
1095		kfree(rcvr);
1096	}
1097
1098	mutex_lock(&ipmi_interfaces_mutex);
1099	if (intf->handlers) {
1100		module_put(intf->handlers->owner);
1101		if (intf->handlers->dec_usecount)
1102			intf->handlers->dec_usecount(intf->send_info);
1103	}
1104	mutex_unlock(&ipmi_interfaces_mutex);
1105
1106	kref_put(&intf->refcount, intf_free);
1107
1108	kref_put(&user->refcount, free_user);
1109
1110	return 0;
1111}
1112EXPORT_SYMBOL(ipmi_destroy_user);
1113
1114void ipmi_get_version(ipmi_user_t   user,
1115		      unsigned char *major,
1116		      unsigned char *minor)
1117{
1118	*major = user->intf->ipmi_version_major;
1119	*minor = user->intf->ipmi_version_minor;
1120}
1121EXPORT_SYMBOL(ipmi_get_version);
1122
1123int ipmi_set_my_address(ipmi_user_t   user,
1124			unsigned int  channel,
1125			unsigned char address)
1126{
1127	if (channel >= IPMI_MAX_CHANNELS)
1128		return -EINVAL;
1129	user->intf->channels[channel].address = address;
1130	return 0;
1131}
1132EXPORT_SYMBOL(ipmi_set_my_address);
1133
1134int ipmi_get_my_address(ipmi_user_t   user,
1135			unsigned int  channel,
1136			unsigned char *address)
1137{
1138	if (channel >= IPMI_MAX_CHANNELS)
1139		return -EINVAL;
1140	*address = user->intf->channels[channel].address;
1141	return 0;
1142}
1143EXPORT_SYMBOL(ipmi_get_my_address);
1144
1145int ipmi_set_my_LUN(ipmi_user_t   user,
1146		    unsigned int  channel,
1147		    unsigned char LUN)
1148{
1149	if (channel >= IPMI_MAX_CHANNELS)
1150		return -EINVAL;
1151	user->intf->channels[channel].lun = LUN & 0x3;
1152	return 0;
1153}
1154EXPORT_SYMBOL(ipmi_set_my_LUN);
1155
1156int ipmi_get_my_LUN(ipmi_user_t   user,
1157		    unsigned int  channel,
1158		    unsigned char *address)
1159{
1160	if (channel >= IPMI_MAX_CHANNELS)
1161		return -EINVAL;
1162	*address = user->intf->channels[channel].lun;
1163	return 0;
1164}
1165EXPORT_SYMBOL(ipmi_get_my_LUN);
1166
1167int ipmi_get_maintenance_mode(ipmi_user_t user)
1168{
1169	int           mode;
1170	unsigned long flags;
1171
1172	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1173	mode = user->intf->maintenance_mode;
1174	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1175
1176	return mode;
1177}
1178EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1179
1180static void maintenance_mode_update(ipmi_smi_t intf)
1181{
1182	if (intf->handlers->set_maintenance_mode)
1183		intf->handlers->set_maintenance_mode(
1184			intf->send_info, intf->maintenance_mode_enable);
1185}
1186
1187int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1188{
1189	int           rv = 0;
1190	unsigned long flags;
1191	ipmi_smi_t    intf = user->intf;
1192
1193	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1194	if (intf->maintenance_mode != mode) {
1195		switch (mode) {
1196		case IPMI_MAINTENANCE_MODE_AUTO:
1197			intf->maintenance_mode_enable
1198				= (intf->auto_maintenance_timeout > 0);
1199			break;
1200
1201		case IPMI_MAINTENANCE_MODE_OFF:
1202			intf->maintenance_mode_enable = false;
1203			break;
1204
1205		case IPMI_MAINTENANCE_MODE_ON:
1206			intf->maintenance_mode_enable = true;
1207			break;
1208
1209		default:
1210			rv = -EINVAL;
1211			goto out_unlock;
1212		}
1213		intf->maintenance_mode = mode;
1214
1215		maintenance_mode_update(intf);
1216	}
1217 out_unlock:
1218	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1219
1220	return rv;
1221}
1222EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1223
1224int ipmi_set_gets_events(ipmi_user_t user, bool val)
1225{
1226	unsigned long        flags;
1227	ipmi_smi_t           intf = user->intf;
1228	struct ipmi_recv_msg *msg, *msg2;
1229	struct list_head     msgs;
1230
1231	INIT_LIST_HEAD(&msgs);
1232
1233	spin_lock_irqsave(&intf->events_lock, flags);
1234	if (user->gets_events == val)
1235		goto out;
1236
1237	user->gets_events = val;
1238
1239	if (val) {
1240		if (atomic_inc_return(&intf->event_waiters) == 1)
1241			need_waiter(intf);
1242	} else {
1243		atomic_dec(&intf->event_waiters);
1244	}
1245
1246	if (intf->delivering_events)
1247		/*
1248		 * Another thread is delivering events for this, so
1249		 * let it handle any new events.
1250		 */
1251		goto out;
1252
1253	/* Deliver any queued events. */
1254	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1255		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1256			list_move_tail(&msg->link, &msgs);
1257		intf->waiting_events_count = 0;
1258		if (intf->event_msg_printed) {
1259			printk(KERN_WARNING PFX "Event queue no longer"
1260			       " full\n");
1261			intf->event_msg_printed = 0;
1262		}
1263
1264		intf->delivering_events = 1;
1265		spin_unlock_irqrestore(&intf->events_lock, flags);
1266
1267		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1268			msg->user = user;
1269			kref_get(&user->refcount);
1270			deliver_response(msg);
1271		}
1272
1273		spin_lock_irqsave(&intf->events_lock, flags);
1274		intf->delivering_events = 0;
1275	}
1276
1277 out:
1278	spin_unlock_irqrestore(&intf->events_lock, flags);
1279
1280	return 0;
1281}
1282EXPORT_SYMBOL(ipmi_set_gets_events);
1283
1284static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1285				      unsigned char netfn,
1286				      unsigned char cmd,
1287				      unsigned char chan)
1288{
1289	struct cmd_rcvr *rcvr;
1290
1291	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1292		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1293					&& (rcvr->chans & (1 << chan)))
1294			return rcvr;
1295	}
1296	return NULL;
1297}
1298
1299static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1300				 unsigned char netfn,
1301				 unsigned char cmd,
1302				 unsigned int  chans)
1303{
1304	struct cmd_rcvr *rcvr;
1305
1306	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1307		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1308					&& (rcvr->chans & chans))
1309			return 0;
1310	}
1311	return 1;
1312}
1313
1314int ipmi_register_for_cmd(ipmi_user_t   user,
1315			  unsigned char netfn,
1316			  unsigned char cmd,
1317			  unsigned int  chans)
1318{
1319	ipmi_smi_t      intf = user->intf;
1320	struct cmd_rcvr *rcvr;
1321	int             rv = 0;
1322
1323
1324	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1325	if (!rcvr)
1326		return -ENOMEM;
1327	rcvr->cmd = cmd;
1328	rcvr->netfn = netfn;
1329	rcvr->chans = chans;
1330	rcvr->user = user;
1331
1332	mutex_lock(&intf->cmd_rcvrs_mutex);
1333	/* Make sure the command/netfn is not already registered. */
1334	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1335		rv = -EBUSY;
1336		goto out_unlock;
1337	}
1338
1339	if (atomic_inc_return(&intf->event_waiters) == 1)
1340		need_waiter(intf);
1341
1342	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1343
1344 out_unlock:
1345	mutex_unlock(&intf->cmd_rcvrs_mutex);
1346	if (rv)
1347		kfree(rcvr);
1348
1349	return rv;
1350}
1351EXPORT_SYMBOL(ipmi_register_for_cmd);
1352
1353int ipmi_unregister_for_cmd(ipmi_user_t   user,
1354			    unsigned char netfn,
1355			    unsigned char cmd,
1356			    unsigned int  chans)
1357{
1358	ipmi_smi_t      intf = user->intf;
1359	struct cmd_rcvr *rcvr;
1360	struct cmd_rcvr *rcvrs = NULL;
1361	int i, rv = -ENOENT;
1362
1363	mutex_lock(&intf->cmd_rcvrs_mutex);
1364	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1365		if (((1 << i) & chans) == 0)
1366			continue;
1367		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1368		if (rcvr == NULL)
1369			continue;
1370		if (rcvr->user == user) {
1371			rv = 0;
1372			rcvr->chans &= ~chans;
1373			if (rcvr->chans == 0) {
1374				list_del_rcu(&rcvr->link);
1375				rcvr->next = rcvrs;
1376				rcvrs = rcvr;
1377			}
1378		}
1379	}
1380	mutex_unlock(&intf->cmd_rcvrs_mutex);
1381	synchronize_rcu();
1382	while (rcvrs) {
1383		atomic_dec(&intf->event_waiters);
1384		rcvr = rcvrs;
1385		rcvrs = rcvr->next;
1386		kfree(rcvr);
1387	}
1388	return rv;
1389}
1390EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1391
1392static unsigned char
1393ipmb_checksum(unsigned char *data, int size)
1394{
1395	unsigned char csum = 0;
1396
1397	for (; size > 0; size--, data++)
1398		csum += *data;
1399
1400	return -csum;
1401}
1402
1403static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1404				   struct kernel_ipmi_msg *msg,
1405				   struct ipmi_ipmb_addr *ipmb_addr,
1406				   long                  msgid,
1407				   unsigned char         ipmb_seq,
1408				   int                   broadcast,
1409				   unsigned char         source_address,
1410				   unsigned char         source_lun)
1411{
1412	int i = broadcast;
1413
1414	/* Format the IPMB header data. */
1415	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1416	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1417	smi_msg->data[2] = ipmb_addr->channel;
1418	if (broadcast)
1419		smi_msg->data[3] = 0;
1420	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1421	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1422	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1423	smi_msg->data[i+6] = source_address;
1424	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1425	smi_msg->data[i+8] = msg->cmd;
1426
1427	/* Now tack on the data to the message. */
1428	if (msg->data_len > 0)
1429		memcpy(&(smi_msg->data[i+9]), msg->data,
1430		       msg->data_len);
1431	smi_msg->data_size = msg->data_len + 9;
1432
1433	/* Now calculate the checksum and tack it on. */
1434	smi_msg->data[i+smi_msg->data_size]
1435		= ipmb_checksum(&(smi_msg->data[i+6]),
1436				smi_msg->data_size-6);
1437
1438	/*
1439	 * Add on the checksum size and the offset from the
1440	 * broadcast.
1441	 */
1442	smi_msg->data_size += 1 + i;
1443
1444	smi_msg->msgid = msgid;
1445}
1446
1447static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1448				  struct kernel_ipmi_msg *msg,
1449				  struct ipmi_lan_addr  *lan_addr,
1450				  long                  msgid,
1451				  unsigned char         ipmb_seq,
1452				  unsigned char         source_lun)
1453{
1454	/* Format the IPMB header data. */
1455	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1456	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1457	smi_msg->data[2] = lan_addr->channel;
1458	smi_msg->data[3] = lan_addr->session_handle;
1459	smi_msg->data[4] = lan_addr->remote_SWID;
1460	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1461	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1462	smi_msg->data[7] = lan_addr->local_SWID;
1463	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1464	smi_msg->data[9] = msg->cmd;
1465
1466	/* Now tack on the data to the message. */
1467	if (msg->data_len > 0)
1468		memcpy(&(smi_msg->data[10]), msg->data,
1469		       msg->data_len);
1470	smi_msg->data_size = msg->data_len + 10;
1471
1472	/* Now calculate the checksum and tack it on. */
1473	smi_msg->data[smi_msg->data_size]
1474		= ipmb_checksum(&(smi_msg->data[7]),
1475				smi_msg->data_size-7);
1476
1477	/*
1478	 * Add on the checksum size and the offset from the
1479	 * broadcast.
1480	 */
1481	smi_msg->data_size += 1;
1482
1483	smi_msg->msgid = msgid;
1484}
1485
1486static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1487					     struct ipmi_smi_msg *smi_msg,
1488					     int priority)
1489{
1490	if (intf->curr_msg) {
1491		if (priority > 0)
1492			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1493		else
1494			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1495		smi_msg = NULL;
1496	} else {
1497		intf->curr_msg = smi_msg;
1498	}
1499
1500	return smi_msg;
1501}
1502
1503
1504static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers,
1505		     struct ipmi_smi_msg *smi_msg, int priority)
1506{
1507	int run_to_completion = intf->run_to_completion;
1508
1509	if (run_to_completion) {
1510		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1511	} else {
1512		unsigned long flags;
1513
1514		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1515		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1516		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1517	}
1518
1519	if (smi_msg)
1520		handlers->sender(intf->send_info, smi_msg);
1521}
1522
1523/*
1524 * Separate from ipmi_request so that the user does not have to be
1525 * supplied in certain circumstances (mainly at panic time).  If
1526 * messages are supplied, they will be freed, even if an error
1527 * occurs.
1528 */
1529static int i_ipmi_request(ipmi_user_t          user,
1530			  ipmi_smi_t           intf,
1531			  struct ipmi_addr     *addr,
1532			  long                 msgid,
1533			  struct kernel_ipmi_msg *msg,
1534			  void                 *user_msg_data,
1535			  void                 *supplied_smi,
1536			  struct ipmi_recv_msg *supplied_recv,
1537			  int                  priority,
1538			  unsigned char        source_address,
1539			  unsigned char        source_lun,
1540			  int                  retries,
1541			  unsigned int         retry_time_ms)
1542{
1543	int                      rv = 0;
1544	struct ipmi_smi_msg      *smi_msg;
1545	struct ipmi_recv_msg     *recv_msg;
1546	unsigned long            flags;
1547
1548
1549	if (supplied_recv)
1550		recv_msg = supplied_recv;
1551	else {
1552		recv_msg = ipmi_alloc_recv_msg();
1553		if (recv_msg == NULL)
1554			return -ENOMEM;
1555	}
1556	recv_msg->user_msg_data = user_msg_data;
1557
1558	if (supplied_smi)
1559		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1560	else {
1561		smi_msg = ipmi_alloc_smi_msg();
1562		if (smi_msg == NULL) {
1563			ipmi_free_recv_msg(recv_msg);
1564			return -ENOMEM;
1565		}
1566	}
1567
1568	rcu_read_lock();
1569	if (intf->in_shutdown) {
1570		rv = -ENODEV;
1571		goto out_err;
1572	}
1573
1574	recv_msg->user = user;
1575	if (user)
1576		kref_get(&user->refcount);
1577	recv_msg->msgid = msgid;
1578	/*
1579	 * Store the message to send in the receive message so timeout
1580	 * responses can get the proper response data.
1581	 */
1582	recv_msg->msg = *msg;
1583
1584	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1585		struct ipmi_system_interface_addr *smi_addr;
1586
1587		if (msg->netfn & 1) {
1588			/* Responses are not allowed to the SMI. */
1589			rv = -EINVAL;
1590			goto out_err;
1591		}
1592
1593		smi_addr = (struct ipmi_system_interface_addr *) addr;
1594		if (smi_addr->lun > 3) {
1595			ipmi_inc_stat(intf, sent_invalid_commands);
1596			rv = -EINVAL;
1597			goto out_err;
1598		}
1599
1600		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1601
1602		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1603		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1604			|| (msg->cmd == IPMI_GET_MSG_CMD)
1605			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1606			/*
1607			 * We don't let the user do these, since we manage
1608			 * the sequence numbers.
1609			 */
1610			ipmi_inc_stat(intf, sent_invalid_commands);
1611			rv = -EINVAL;
1612			goto out_err;
1613		}
1614
1615		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1616		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1617			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1618		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1619			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1620			intf->auto_maintenance_timeout
1621				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1622			if (!intf->maintenance_mode
1623			    && !intf->maintenance_mode_enable) {
1624				intf->maintenance_mode_enable = true;
1625				maintenance_mode_update(intf);
1626			}
1627			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1628					       flags);
1629		}
1630
1631		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1632			ipmi_inc_stat(intf, sent_invalid_commands);
1633			rv = -EMSGSIZE;
1634			goto out_err;
1635		}
1636
1637		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1638		smi_msg->data[1] = msg->cmd;
1639		smi_msg->msgid = msgid;
1640		smi_msg->user_data = recv_msg;
1641		if (msg->data_len > 0)
1642			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1643		smi_msg->data_size = msg->data_len + 2;
1644		ipmi_inc_stat(intf, sent_local_commands);
1645	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1646		struct ipmi_ipmb_addr *ipmb_addr;
1647		unsigned char         ipmb_seq;
1648		long                  seqid;
1649		int                   broadcast = 0;
1650
1651		if (addr->channel >= IPMI_MAX_CHANNELS) {
1652			ipmi_inc_stat(intf, sent_invalid_commands);
1653			rv = -EINVAL;
1654			goto out_err;
1655		}
1656
1657		if (intf->channels[addr->channel].medium
1658					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1659			ipmi_inc_stat(intf, sent_invalid_commands);
1660			rv = -EINVAL;
1661			goto out_err;
1662		}
1663
1664		if (retries < 0) {
1665		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1666			retries = 0; /* Don't retry broadcasts. */
1667		    else
1668			retries = 4;
1669		}
1670		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1671		    /*
1672		     * Broadcasts add a zero at the beginning of the
1673		     * message, but otherwise is the same as an IPMB
1674		     * address.
1675		     */
1676		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1677		    broadcast = 1;
1678		}
1679
1680
1681		/* Default to 1 second retries. */
1682		if (retry_time_ms == 0)
1683		    retry_time_ms = 1000;
1684
1685		/*
1686		 * 9 for the header and 1 for the checksum, plus
1687		 * possibly one for the broadcast.
1688		 */
1689		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1690			ipmi_inc_stat(intf, sent_invalid_commands);
1691			rv = -EMSGSIZE;
1692			goto out_err;
1693		}
1694
1695		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1696		if (ipmb_addr->lun > 3) {
1697			ipmi_inc_stat(intf, sent_invalid_commands);
1698			rv = -EINVAL;
1699			goto out_err;
1700		}
1701
1702		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1703
1704		if (recv_msg->msg.netfn & 0x1) {
1705			/*
1706			 * It's a response, so use the user's sequence
1707			 * from msgid.
1708			 */
1709			ipmi_inc_stat(intf, sent_ipmb_responses);
1710			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1711					msgid, broadcast,
1712					source_address, source_lun);
1713
1714			/*
1715			 * Save the receive message so we can use it
1716			 * to deliver the response.
1717			 */
1718			smi_msg->user_data = recv_msg;
1719		} else {
1720			/* It's a command, so get a sequence for it. */
1721
1722			spin_lock_irqsave(&(intf->seq_lock), flags);
1723
1724			/*
1725			 * Create a sequence number with a 1 second
1726			 * timeout and 4 retries.
1727			 */
1728			rv = intf_next_seq(intf,
1729					   recv_msg,
1730					   retry_time_ms,
1731					   retries,
1732					   broadcast,
1733					   &ipmb_seq,
1734					   &seqid);
1735			if (rv) {
1736				/*
1737				 * We have used up all the sequence numbers,
1738				 * probably, so abort.
1739				 */
1740				spin_unlock_irqrestore(&(intf->seq_lock),
1741						       flags);
1742				goto out_err;
1743			}
1744
1745			ipmi_inc_stat(intf, sent_ipmb_commands);
1746
1747			/*
1748			 * Store the sequence number in the message,
1749			 * so that when the send message response
1750			 * comes back we can start the timer.
1751			 */
1752			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1753					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1754					ipmb_seq, broadcast,
1755					source_address, source_lun);
1756
1757			/*
1758			 * Copy the message into the recv message data, so we
1759			 * can retransmit it later if necessary.
1760			 */
1761			memcpy(recv_msg->msg_data, smi_msg->data,
1762			       smi_msg->data_size);
1763			recv_msg->msg.data = recv_msg->msg_data;
1764			recv_msg->msg.data_len = smi_msg->data_size;
1765
1766			/*
1767			 * We don't unlock until here, because we need
1768			 * to copy the completed message into the
1769			 * recv_msg before we release the lock.
1770			 * Otherwise, race conditions may bite us.  I
1771			 * know that's pretty paranoid, but I prefer
1772			 * to be correct.
1773			 */
1774			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1775		}
1776	} else if (is_lan_addr(addr)) {
1777		struct ipmi_lan_addr  *lan_addr;
1778		unsigned char         ipmb_seq;
1779		long                  seqid;
1780
1781		if (addr->channel >= IPMI_MAX_CHANNELS) {
1782			ipmi_inc_stat(intf, sent_invalid_commands);
1783			rv = -EINVAL;
1784			goto out_err;
1785		}
1786
1787		if ((intf->channels[addr->channel].medium
1788				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1789		    && (intf->channels[addr->channel].medium
1790				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1791			ipmi_inc_stat(intf, sent_invalid_commands);
1792			rv = -EINVAL;
1793			goto out_err;
1794		}
1795
1796		retries = 4;
1797
1798		/* Default to 1 second retries. */
1799		if (retry_time_ms == 0)
1800		    retry_time_ms = 1000;
1801
1802		/* 11 for the header and 1 for the checksum. */
1803		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1804			ipmi_inc_stat(intf, sent_invalid_commands);
1805			rv = -EMSGSIZE;
1806			goto out_err;
1807		}
1808
1809		lan_addr = (struct ipmi_lan_addr *) addr;
1810		if (lan_addr->lun > 3) {
1811			ipmi_inc_stat(intf, sent_invalid_commands);
1812			rv = -EINVAL;
1813			goto out_err;
1814		}
1815
1816		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1817
1818		if (recv_msg->msg.netfn & 0x1) {
1819			/*
1820			 * It's a response, so use the user's sequence
1821			 * from msgid.
1822			 */
1823			ipmi_inc_stat(intf, sent_lan_responses);
1824			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1825				       msgid, source_lun);
1826
1827			/*
1828			 * Save the receive message so we can use it
1829			 * to deliver the response.
1830			 */
1831			smi_msg->user_data = recv_msg;
1832		} else {
1833			/* It's a command, so get a sequence for it. */
1834
1835			spin_lock_irqsave(&(intf->seq_lock), flags);
1836
1837			/*
1838			 * Create a sequence number with a 1 second
1839			 * timeout and 4 retries.
1840			 */
1841			rv = intf_next_seq(intf,
1842					   recv_msg,
1843					   retry_time_ms,
1844					   retries,
1845					   0,
1846					   &ipmb_seq,
1847					   &seqid);
1848			if (rv) {
1849				/*
1850				 * We have used up all the sequence numbers,
1851				 * probably, so abort.
1852				 */
1853				spin_unlock_irqrestore(&(intf->seq_lock),
1854						       flags);
1855				goto out_err;
1856			}
1857
1858			ipmi_inc_stat(intf, sent_lan_commands);
1859
1860			/*
1861			 * Store the sequence number in the message,
1862			 * so that when the send message response
1863			 * comes back we can start the timer.
1864			 */
1865			format_lan_msg(smi_msg, msg, lan_addr,
1866				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1867				       ipmb_seq, source_lun);
1868
1869			/*
1870			 * Copy the message into the recv message data, so we
1871			 * can retransmit it later if necessary.
1872			 */
1873			memcpy(recv_msg->msg_data, smi_msg->data,
1874			       smi_msg->data_size);
1875			recv_msg->msg.data = recv_msg->msg_data;
1876			recv_msg->msg.data_len = smi_msg->data_size;
1877
1878			/*
1879			 * We don't unlock until here, because we need
1880			 * to copy the completed message into the
1881			 * recv_msg before we release the lock.
1882			 * Otherwise, race conditions may bite us.  I
1883			 * know that's pretty paranoid, but I prefer
1884			 * to be correct.
1885			 */
1886			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1887		}
1888	} else {
1889	    /* Unknown address type. */
1890		ipmi_inc_stat(intf, sent_invalid_commands);
1891		rv = -EINVAL;
1892		goto out_err;
1893	}
1894
1895#ifdef DEBUG_MSGING
1896	{
1897		int m;
1898		for (m = 0; m < smi_msg->data_size; m++)
1899			printk(" %2.2x", smi_msg->data[m]);
1900		printk("\n");
1901	}
1902#endif
1903
1904	smi_send(intf, intf->handlers, smi_msg, priority);
1905	rcu_read_unlock();
1906
1907	return 0;
1908
1909 out_err:
1910	rcu_read_unlock();
1911	ipmi_free_smi_msg(smi_msg);
1912	ipmi_free_recv_msg(recv_msg);
1913	return rv;
1914}
1915
1916static int check_addr(ipmi_smi_t       intf,
1917		      struct ipmi_addr *addr,
1918		      unsigned char    *saddr,
1919		      unsigned char    *lun)
1920{
1921	if (addr->channel >= IPMI_MAX_CHANNELS)
1922		return -EINVAL;
1923	*lun = intf->channels[addr->channel].lun;
1924	*saddr = intf->channels[addr->channel].address;
1925	return 0;
1926}
1927
1928int ipmi_request_settime(ipmi_user_t      user,
1929			 struct ipmi_addr *addr,
1930			 long             msgid,
1931			 struct kernel_ipmi_msg  *msg,
1932			 void             *user_msg_data,
1933			 int              priority,
1934			 int              retries,
1935			 unsigned int     retry_time_ms)
1936{
1937	unsigned char saddr = 0, lun = 0;
1938	int           rv;
1939
1940	if (!user)
1941		return -EINVAL;
1942	rv = check_addr(user->intf, addr, &saddr, &lun);
1943	if (rv)
1944		return rv;
1945	return i_ipmi_request(user,
1946			      user->intf,
1947			      addr,
1948			      msgid,
1949			      msg,
1950			      user_msg_data,
1951			      NULL, NULL,
1952			      priority,
1953			      saddr,
1954			      lun,
1955			      retries,
1956			      retry_time_ms);
1957}
1958EXPORT_SYMBOL(ipmi_request_settime);
1959
1960int ipmi_request_supply_msgs(ipmi_user_t          user,
1961			     struct ipmi_addr     *addr,
1962			     long                 msgid,
1963			     struct kernel_ipmi_msg *msg,
1964			     void                 *user_msg_data,
1965			     void                 *supplied_smi,
1966			     struct ipmi_recv_msg *supplied_recv,
1967			     int                  priority)
1968{
1969	unsigned char saddr = 0, lun = 0;
1970	int           rv;
1971
1972	if (!user)
1973		return -EINVAL;
1974	rv = check_addr(user->intf, addr, &saddr, &lun);
1975	if (rv)
1976		return rv;
1977	return i_ipmi_request(user,
1978			      user->intf,
1979			      addr,
1980			      msgid,
1981			      msg,
1982			      user_msg_data,
1983			      supplied_smi,
1984			      supplied_recv,
1985			      priority,
1986			      saddr,
1987			      lun,
1988			      -1, 0);
1989}
1990EXPORT_SYMBOL(ipmi_request_supply_msgs);
1991
1992#ifdef CONFIG_PROC_FS
1993static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1994{
1995	ipmi_smi_t intf = m->private;
1996	int        i;
1997
1998	seq_printf(m, "%x", intf->channels[0].address);
1999	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2000		seq_printf(m, " %x", intf->channels[i].address);
2001	seq_putc(m, '\n');
2002
2003	return 0;
2004}
2005
2006static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2007{
2008	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2009}
2010
2011static const struct file_operations smi_ipmb_proc_ops = {
2012	.open		= smi_ipmb_proc_open,
2013	.read		= seq_read,
2014	.llseek		= seq_lseek,
2015	.release	= single_release,
2016};
2017
2018static int smi_version_proc_show(struct seq_file *m, void *v)
2019{
2020	ipmi_smi_t intf = m->private;
2021
2022	seq_printf(m, "%u.%u\n",
2023		   ipmi_version_major(&intf->bmc->id),
2024		   ipmi_version_minor(&intf->bmc->id));
2025
2026	return 0;
2027}
2028
2029static int smi_version_proc_open(struct inode *inode, struct file *file)
2030{
2031	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2032}
2033
2034static const struct file_operations smi_version_proc_ops = {
2035	.open		= smi_version_proc_open,
2036	.read		= seq_read,
2037	.llseek		= seq_lseek,
2038	.release	= single_release,
2039};
2040
2041static int smi_stats_proc_show(struct seq_file *m, void *v)
2042{
2043	ipmi_smi_t intf = m->private;
2044
2045	seq_printf(m, "sent_invalid_commands:       %u\n",
2046		       ipmi_get_stat(intf, sent_invalid_commands));
2047	seq_printf(m, "sent_local_commands:         %u\n",
2048		       ipmi_get_stat(intf, sent_local_commands));
2049	seq_printf(m, "handled_local_responses:     %u\n",
2050		       ipmi_get_stat(intf, handled_local_responses));
2051	seq_printf(m, "unhandled_local_responses:   %u\n",
2052		       ipmi_get_stat(intf, unhandled_local_responses));
2053	seq_printf(m, "sent_ipmb_commands:          %u\n",
2054		       ipmi_get_stat(intf, sent_ipmb_commands));
2055	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2056		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2057	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2058		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2059	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2060		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2061	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2062		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2063	seq_printf(m, "sent_ipmb_responses:         %u\n",
2064		       ipmi_get_stat(intf, sent_ipmb_responses));
2065	seq_printf(m, "handled_ipmb_responses:      %u\n",
2066		       ipmi_get_stat(intf, handled_ipmb_responses));
2067	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2068		       ipmi_get_stat(intf, invalid_ipmb_responses));
2069	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2070		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2071	seq_printf(m, "sent_lan_commands:           %u\n",
2072		       ipmi_get_stat(intf, sent_lan_commands));
2073	seq_printf(m, "sent_lan_command_errs:       %u\n",
2074		       ipmi_get_stat(intf, sent_lan_command_errs));
2075	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2076		       ipmi_get_stat(intf, retransmitted_lan_commands));
2077	seq_printf(m, "timed_out_lan_commands:      %u\n",
2078		       ipmi_get_stat(intf, timed_out_lan_commands));
2079	seq_printf(m, "sent_lan_responses:          %u\n",
2080		       ipmi_get_stat(intf, sent_lan_responses));
2081	seq_printf(m, "handled_lan_responses:       %u\n",
2082		       ipmi_get_stat(intf, handled_lan_responses));
2083	seq_printf(m, "invalid_lan_responses:       %u\n",
2084		       ipmi_get_stat(intf, invalid_lan_responses));
2085	seq_printf(m, "unhandled_lan_responses:     %u\n",
2086		       ipmi_get_stat(intf, unhandled_lan_responses));
2087	seq_printf(m, "handled_commands:            %u\n",
2088		       ipmi_get_stat(intf, handled_commands));
2089	seq_printf(m, "invalid_commands:            %u\n",
2090		       ipmi_get_stat(intf, invalid_commands));
2091	seq_printf(m, "unhandled_commands:          %u\n",
2092		       ipmi_get_stat(intf, unhandled_commands));
2093	seq_printf(m, "invalid_events:              %u\n",
2094		       ipmi_get_stat(intf, invalid_events));
2095	seq_printf(m, "events:                      %u\n",
2096		       ipmi_get_stat(intf, events));
2097	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2098		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2099	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2100		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2101	return 0;
2102}
2103
2104static int smi_stats_proc_open(struct inode *inode, struct file *file)
2105{
2106	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2107}
2108
2109static const struct file_operations smi_stats_proc_ops = {
2110	.open		= smi_stats_proc_open,
2111	.read		= seq_read,
2112	.llseek		= seq_lseek,
2113	.release	= single_release,
2114};
2115#endif /* CONFIG_PROC_FS */
2116
2117int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2118			    const struct file_operations *proc_ops,
2119			    void *data)
2120{
2121	int                    rv = 0;
2122#ifdef CONFIG_PROC_FS
2123	struct proc_dir_entry  *file;
2124	struct ipmi_proc_entry *entry;
2125
2126	/* Create a list element. */
2127	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2128	if (!entry)
2129		return -ENOMEM;
2130	entry->name = kstrdup(name, GFP_KERNEL);
2131	if (!entry->name) {
2132		kfree(entry);
2133		return -ENOMEM;
2134	}
2135
2136	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2137	if (!file) {
2138		kfree(entry->name);
2139		kfree(entry);
2140		rv = -ENOMEM;
2141	} else {
2142		mutex_lock(&smi->proc_entry_lock);
2143		/* Stick it on the list. */
2144		entry->next = smi->proc_entries;
2145		smi->proc_entries = entry;
2146		mutex_unlock(&smi->proc_entry_lock);
2147	}
2148#endif /* CONFIG_PROC_FS */
2149
2150	return rv;
2151}
2152EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2153
2154static int add_proc_entries(ipmi_smi_t smi, int num)
2155{
2156	int rv = 0;
2157
2158#ifdef CONFIG_PROC_FS
2159	sprintf(smi->proc_dir_name, "%d", num);
2160	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2161	if (!smi->proc_dir)
2162		rv = -ENOMEM;
2163
2164	if (rv == 0)
2165		rv = ipmi_smi_add_proc_entry(smi, "stats",
2166					     &smi_stats_proc_ops,
2167					     smi);
2168
2169	if (rv == 0)
2170		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2171					     &smi_ipmb_proc_ops,
2172					     smi);
2173
2174	if (rv == 0)
2175		rv = ipmi_smi_add_proc_entry(smi, "version",
2176					     &smi_version_proc_ops,
2177					     smi);
2178#endif /* CONFIG_PROC_FS */
2179
2180	return rv;
2181}
2182
2183static void remove_proc_entries(ipmi_smi_t smi)
2184{
2185#ifdef CONFIG_PROC_FS
2186	struct ipmi_proc_entry *entry;
2187
2188	mutex_lock(&smi->proc_entry_lock);
2189	while (smi->proc_entries) {
2190		entry = smi->proc_entries;
2191		smi->proc_entries = entry->next;
2192
2193		remove_proc_entry(entry->name, smi->proc_dir);
2194		kfree(entry->name);
2195		kfree(entry);
2196	}
2197	mutex_unlock(&smi->proc_entry_lock);
2198	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2199#endif /* CONFIG_PROC_FS */
2200}
2201
2202static int __find_bmc_guid(struct device *dev, void *data)
2203{
2204	unsigned char *id = data;
2205	struct bmc_device *bmc = to_bmc_device(dev);
2206	return memcmp(bmc->guid, id, 16) == 0;
2207}
2208
2209static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2210					     unsigned char *guid)
2211{
2212	struct device *dev;
2213
2214	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2215	if (dev)
2216		return to_bmc_device(dev);
2217	else
2218		return NULL;
2219}
2220
2221struct prod_dev_id {
2222	unsigned int  product_id;
2223	unsigned char device_id;
2224};
2225
2226static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2227{
2228	struct prod_dev_id *id = data;
2229	struct bmc_device *bmc = to_bmc_device(dev);
2230
2231	return (bmc->id.product_id == id->product_id
2232		&& bmc->id.device_id == id->device_id);
2233}
2234
2235static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2236	struct device_driver *drv,
2237	unsigned int product_id, unsigned char device_id)
2238{
2239	struct prod_dev_id id = {
2240		.product_id = product_id,
2241		.device_id = device_id,
2242	};
2243	struct device *dev;
2244
2245	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2246	if (dev)
2247		return to_bmc_device(dev);
2248	else
2249		return NULL;
2250}
2251
2252static ssize_t device_id_show(struct device *dev,
2253			      struct device_attribute *attr,
2254			      char *buf)
2255{
2256	struct bmc_device *bmc = to_bmc_device(dev);
2257
2258	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2259}
2260static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2261
2262static ssize_t provides_device_sdrs_show(struct device *dev,
2263					 struct device_attribute *attr,
2264					 char *buf)
2265{
2266	struct bmc_device *bmc = to_bmc_device(dev);
2267
2268	return snprintf(buf, 10, "%u\n",
2269			(bmc->id.device_revision & 0x80) >> 7);
2270}
2271static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2272		   NULL);
2273
2274static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2275			     char *buf)
2276{
2277	struct bmc_device *bmc = to_bmc_device(dev);
2278
2279	return snprintf(buf, 20, "%u\n",
2280			bmc->id.device_revision & 0x0F);
2281}
2282static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2283
2284static ssize_t firmware_revision_show(struct device *dev,
2285				      struct device_attribute *attr,
2286				      char *buf)
2287{
2288	struct bmc_device *bmc = to_bmc_device(dev);
2289
2290	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2291			bmc->id.firmware_revision_2);
2292}
2293static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2294
2295static ssize_t ipmi_version_show(struct device *dev,
2296				 struct device_attribute *attr,
2297				 char *buf)
2298{
2299	struct bmc_device *bmc = to_bmc_device(dev);
2300
2301	return snprintf(buf, 20, "%u.%u\n",
2302			ipmi_version_major(&bmc->id),
2303			ipmi_version_minor(&bmc->id));
2304}
2305static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2306
2307static ssize_t add_dev_support_show(struct device *dev,
2308				    struct device_attribute *attr,
2309				    char *buf)
2310{
2311	struct bmc_device *bmc = to_bmc_device(dev);
2312
2313	return snprintf(buf, 10, "0x%02x\n",
2314			bmc->id.additional_device_support);
2315}
2316static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2317		   NULL);
2318
2319static ssize_t manufacturer_id_show(struct device *dev,
2320				    struct device_attribute *attr,
2321				    char *buf)
2322{
2323	struct bmc_device *bmc = to_bmc_device(dev);
2324
2325	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2326}
2327static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2328
2329static ssize_t product_id_show(struct device *dev,
2330			       struct device_attribute *attr,
2331			       char *buf)
2332{
2333	struct bmc_device *bmc = to_bmc_device(dev);
2334
2335	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2336}
2337static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2338
2339static ssize_t aux_firmware_rev_show(struct device *dev,
2340				     struct device_attribute *attr,
2341				     char *buf)
2342{
2343	struct bmc_device *bmc = to_bmc_device(dev);
2344
2345	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2346			bmc->id.aux_firmware_revision[3],
2347			bmc->id.aux_firmware_revision[2],
2348			bmc->id.aux_firmware_revision[1],
2349			bmc->id.aux_firmware_revision[0]);
2350}
2351static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2352
2353static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2354			 char *buf)
2355{
2356	struct bmc_device *bmc = to_bmc_device(dev);
2357
2358	return snprintf(buf, 100, "%Lx%Lx\n",
2359			(long long) bmc->guid[0],
2360			(long long) bmc->guid[8]);
2361}
2362static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2363
2364static struct attribute *bmc_dev_attrs[] = {
2365	&dev_attr_device_id.attr,
2366	&dev_attr_provides_device_sdrs.attr,
2367	&dev_attr_revision.attr,
2368	&dev_attr_firmware_revision.attr,
2369	&dev_attr_ipmi_version.attr,
2370	&dev_attr_additional_device_support.attr,
2371	&dev_attr_manufacturer_id.attr,
2372	&dev_attr_product_id.attr,
2373	&dev_attr_aux_firmware_revision.attr,
2374	&dev_attr_guid.attr,
2375	NULL
2376};
2377
2378static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2379				       struct attribute *attr, int idx)
2380{
2381	struct device *dev = kobj_to_dev(kobj);
2382	struct bmc_device *bmc = to_bmc_device(dev);
2383	umode_t mode = attr->mode;
2384
2385	if (attr == &dev_attr_aux_firmware_revision.attr)
2386		return bmc->id.aux_firmware_revision_set ? mode : 0;
2387	if (attr == &dev_attr_guid.attr)
2388		return bmc->guid_set ? mode : 0;
2389	return mode;
2390}
2391
2392static struct attribute_group bmc_dev_attr_group = {
2393	.attrs		= bmc_dev_attrs,
2394	.is_visible	= bmc_dev_attr_is_visible,
2395};
2396
2397static const struct attribute_group *bmc_dev_attr_groups[] = {
2398	&bmc_dev_attr_group,
2399	NULL
2400};
2401
2402static struct device_type bmc_device_type = {
2403	.groups		= bmc_dev_attr_groups,
2404};
2405
2406static void
2407release_bmc_device(struct device *dev)
2408{
2409	kfree(to_bmc_device(dev));
2410}
2411
2412static void
2413cleanup_bmc_device(struct kref *ref)
2414{
2415	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2416
2417	platform_device_unregister(&bmc->pdev);
2418}
2419
2420static void ipmi_bmc_unregister(ipmi_smi_t intf)
2421{
2422	struct bmc_device *bmc = intf->bmc;
2423
2424	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2425	if (intf->my_dev_name) {
2426		sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2427		kfree(intf->my_dev_name);
2428		intf->my_dev_name = NULL;
2429	}
2430
2431	mutex_lock(&ipmidriver_mutex);
2432	kref_put(&bmc->usecount, cleanup_bmc_device);
2433	intf->bmc = NULL;
2434	mutex_unlock(&ipmidriver_mutex);
2435}
2436
2437static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2438{
2439	int               rv;
2440	struct bmc_device *bmc = intf->bmc;
2441	struct bmc_device *old_bmc;
2442
2443	mutex_lock(&ipmidriver_mutex);
2444
2445	/*
2446	 * Try to find if there is an bmc_device struct
2447	 * representing the interfaced BMC already
2448	 */
2449	if (bmc->guid_set)
2450		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2451	else
2452		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2453						    bmc->id.product_id,
2454						    bmc->id.device_id);
2455
2456	/*
2457	 * If there is already an bmc_device, free the new one,
2458	 * otherwise register the new BMC device
2459	 */
2460	if (old_bmc) {
2461		kfree(bmc);
2462		intf->bmc = old_bmc;
2463		bmc = old_bmc;
2464
2465		kref_get(&bmc->usecount);
2466		mutex_unlock(&ipmidriver_mutex);
2467
2468		printk(KERN_INFO
2469		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2470		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2471		       bmc->id.manufacturer_id,
2472		       bmc->id.product_id,
2473		       bmc->id.device_id);
2474	} else {
2475		unsigned char orig_dev_id = bmc->id.device_id;
2476		int warn_printed = 0;
2477
2478		snprintf(bmc->name, sizeof(bmc->name),
2479			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2480		bmc->pdev.name = bmc->name;
2481
2482		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2483						 bmc->id.product_id,
2484						 bmc->id.device_id)) {
2485			if (!warn_printed) {
2486				printk(KERN_WARNING PFX
2487				       "This machine has two different BMCs"
2488				       " with the same product id and device"
2489				       " id.  This is an error in the"
2490				       " firmware, but incrementing the"
2491				       " device id to work around the problem."
2492				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2493				       bmc->id.product_id, bmc->id.device_id);
2494				warn_printed = 1;
2495			}
2496			bmc->id.device_id++; /* Wraps at 255 */
2497			if (bmc->id.device_id == orig_dev_id) {
2498				printk(KERN_ERR PFX
2499				       "Out of device ids!\n");
2500				break;
2501			}
2502		}
2503
2504		bmc->pdev.dev.driver = &ipmidriver.driver;
2505		bmc->pdev.id = bmc->id.device_id;
2506		bmc->pdev.dev.release = release_bmc_device;
2507		bmc->pdev.dev.type = &bmc_device_type;
2508		kref_init(&bmc->usecount);
2509
2510		rv = platform_device_register(&bmc->pdev);
2511		mutex_unlock(&ipmidriver_mutex);
2512		if (rv) {
2513			put_device(&bmc->pdev.dev);
2514			printk(KERN_ERR
2515			       "ipmi_msghandler:"
2516			       " Unable to register bmc device: %d\n",
2517			       rv);
2518			/*
2519			 * Don't go to out_err, you can only do that if
2520			 * the device is registered already.
2521			 */
2522			return rv;
2523		}
2524
2525		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2526			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2527			 bmc->id.manufacturer_id,
2528			 bmc->id.product_id,
2529			 bmc->id.device_id);
2530	}
2531
2532	/*
2533	 * create symlink from system interface device to bmc device
2534	 * and back.
2535	 */
2536	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2537	if (rv) {
2538		printk(KERN_ERR
2539		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2540		       rv);
2541		goto out_err;
2542	}
2543
2544	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2545	if (!intf->my_dev_name) {
2546		rv = -ENOMEM;
2547		printk(KERN_ERR
2548		       "ipmi_msghandler: allocate link from BMC: %d\n",
2549		       rv);
2550		goto out_err;
2551	}
2552
2553	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2554			       intf->my_dev_name);
2555	if (rv) {
2556		kfree(intf->my_dev_name);
2557		intf->my_dev_name = NULL;
2558		printk(KERN_ERR
2559		       "ipmi_msghandler:"
2560		       " Unable to create symlink to bmc: %d\n",
2561		       rv);
2562		goto out_err;
2563	}
2564
2565	return 0;
2566
2567out_err:
2568	ipmi_bmc_unregister(intf);
2569	return rv;
2570}
2571
2572static int
2573send_guid_cmd(ipmi_smi_t intf, int chan)
2574{
2575	struct kernel_ipmi_msg            msg;
2576	struct ipmi_system_interface_addr si;
2577
2578	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2579	si.channel = IPMI_BMC_CHANNEL;
2580	si.lun = 0;
2581
2582	msg.netfn = IPMI_NETFN_APP_REQUEST;
2583	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2584	msg.data = NULL;
2585	msg.data_len = 0;
2586	return i_ipmi_request(NULL,
2587			      intf,
2588			      (struct ipmi_addr *) &si,
2589			      0,
2590			      &msg,
2591			      intf,
2592			      NULL,
2593			      NULL,
2594			      0,
2595			      intf->channels[0].address,
2596			      intf->channels[0].lun,
2597			      -1, 0);
2598}
2599
2600static void
2601guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2602{
2603	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2604	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2605	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2606		/* Not for me */
2607		return;
2608
2609	if (msg->msg.data[0] != 0) {
2610		/* Error from getting the GUID, the BMC doesn't have one. */
2611		intf->bmc->guid_set = 0;
2612		goto out;
2613	}
2614
2615	if (msg->msg.data_len < 17) {
2616		intf->bmc->guid_set = 0;
2617		printk(KERN_WARNING PFX
2618		       "guid_handler: The GUID response from the BMC was too"
2619		       " short, it was %d but should have been 17.  Assuming"
2620		       " GUID is not available.\n",
2621		       msg->msg.data_len);
2622		goto out;
2623	}
2624
2625	memcpy(intf->bmc->guid, msg->msg.data, 16);
2626	intf->bmc->guid_set = 1;
2627 out:
2628	wake_up(&intf->waitq);
2629}
2630
2631static void
2632get_guid(ipmi_smi_t intf)
2633{
2634	int rv;
2635
2636	intf->bmc->guid_set = 0x2;
2637	intf->null_user_handler = guid_handler;
2638	rv = send_guid_cmd(intf, 0);
2639	if (rv)
2640		/* Send failed, no GUID available. */
2641		intf->bmc->guid_set = 0;
2642	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2643	intf->null_user_handler = NULL;
2644}
2645
2646static int
2647send_channel_info_cmd(ipmi_smi_t intf, int chan)
2648{
2649	struct kernel_ipmi_msg            msg;
2650	unsigned char                     data[1];
2651	struct ipmi_system_interface_addr si;
2652
2653	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2654	si.channel = IPMI_BMC_CHANNEL;
2655	si.lun = 0;
2656
2657	msg.netfn = IPMI_NETFN_APP_REQUEST;
2658	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2659	msg.data = data;
2660	msg.data_len = 1;
2661	data[0] = chan;
2662	return i_ipmi_request(NULL,
2663			      intf,
2664			      (struct ipmi_addr *) &si,
2665			      0,
2666			      &msg,
2667			      intf,
2668			      NULL,
2669			      NULL,
2670			      0,
2671			      intf->channels[0].address,
2672			      intf->channels[0].lun,
2673			      -1, 0);
2674}
2675
2676static void
2677channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2678{
2679	int rv = 0;
2680	int chan;
2681
2682	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2683	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2684	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2685		/* It's the one we want */
2686		if (msg->msg.data[0] != 0) {
2687			/* Got an error from the channel, just go on. */
2688
2689			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2690				/*
2691				 * If the MC does not support this
2692				 * command, that is legal.  We just
2693				 * assume it has one IPMB at channel
2694				 * zero.
2695				 */
2696				intf->channels[0].medium
2697					= IPMI_CHANNEL_MEDIUM_IPMB;
2698				intf->channels[0].protocol
2699					= IPMI_CHANNEL_PROTOCOL_IPMB;
2700
2701				intf->curr_channel = IPMI_MAX_CHANNELS;
2702				wake_up(&intf->waitq);
2703				goto out;
2704			}
2705			goto next_channel;
2706		}
2707		if (msg->msg.data_len < 4) {
2708			/* Message not big enough, just go on. */
2709			goto next_channel;
2710		}
2711		chan = intf->curr_channel;
2712		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2713		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2714
2715 next_channel:
2716		intf->curr_channel++;
2717		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2718			wake_up(&intf->waitq);
2719		else
2720			rv = send_channel_info_cmd(intf, intf->curr_channel);
2721
2722		if (rv) {
2723			/* Got an error somehow, just give up. */
2724			printk(KERN_WARNING PFX
2725			       "Error sending channel information for channel"
2726			       " %d: %d\n", intf->curr_channel, rv);
2727
2728			intf->curr_channel = IPMI_MAX_CHANNELS;
2729			wake_up(&intf->waitq);
2730		}
2731	}
2732 out:
2733	return;
2734}
2735
2736static void ipmi_poll(ipmi_smi_t intf)
2737{
2738	if (intf->handlers->poll)
2739		intf->handlers->poll(intf->send_info);
2740	/* In case something came in */
2741	handle_new_recv_msgs(intf);
2742}
2743
2744void ipmi_poll_interface(ipmi_user_t user)
2745{
2746	ipmi_poll(user->intf);
2747}
2748EXPORT_SYMBOL(ipmi_poll_interface);
2749
2750int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2751		      void		       *send_info,
2752		      struct ipmi_device_id    *device_id,
2753		      struct device            *si_dev,
2754		      unsigned char            slave_addr)
2755{
2756	int              i, j;
2757	int              rv;
2758	ipmi_smi_t       intf;
2759	ipmi_smi_t       tintf;
2760	struct list_head *link;
2761
2762	/*
2763	 * Make sure the driver is actually initialized, this handles
2764	 * problems with initialization order.
2765	 */
2766	if (!initialized) {
2767		rv = ipmi_init_msghandler();
2768		if (rv)
2769			return rv;
2770		/*
2771		 * The init code doesn't return an error if it was turned
2772		 * off, but it won't initialize.  Check that.
2773		 */
2774		if (!initialized)
2775			return -ENODEV;
2776	}
2777
2778	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2779	if (!intf)
2780		return -ENOMEM;
2781
2782	intf->ipmi_version_major = ipmi_version_major(device_id);
2783	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2784
2785	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2786	if (!intf->bmc) {
2787		kfree(intf);
2788		return -ENOMEM;
2789	}
2790	intf->intf_num = -1; /* Mark it invalid for now. */
2791	kref_init(&intf->refcount);
2792	intf->bmc->id = *device_id;
2793	intf->si_dev = si_dev;
2794	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2795		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2796		intf->channels[j].lun = 2;
2797	}
2798	if (slave_addr != 0)
2799		intf->channels[0].address = slave_addr;
2800	INIT_LIST_HEAD(&intf->users);
2801	intf->handlers = handlers;
2802	intf->send_info = send_info;
2803	spin_lock_init(&intf->seq_lock);
2804	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2805		intf->seq_table[j].inuse = 0;
2806		intf->seq_table[j].seqid = 0;
2807	}
2808	intf->curr_seq = 0;
2809#ifdef CONFIG_PROC_FS
2810	mutex_init(&intf->proc_entry_lock);
2811#endif
2812	spin_lock_init(&intf->waiting_rcv_msgs_lock);
2813	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2814	tasklet_init(&intf->recv_tasklet,
2815		     smi_recv_tasklet,
2816		     (unsigned long) intf);
2817	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2818	spin_lock_init(&intf->xmit_msgs_lock);
2819	INIT_LIST_HEAD(&intf->xmit_msgs);
2820	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2821	spin_lock_init(&intf->events_lock);
2822	atomic_set(&intf->event_waiters, 0);
2823	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2824	INIT_LIST_HEAD(&intf->waiting_events);
2825	intf->waiting_events_count = 0;
2826	mutex_init(&intf->cmd_rcvrs_mutex);
2827	spin_lock_init(&intf->maintenance_mode_lock);
2828	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2829	init_waitqueue_head(&intf->waitq);
2830	for (i = 0; i < IPMI_NUM_STATS; i++)
2831		atomic_set(&intf->stats[i], 0);
2832
2833	intf->proc_dir = NULL;
2834
2835	mutex_lock(&smi_watchers_mutex);
2836	mutex_lock(&ipmi_interfaces_mutex);
2837	/* Look for a hole in the numbers. */
2838	i = 0;
2839	link = &ipmi_interfaces;
2840	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2841		if (tintf->intf_num != i) {
2842			link = &tintf->link;
2843			break;
2844		}
2845		i++;
2846	}
2847	/* Add the new interface in numeric order. */
2848	if (i == 0)
2849		list_add_rcu(&intf->link, &ipmi_interfaces);
2850	else
2851		list_add_tail_rcu(&intf->link, link);
2852
2853	rv = handlers->start_processing(send_info, intf);
2854	if (rv)
2855		goto out;
2856
2857	get_guid(intf);
2858
2859	if ((intf->ipmi_version_major > 1)
2860			|| ((intf->ipmi_version_major == 1)
2861			    && (intf->ipmi_version_minor >= 5))) {
2862		/*
2863		 * Start scanning the channels to see what is
2864		 * available.
2865		 */
2866		intf->null_user_handler = channel_handler;
2867		intf->curr_channel = 0;
2868		rv = send_channel_info_cmd(intf, 0);
2869		if (rv) {
2870			printk(KERN_WARNING PFX
2871			       "Error sending channel information for channel"
2872			       " 0, %d\n", rv);
2873			goto out;
2874		}
2875
2876		/* Wait for the channel info to be read. */
2877		wait_event(intf->waitq,
2878			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2879		intf->null_user_handler = NULL;
2880	} else {
2881		/* Assume a single IPMB channel at zero. */
2882		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2883		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2884		intf->curr_channel = IPMI_MAX_CHANNELS;
2885	}
2886
2887	if (rv == 0)
2888		rv = add_proc_entries(intf, i);
2889
2890	rv = ipmi_bmc_register(intf, i);
2891
2892 out:
2893	if (rv) {
2894		if (intf->proc_dir)
2895			remove_proc_entries(intf);
2896		intf->handlers = NULL;
2897		list_del_rcu(&intf->link);
2898		mutex_unlock(&ipmi_interfaces_mutex);
2899		mutex_unlock(&smi_watchers_mutex);
2900		synchronize_rcu();
2901		kref_put(&intf->refcount, intf_free);
2902	} else {
2903		/*
2904		 * Keep memory order straight for RCU readers.  Make
2905		 * sure everything else is committed to memory before
2906		 * setting intf_num to mark the interface valid.
2907		 */
2908		smp_wmb();
2909		intf->intf_num = i;
2910		mutex_unlock(&ipmi_interfaces_mutex);
2911		/* After this point the interface is legal to use. */
2912		call_smi_watchers(i, intf->si_dev);
2913		mutex_unlock(&smi_watchers_mutex);
2914	}
2915
2916	return rv;
2917}
2918EXPORT_SYMBOL(ipmi_register_smi);
2919
2920static void deliver_smi_err_response(ipmi_smi_t intf,
2921				     struct ipmi_smi_msg *msg,
2922				     unsigned char err)
2923{
2924	msg->rsp[0] = msg->data[0] | 4;
2925	msg->rsp[1] = msg->data[1];
2926	msg->rsp[2] = err;
2927	msg->rsp_size = 3;
2928	/* It's an error, so it will never requeue, no need to check return. */
2929	handle_one_recv_msg(intf, msg);
2930}
2931
2932static void cleanup_smi_msgs(ipmi_smi_t intf)
2933{
2934	int              i;
2935	struct seq_table *ent;
2936	struct ipmi_smi_msg *msg;
2937	struct list_head *entry;
2938	struct list_head tmplist;
2939
2940	/* Clear out our transmit queues and hold the messages. */
2941	INIT_LIST_HEAD(&tmplist);
2942	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2943	list_splice_tail(&intf->xmit_msgs, &tmplist);
2944
2945	/* Current message first, to preserve order */
2946	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2947		/* Wait for the message to clear out. */
2948		schedule_timeout(1);
2949	}
2950
2951	/* No need for locks, the interface is down. */
2952
2953	/*
2954	 * Return errors for all pending messages in queue and in the
2955	 * tables waiting for remote responses.
2956	 */
2957	while (!list_empty(&tmplist)) {
2958		entry = tmplist.next;
2959		list_del(entry);
2960		msg = list_entry(entry, struct ipmi_smi_msg, link);
2961		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2962	}
2963
2964	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2965		ent = &(intf->seq_table[i]);
2966		if (!ent->inuse)
2967			continue;
2968		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2969	}
2970}
2971
2972int ipmi_unregister_smi(ipmi_smi_t intf)
2973{
2974	struct ipmi_smi_watcher *w;
2975	int intf_num = intf->intf_num;
2976	ipmi_user_t user;
2977
2978	ipmi_bmc_unregister(intf);
2979
2980	mutex_lock(&smi_watchers_mutex);
2981	mutex_lock(&ipmi_interfaces_mutex);
2982	intf->intf_num = -1;
2983	intf->in_shutdown = true;
2984	list_del_rcu(&intf->link);
2985	mutex_unlock(&ipmi_interfaces_mutex);
2986	synchronize_rcu();
2987
2988	cleanup_smi_msgs(intf);
2989
2990	/* Clean up the effects of users on the lower-level software. */
2991	mutex_lock(&ipmi_interfaces_mutex);
2992	rcu_read_lock();
2993	list_for_each_entry_rcu(user, &intf->users, link) {
2994		module_put(intf->handlers->owner);
2995		if (intf->handlers->dec_usecount)
2996			intf->handlers->dec_usecount(intf->send_info);
2997	}
2998	rcu_read_unlock();
2999	intf->handlers = NULL;
3000	mutex_unlock(&ipmi_interfaces_mutex);
3001
3002	remove_proc_entries(intf);
3003
3004	/*
3005	 * Call all the watcher interfaces to tell them that
3006	 * an interface is gone.
3007	 */
3008	list_for_each_entry(w, &smi_watchers, link)
3009		w->smi_gone(intf_num);
3010	mutex_unlock(&smi_watchers_mutex);
3011
3012	kref_put(&intf->refcount, intf_free);
3013	return 0;
3014}
3015EXPORT_SYMBOL(ipmi_unregister_smi);
3016
3017static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3018				   struct ipmi_smi_msg *msg)
3019{
3020	struct ipmi_ipmb_addr ipmb_addr;
3021	struct ipmi_recv_msg  *recv_msg;
3022
3023	/*
3024	 * This is 11, not 10, because the response must contain a
3025	 * completion code.
3026	 */
3027	if (msg->rsp_size < 11) {
3028		/* Message not big enough, just ignore it. */
3029		ipmi_inc_stat(intf, invalid_ipmb_responses);
3030		return 0;
3031	}
3032
3033	if (msg->rsp[2] != 0) {
3034		/* An error getting the response, just ignore it. */
3035		return 0;
3036	}
3037
3038	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3039	ipmb_addr.slave_addr = msg->rsp[6];
3040	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3041	ipmb_addr.lun = msg->rsp[7] & 3;
3042
3043	/*
3044	 * It's a response from a remote entity.  Look up the sequence
3045	 * number and handle the response.
3046	 */
3047	if (intf_find_seq(intf,
3048			  msg->rsp[7] >> 2,
3049			  msg->rsp[3] & 0x0f,
3050			  msg->rsp[8],
3051			  (msg->rsp[4] >> 2) & (~1),
3052			  (struct ipmi_addr *) &(ipmb_addr),
3053			  &recv_msg)) {
3054		/*
3055		 * We were unable to find the sequence number,
3056		 * so just nuke the message.
3057		 */
3058		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3059		return 0;
3060	}
3061
3062	memcpy(recv_msg->msg_data,
3063	       &(msg->rsp[9]),
3064	       msg->rsp_size - 9);
3065	/*
3066	 * The other fields matched, so no need to set them, except
3067	 * for netfn, which needs to be the response that was
3068	 * returned, not the request value.
3069	 */
3070	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3071	recv_msg->msg.data = recv_msg->msg_data;
3072	recv_msg->msg.data_len = msg->rsp_size - 10;
3073	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3074	ipmi_inc_stat(intf, handled_ipmb_responses);
3075	deliver_response(recv_msg);
3076
3077	return 0;
3078}
3079
3080static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3081				   struct ipmi_smi_msg *msg)
3082{
3083	struct cmd_rcvr          *rcvr;
3084	int                      rv = 0;
3085	unsigned char            netfn;
3086	unsigned char            cmd;
3087	unsigned char            chan;
3088	ipmi_user_t              user = NULL;
3089	struct ipmi_ipmb_addr    *ipmb_addr;
3090	struct ipmi_recv_msg     *recv_msg;
3091
3092	if (msg->rsp_size < 10) {
3093		/* Message not big enough, just ignore it. */
3094		ipmi_inc_stat(intf, invalid_commands);
3095		return 0;
3096	}
3097
3098	if (msg->rsp[2] != 0) {
3099		/* An error getting the response, just ignore it. */
3100		return 0;
3101	}
3102
3103	netfn = msg->rsp[4] >> 2;
3104	cmd = msg->rsp[8];
3105	chan = msg->rsp[3] & 0xf;
3106
3107	rcu_read_lock();
3108	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3109	if (rcvr) {
3110		user = rcvr->user;
3111		kref_get(&user->refcount);
3112	} else
3113		user = NULL;
3114	rcu_read_unlock();
3115
3116	if (user == NULL) {
3117		/* We didn't find a user, deliver an error response. */
3118		ipmi_inc_stat(intf, unhandled_commands);
3119
3120		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3121		msg->data[1] = IPMI_SEND_MSG_CMD;
3122		msg->data[2] = msg->rsp[3];
3123		msg->data[3] = msg->rsp[6];
3124		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3125		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3126		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3127		/* rqseq/lun */
3128		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3129		msg->data[8] = msg->rsp[8]; /* cmd */
3130		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3131		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3132		msg->data_size = 11;
3133
3134#ifdef DEBUG_MSGING
3135	{
3136		int m;
3137		printk("Invalid command:");
3138		for (m = 0; m < msg->data_size; m++)
3139			printk(" %2.2x", msg->data[m]);
3140		printk("\n");
3141	}
3142#endif
3143		rcu_read_lock();
3144		if (!intf->in_shutdown) {
3145			smi_send(intf, intf->handlers, msg, 0);
3146			/*
3147			 * We used the message, so return the value
3148			 * that causes it to not be freed or
3149			 * queued.
3150			 */
3151			rv = -1;
3152		}
3153		rcu_read_unlock();
3154	} else {
3155		/* Deliver the message to the user. */
3156		ipmi_inc_stat(intf, handled_commands);
3157
3158		recv_msg = ipmi_alloc_recv_msg();
3159		if (!recv_msg) {
3160			/*
3161			 * We couldn't allocate memory for the
3162			 * message, so requeue it for handling
3163			 * later.
3164			 */
3165			rv = 1;
3166			kref_put(&user->refcount, free_user);
3167		} else {
3168			/* Extract the source address from the data. */
3169			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3170			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3171			ipmb_addr->slave_addr = msg->rsp[6];
3172			ipmb_addr->lun = msg->rsp[7] & 3;
3173			ipmb_addr->channel = msg->rsp[3] & 0xf;
3174
3175			/*
3176			 * Extract the rest of the message information
3177			 * from the IPMB header.
3178			 */
3179			recv_msg->user = user;
3180			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3181			recv_msg->msgid = msg->rsp[7] >> 2;
3182			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3183			recv_msg->msg.cmd = msg->rsp[8];
3184			recv_msg->msg.data = recv_msg->msg_data;
3185
3186			/*
3187			 * We chop off 10, not 9 bytes because the checksum
3188			 * at the end also needs to be removed.
3189			 */
3190			recv_msg->msg.data_len = msg->rsp_size - 10;
3191			memcpy(recv_msg->msg_data,
3192			       &(msg->rsp[9]),
3193			       msg->rsp_size - 10);
3194			deliver_response(recv_msg);
3195		}
3196	}
3197
3198	return rv;
3199}
3200
3201static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3202				  struct ipmi_smi_msg *msg)
3203{
3204	struct ipmi_lan_addr  lan_addr;
3205	struct ipmi_recv_msg  *recv_msg;
3206
3207
3208	/*
3209	 * This is 13, not 12, because the response must contain a
3210	 * completion code.
3211	 */
3212	if (msg->rsp_size < 13) {
3213		/* Message not big enough, just ignore it. */
3214		ipmi_inc_stat(intf, invalid_lan_responses);
3215		return 0;
3216	}
3217
3218	if (msg->rsp[2] != 0) {
3219		/* An error getting the response, just ignore it. */
3220		return 0;
3221	}
3222
3223	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3224	lan_addr.session_handle = msg->rsp[4];
3225	lan_addr.remote_SWID = msg->rsp[8];
3226	lan_addr.local_SWID = msg->rsp[5];
3227	lan_addr.channel = msg->rsp[3] & 0x0f;
3228	lan_addr.privilege = msg->rsp[3] >> 4;
3229	lan_addr.lun = msg->rsp[9] & 3;
3230
3231	/*
3232	 * It's a response from a remote entity.  Look up the sequence
3233	 * number and handle the response.
3234	 */
3235	if (intf_find_seq(intf,
3236			  msg->rsp[9] >> 2,
3237			  msg->rsp[3] & 0x0f,
3238			  msg->rsp[10],
3239			  (msg->rsp[6] >> 2) & (~1),
3240			  (struct ipmi_addr *) &(lan_addr),
3241			  &recv_msg)) {
3242		/*
3243		 * We were unable to find the sequence number,
3244		 * so just nuke the message.
3245		 */
3246		ipmi_inc_stat(intf, unhandled_lan_responses);
3247		return 0;
3248	}
3249
3250	memcpy(recv_msg->msg_data,
3251	       &(msg->rsp[11]),
3252	       msg->rsp_size - 11);
3253	/*
3254	 * The other fields matched, so no need to set them, except
3255	 * for netfn, which needs to be the response that was
3256	 * returned, not the request value.
3257	 */
3258	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3259	recv_msg->msg.data = recv_msg->msg_data;
3260	recv_msg->msg.data_len = msg->rsp_size - 12;
3261	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3262	ipmi_inc_stat(intf, handled_lan_responses);
3263	deliver_response(recv_msg);
3264
3265	return 0;
3266}
3267
3268static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3269				  struct ipmi_smi_msg *msg)
3270{
3271	struct cmd_rcvr          *rcvr;
3272	int                      rv = 0;
3273	unsigned char            netfn;
3274	unsigned char            cmd;
3275	unsigned char            chan;
3276	ipmi_user_t              user = NULL;
3277	struct ipmi_lan_addr     *lan_addr;
3278	struct ipmi_recv_msg     *recv_msg;
3279
3280	if (msg->rsp_size < 12) {
3281		/* Message not big enough, just ignore it. */
3282		ipmi_inc_stat(intf, invalid_commands);
3283		return 0;
3284	}
3285
3286	if (msg->rsp[2] != 0) {
3287		/* An error getting the response, just ignore it. */
3288		return 0;
3289	}
3290
3291	netfn = msg->rsp[6] >> 2;
3292	cmd = msg->rsp[10];
3293	chan = msg->rsp[3] & 0xf;
3294
3295	rcu_read_lock();
3296	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3297	if (rcvr) {
3298		user = rcvr->user;
3299		kref_get(&user->refcount);
3300	} else
3301		user = NULL;
3302	rcu_read_unlock();
3303
3304	if (user == NULL) {
3305		/* We didn't find a user, just give up. */
3306		ipmi_inc_stat(intf, unhandled_commands);
3307
3308		/*
3309		 * Don't do anything with these messages, just allow
3310		 * them to be freed.
3311		 */
3312		rv = 0;
3313	} else {
3314		/* Deliver the message to the user. */
3315		ipmi_inc_stat(intf, handled_commands);
3316
3317		recv_msg = ipmi_alloc_recv_msg();
3318		if (!recv_msg) {
3319			/*
3320			 * We couldn't allocate memory for the
3321			 * message, so requeue it for handling later.
3322			 */
3323			rv = 1;
3324			kref_put(&user->refcount, free_user);
3325		} else {
3326			/* Extract the source address from the data. */
3327			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3328			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3329			lan_addr->session_handle = msg->rsp[4];
3330			lan_addr->remote_SWID = msg->rsp[8];
3331			lan_addr->local_SWID = msg->rsp[5];
3332			lan_addr->lun = msg->rsp[9] & 3;
3333			lan_addr->channel = msg->rsp[3] & 0xf;
3334			lan_addr->privilege = msg->rsp[3] >> 4;
3335
3336			/*
3337			 * Extract the rest of the message information
3338			 * from the IPMB header.
3339			 */
3340			recv_msg->user = user;
3341			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3342			recv_msg->msgid = msg->rsp[9] >> 2;
3343			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3344			recv_msg->msg.cmd = msg->rsp[10];
3345			recv_msg->msg.data = recv_msg->msg_data;
3346
3347			/*
3348			 * We chop off 12, not 11 bytes because the checksum
3349			 * at the end also needs to be removed.
3350			 */
3351			recv_msg->msg.data_len = msg->rsp_size - 12;
3352			memcpy(recv_msg->msg_data,
3353			       &(msg->rsp[11]),
3354			       msg->rsp_size - 12);
3355			deliver_response(recv_msg);
3356		}
3357	}
3358
3359	return rv;
3360}
3361
3362/*
3363 * This routine will handle "Get Message" command responses with
3364 * channels that use an OEM Medium. The message format belongs to
3365 * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3366 * Chapter 22, sections 22.6 and 22.24 for more details.
3367 */
3368static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3369				  struct ipmi_smi_msg *msg)
3370{
3371	struct cmd_rcvr       *rcvr;
3372	int                   rv = 0;
3373	unsigned char         netfn;
3374	unsigned char         cmd;
3375	unsigned char         chan;
3376	ipmi_user_t           user = NULL;
3377	struct ipmi_system_interface_addr *smi_addr;
3378	struct ipmi_recv_msg  *recv_msg;
3379
3380	/*
3381	 * We expect the OEM SW to perform error checking
3382	 * so we just do some basic sanity checks
3383	 */
3384	if (msg->rsp_size < 4) {
3385		/* Message not big enough, just ignore it. */
3386		ipmi_inc_stat(intf, invalid_commands);
3387		return 0;
3388	}
3389
3390	if (msg->rsp[2] != 0) {
3391		/* An error getting the response, just ignore it. */
3392		return 0;
3393	}
3394
3395	/*
3396	 * This is an OEM Message so the OEM needs to know how
3397	 * handle the message. We do no interpretation.
3398	 */
3399	netfn = msg->rsp[0] >> 2;
3400	cmd = msg->rsp[1];
3401	chan = msg->rsp[3] & 0xf;
3402
3403	rcu_read_lock();
3404	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3405	if (rcvr) {
3406		user = rcvr->user;
3407		kref_get(&user->refcount);
3408	} else
3409		user = NULL;
3410	rcu_read_unlock();
3411
3412	if (user == NULL) {
3413		/* We didn't find a user, just give up. */
3414		ipmi_inc_stat(intf, unhandled_commands);
3415
3416		/*
3417		 * Don't do anything with these messages, just allow
3418		 * them to be freed.
3419		 */
3420
3421		rv = 0;
3422	} else {
3423		/* Deliver the message to the user. */
3424		ipmi_inc_stat(intf, handled_commands);
3425
3426		recv_msg = ipmi_alloc_recv_msg();
3427		if (!recv_msg) {
3428			/*
3429			 * We couldn't allocate memory for the
3430			 * message, so requeue it for handling
3431			 * later.
3432			 */
3433			rv = 1;
3434			kref_put(&user->refcount, free_user);
3435		} else {
3436			/*
3437			 * OEM Messages are expected to be delivered via
3438			 * the system interface to SMS software.  We might
3439			 * need to visit this again depending on OEM
3440			 * requirements
3441			 */
3442			smi_addr = ((struct ipmi_system_interface_addr *)
3443				    &(recv_msg->addr));
3444			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3445			smi_addr->channel = IPMI_BMC_CHANNEL;
3446			smi_addr->lun = msg->rsp[0] & 3;
3447
3448			recv_msg->user = user;
3449			recv_msg->user_msg_data = NULL;
3450			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3451			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3452			recv_msg->msg.cmd = msg->rsp[1];
3453			recv_msg->msg.data = recv_msg->msg_data;
3454
3455			/*
3456			 * The message starts at byte 4 which follows the
3457			 * the Channel Byte in the "GET MESSAGE" command
3458			 */
3459			recv_msg->msg.data_len = msg->rsp_size - 4;
3460			memcpy(recv_msg->msg_data,
3461			       &(msg->rsp[4]),
3462			       msg->rsp_size - 4);
3463			deliver_response(recv_msg);
3464		}
3465	}
3466
3467	return rv;
3468}
3469
3470static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3471				     struct ipmi_smi_msg  *msg)
3472{
3473	struct ipmi_system_interface_addr *smi_addr;
3474
3475	recv_msg->msgid = 0;
3476	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3477	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3478	smi_addr->channel = IPMI_BMC_CHANNEL;
3479	smi_addr->lun = msg->rsp[0] & 3;
3480	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3481	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3482	recv_msg->msg.cmd = msg->rsp[1];
3483	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3484	recv_msg->msg.data = recv_msg->msg_data;
3485	recv_msg->msg.data_len = msg->rsp_size - 3;
3486}
3487
3488static int handle_read_event_rsp(ipmi_smi_t          intf,
3489				 struct ipmi_smi_msg *msg)
3490{
3491	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3492	struct list_head     msgs;
3493	ipmi_user_t          user;
3494	int                  rv = 0;
3495	int                  deliver_count = 0;
3496	unsigned long        flags;
3497
3498	if (msg->rsp_size < 19) {
3499		/* Message is too small to be an IPMB event. */
3500		ipmi_inc_stat(intf, invalid_events);
3501		return 0;
3502	}
3503
3504	if (msg->rsp[2] != 0) {
3505		/* An error getting the event, just ignore it. */
3506		return 0;
3507	}
3508
3509	INIT_LIST_HEAD(&msgs);
3510
3511	spin_lock_irqsave(&intf->events_lock, flags);
3512
3513	ipmi_inc_stat(intf, events);
3514
3515	/*
3516	 * Allocate and fill in one message for every user that is
3517	 * getting events.
3518	 */
3519	rcu_read_lock();
3520	list_for_each_entry_rcu(user, &intf->users, link) {
3521		if (!user->gets_events)
3522			continue;
3523
3524		recv_msg = ipmi_alloc_recv_msg();
3525		if (!recv_msg) {
3526			rcu_read_unlock();
3527			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3528						 link) {
3529				list_del(&recv_msg->link);
3530				ipmi_free_recv_msg(recv_msg);
3531			}
3532			/*
3533			 * We couldn't allocate memory for the
3534			 * message, so requeue it for handling
3535			 * later.
3536			 */
3537			rv = 1;
3538			goto out;
3539		}
3540
3541		deliver_count++;
3542
3543		copy_event_into_recv_msg(recv_msg, msg);
3544		recv_msg->user = user;
3545		kref_get(&user->refcount);
3546		list_add_tail(&(recv_msg->link), &msgs);
3547	}
3548	rcu_read_unlock();
3549
3550	if (deliver_count) {
3551		/* Now deliver all the messages. */
3552		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3553			list_del(&recv_msg->link);
3554			deliver_response(recv_msg);
3555		}
3556	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3557		/*
3558		 * No one to receive the message, put it in queue if there's
3559		 * not already too many things in the queue.
3560		 */
3561		recv_msg = ipmi_alloc_recv_msg();
3562		if (!recv_msg) {
3563			/*
3564			 * We couldn't allocate memory for the
3565			 * message, so requeue it for handling
3566			 * later.
3567			 */
3568			rv = 1;
3569			goto out;
3570		}
3571
3572		copy_event_into_recv_msg(recv_msg, msg);
3573		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3574		intf->waiting_events_count++;
3575	} else if (!intf->event_msg_printed) {
3576		/*
3577		 * There's too many things in the queue, discard this
3578		 * message.
3579		 */
3580		printk(KERN_WARNING PFX "Event queue full, discarding"
3581		       " incoming events\n");
3582		intf->event_msg_printed = 1;
3583	}
3584
3585 out:
3586	spin_unlock_irqrestore(&(intf->events_lock), flags);
3587
3588	return rv;
3589}
3590
3591static int handle_bmc_rsp(ipmi_smi_t          intf,
3592			  struct ipmi_smi_msg *msg)
3593{
3594	struct ipmi_recv_msg *recv_msg;
3595	struct ipmi_user     *user;
3596
3597	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3598	if (recv_msg == NULL) {
3599		printk(KERN_WARNING
3600		       "IPMI message received with no owner. This\n"
3601		       "could be because of a malformed message, or\n"
3602		       "because of a hardware error.  Contact your\n"
3603		       "hardware vender for assistance\n");
3604		return 0;
3605	}
3606
3607	user = recv_msg->user;
3608	/* Make sure the user still exists. */
3609	if (user && !user->valid) {
3610		/* The user for the message went away, so give up. */
3611		ipmi_inc_stat(intf, unhandled_local_responses);
3612		ipmi_free_recv_msg(recv_msg);
3613	} else {
3614		struct ipmi_system_interface_addr *smi_addr;
3615
3616		ipmi_inc_stat(intf, handled_local_responses);
3617		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3618		recv_msg->msgid = msg->msgid;
3619		smi_addr = ((struct ipmi_system_interface_addr *)
3620			    &(recv_msg->addr));
3621		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3622		smi_addr->channel = IPMI_BMC_CHANNEL;
3623		smi_addr->lun = msg->rsp[0] & 3;
3624		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3625		recv_msg->msg.cmd = msg->rsp[1];
3626		memcpy(recv_msg->msg_data,
3627		       &(msg->rsp[2]),
3628		       msg->rsp_size - 2);
3629		recv_msg->msg.data = recv_msg->msg_data;
3630		recv_msg->msg.data_len = msg->rsp_size - 2;
3631		deliver_response(recv_msg);
3632	}
3633
3634	return 0;
3635}
3636
3637/*
3638 * Handle a received message.  Return 1 if the message should be requeued,
3639 * 0 if the message should be freed, or -1 if the message should not
3640 * be freed or requeued.
3641 */
3642static int handle_one_recv_msg(ipmi_smi_t          intf,
3643			       struct ipmi_smi_msg *msg)
3644{
3645	int requeue;
3646	int chan;
3647
3648#ifdef DEBUG_MSGING
3649	int m;
3650	printk("Recv:");
3651	for (m = 0; m < msg->rsp_size; m++)
3652		printk(" %2.2x", msg->rsp[m]);
3653	printk("\n");
3654#endif
3655	if (msg->rsp_size < 2) {
3656		/* Message is too small to be correct. */
3657		printk(KERN_WARNING PFX "BMC returned to small a message"
3658		       " for netfn %x cmd %x, got %d bytes\n",
3659		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3660
3661		/* Generate an error response for the message. */
3662		msg->rsp[0] = msg->data[0] | (1 << 2);
3663		msg->rsp[1] = msg->data[1];
3664		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3665		msg->rsp_size = 3;
3666	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3667		   || (msg->rsp[1] != msg->data[1])) {
3668		/*
3669		 * The NetFN and Command in the response is not even
3670		 * marginally correct.
3671		 */
3672		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3673		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3674		       (msg->data[0] >> 2) | 1, msg->data[1],
3675		       msg->rsp[0] >> 2, msg->rsp[1]);
3676
3677		/* Generate an error response for the message. */
3678		msg->rsp[0] = msg->data[0] | (1 << 2);
3679		msg->rsp[1] = msg->data[1];
3680		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3681		msg->rsp_size = 3;
3682	}
3683
3684	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3685	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3686	    && (msg->user_data != NULL)) {
3687		/*
3688		 * It's a response to a response we sent.  For this we
3689		 * deliver a send message response to the user.
3690		 */
3691		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3692
3693		requeue = 0;
3694		if (msg->rsp_size < 2)
3695			/* Message is too small to be correct. */
3696			goto out;
3697
3698		chan = msg->data[2] & 0x0f;
3699		if (chan >= IPMI_MAX_CHANNELS)
3700			/* Invalid channel number */
3701			goto out;
3702
3703		if (!recv_msg)
3704			goto out;
3705
3706		/* Make sure the user still exists. */
3707		if (!recv_msg->user || !recv_msg->user->valid)
3708			goto out;
3709
3710		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3711		recv_msg->msg.data = recv_msg->msg_data;
3712		recv_msg->msg.data_len = 1;
3713		recv_msg->msg_data[0] = msg->rsp[2];
3714		deliver_response(recv_msg);
3715	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3716		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3717		/* It's from the receive queue. */
3718		chan = msg->rsp[3] & 0xf;
3719		if (chan >= IPMI_MAX_CHANNELS) {
3720			/* Invalid channel number */
3721			requeue = 0;
3722			goto out;
3723		}
3724
3725		/*
3726		 * We need to make sure the channels have been initialized.
3727		 * The channel_handler routine will set the "curr_channel"
3728		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3729		 * channels for this interface have been initialized.
3730		 */
3731		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3732			requeue = 0; /* Throw the message away */
3733			goto out;
3734		}
3735
3736		switch (intf->channels[chan].medium) {
3737		case IPMI_CHANNEL_MEDIUM_IPMB:
3738			if (msg->rsp[4] & 0x04) {
3739				/*
3740				 * It's a response, so find the
3741				 * requesting message and send it up.
3742				 */
3743				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3744			} else {
3745				/*
3746				 * It's a command to the SMS from some other
3747				 * entity.  Handle that.
3748				 */
3749				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3750			}
3751			break;
3752
3753		case IPMI_CHANNEL_MEDIUM_8023LAN:
3754		case IPMI_CHANNEL_MEDIUM_ASYNC:
3755			if (msg->rsp[6] & 0x04) {
3756				/*
3757				 * It's a response, so find the
3758				 * requesting message and send it up.
3759				 */
3760				requeue = handle_lan_get_msg_rsp(intf, msg);
3761			} else {
3762				/*
3763				 * It's a command to the SMS from some other
3764				 * entity.  Handle that.
3765				 */
3766				requeue = handle_lan_get_msg_cmd(intf, msg);
3767			}
3768			break;
3769
3770		default:
3771			/* Check for OEM Channels.  Clients had better
3772			   register for these commands. */
3773			if ((intf->channels[chan].medium
3774			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3775			    && (intf->channels[chan].medium
3776				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3777				requeue = handle_oem_get_msg_cmd(intf, msg);
3778			} else {
3779				/*
3780				 * We don't handle the channel type, so just
3781				 * free the message.
3782				 */
3783				requeue = 0;
3784			}
3785		}
3786
3787	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3788		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3789		/* It's an asynchronous event. */
3790		requeue = handle_read_event_rsp(intf, msg);
3791	} else {
3792		/* It's a response from the local BMC. */
3793		requeue = handle_bmc_rsp(intf, msg);
3794	}
3795
3796 out:
3797	return requeue;
3798}
3799
3800/*
3801 * If there are messages in the queue or pretimeouts, handle them.
3802 */
3803static void handle_new_recv_msgs(ipmi_smi_t intf)
3804{
3805	struct ipmi_smi_msg  *smi_msg;
3806	unsigned long        flags = 0;
3807	int                  rv;
3808	int                  run_to_completion = intf->run_to_completion;
3809
3810	/* See if any waiting messages need to be processed. */
3811	if (!run_to_completion)
3812		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3813	while (!list_empty(&intf->waiting_rcv_msgs)) {
3814		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3815				     struct ipmi_smi_msg, link);
3816		if (!run_to_completion)
3817			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3818					       flags);
3819		rv = handle_one_recv_msg(intf, smi_msg);
3820		if (!run_to_completion)
3821			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3822		if (rv > 0) {
3823			/*
3824			 * To preserve message order, quit if we
3825			 * can't handle a message.
3826			 */
3827			break;
3828		} else {
3829			list_del(&smi_msg->link);
3830			if (rv == 0)
3831				/* Message handled */
3832				ipmi_free_smi_msg(smi_msg);
3833			/* If rv < 0, fatal error, del but don't free. */
3834		}
3835	}
3836	if (!run_to_completion)
3837		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3838
3839	/*
3840	 * If the pretimout count is non-zero, decrement one from it and
3841	 * deliver pretimeouts to all the users.
3842	 */
3843	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3844		ipmi_user_t user;
3845
3846		rcu_read_lock();
3847		list_for_each_entry_rcu(user, &intf->users, link) {
3848			if (user->handler->ipmi_watchdog_pretimeout)
3849				user->handler->ipmi_watchdog_pretimeout(
3850					user->handler_data);
3851		}
3852		rcu_read_unlock();
3853	}
3854}
3855
3856static void smi_recv_tasklet(unsigned long val)
3857{
3858	unsigned long flags = 0; /* keep us warning-free. */
3859	ipmi_smi_t intf = (ipmi_smi_t) val;
3860	int run_to_completion = intf->run_to_completion;
3861	struct ipmi_smi_msg *newmsg = NULL;
3862
3863	/*
3864	 * Start the next message if available.
3865	 *
3866	 * Do this here, not in the actual receiver, because we may deadlock
3867	 * because the lower layer is allowed to hold locks while calling
3868	 * message delivery.
3869	 */
3870	if (!run_to_completion)
3871		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3872	if (intf->curr_msg == NULL && !intf->in_shutdown) {
3873		struct list_head *entry = NULL;
3874
3875		/* Pick the high priority queue first. */
3876		if (!list_empty(&intf->hp_xmit_msgs))
3877			entry = intf->hp_xmit_msgs.next;
3878		else if (!list_empty(&intf->xmit_msgs))
3879			entry = intf->xmit_msgs.next;
3880
3881		if (entry) {
3882			list_del(entry);
3883			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3884			intf->curr_msg = newmsg;
3885		}
3886	}
3887	if (!run_to_completion)
3888		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3889	if (newmsg)
3890		intf->handlers->sender(intf->send_info, newmsg);
3891
3892	handle_new_recv_msgs(intf);
3893}
3894
3895/* Handle a new message from the lower layer. */
3896void ipmi_smi_msg_received(ipmi_smi_t          intf,
3897			   struct ipmi_smi_msg *msg)
3898{
3899	unsigned long flags = 0; /* keep us warning-free. */
3900	int run_to_completion = intf->run_to_completion;
3901
3902	if ((msg->data_size >= 2)
3903	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3904	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3905	    && (msg->user_data == NULL)) {
3906
3907		if (intf->in_shutdown)
3908			goto free_msg;
3909
3910		/*
3911		 * This is the local response to a command send, start
3912		 * the timer for these.  The user_data will not be
3913		 * NULL if this is a response send, and we will let
3914		 * response sends just go through.
3915		 */
3916
3917		/*
3918		 * Check for errors, if we get certain errors (ones
3919		 * that mean basically we can try again later), we
3920		 * ignore them and start the timer.  Otherwise we
3921		 * report the error immediately.
3922		 */
3923		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3924		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3925		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3926		    && (msg->rsp[2] != IPMI_BUS_ERR)
3927		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3928			int chan = msg->rsp[3] & 0xf;
3929
3930			/* Got an error sending the message, handle it. */
3931			if (chan >= IPMI_MAX_CHANNELS)
3932				; /* This shouldn't happen */
3933			else if ((intf->channels[chan].medium
3934				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3935				 || (intf->channels[chan].medium
3936				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3937				ipmi_inc_stat(intf, sent_lan_command_errs);
3938			else
3939				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3940			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3941		} else
3942			/* The message was sent, start the timer. */
3943			intf_start_seq_timer(intf, msg->msgid);
3944
3945free_msg:
3946		ipmi_free_smi_msg(msg);
3947	} else {
3948		/*
3949		 * To preserve message order, we keep a queue and deliver from
3950		 * a tasklet.
3951		 */
3952		if (!run_to_completion)
3953			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3954		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3955		if (!run_to_completion)
3956			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3957					       flags);
3958	}
3959
3960	if (!run_to_completion)
3961		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3962	if (msg == intf->curr_msg)
3963		intf->curr_msg = NULL;
3964	if (!run_to_completion)
3965		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3966
3967	if (run_to_completion)
3968		smi_recv_tasklet((unsigned long) intf);
3969	else
3970		tasklet_schedule(&intf->recv_tasklet);
3971}
3972EXPORT_SYMBOL(ipmi_smi_msg_received);
3973
3974void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3975{
3976	if (intf->in_shutdown)
3977		return;
3978
3979	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3980	tasklet_schedule(&intf->recv_tasklet);
3981}
3982EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3983
3984static struct ipmi_smi_msg *
3985smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3986		  unsigned char seq, long seqid)
3987{
3988	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3989	if (!smi_msg)
3990		/*
3991		 * If we can't allocate the message, then just return, we
3992		 * get 4 retries, so this should be ok.
3993		 */
3994		return NULL;
3995
3996	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3997	smi_msg->data_size = recv_msg->msg.data_len;
3998	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3999
4000#ifdef DEBUG_MSGING
4001	{
4002		int m;
4003		printk("Resend: ");
4004		for (m = 0; m < smi_msg->data_size; m++)
4005			printk(" %2.2x", smi_msg->data[m]);
4006		printk("\n");
4007	}
4008#endif
4009	return smi_msg;
4010}
4011
4012static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4013			      struct list_head *timeouts, long timeout_period,
4014			      int slot, unsigned long *flags,
4015			      unsigned int *waiting_msgs)
4016{
4017	struct ipmi_recv_msg     *msg;
4018	struct ipmi_smi_handlers *handlers;
4019
4020	if (intf->in_shutdown)
4021		return;
4022
4023	if (!ent->inuse)
4024		return;
4025
4026	ent->timeout -= timeout_period;
4027	if (ent->timeout > 0) {
4028		(*waiting_msgs)++;
4029		return;
4030	}
4031
4032	if (ent->retries_left == 0) {
4033		/* The message has used all its retries. */
4034		ent->inuse = 0;
4035		msg = ent->recv_msg;
4036		list_add_tail(&msg->link, timeouts);
4037		if (ent->broadcast)
4038			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4039		else if (is_lan_addr(&ent->recv_msg->addr))
4040			ipmi_inc_stat(intf, timed_out_lan_commands);
4041		else
4042			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4043	} else {
4044		struct ipmi_smi_msg *smi_msg;
4045		/* More retries, send again. */
4046
4047		(*waiting_msgs)++;
4048
4049		/*
4050		 * Start with the max timer, set to normal timer after
4051		 * the message is sent.
4052		 */
4053		ent->timeout = MAX_MSG_TIMEOUT;
4054		ent->retries_left--;
4055		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4056					    ent->seqid);
4057		if (!smi_msg) {
4058			if (is_lan_addr(&ent->recv_msg->addr))
4059				ipmi_inc_stat(intf,
4060					      dropped_rexmit_lan_commands);
4061			else
4062				ipmi_inc_stat(intf,
4063					      dropped_rexmit_ipmb_commands);
4064			return;
4065		}
4066
4067		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4068
4069		/*
4070		 * Send the new message.  We send with a zero
4071		 * priority.  It timed out, I doubt time is that
4072		 * critical now, and high priority messages are really
4073		 * only for messages to the local MC, which don't get
4074		 * resent.
4075		 */
4076		handlers = intf->handlers;
4077		if (handlers) {
4078			if (is_lan_addr(&ent->recv_msg->addr))
4079				ipmi_inc_stat(intf,
4080					      retransmitted_lan_commands);
4081			else
4082				ipmi_inc_stat(intf,
4083					      retransmitted_ipmb_commands);
4084
4085			smi_send(intf, intf->handlers, smi_msg, 0);
4086		} else
4087			ipmi_free_smi_msg(smi_msg);
4088
4089		spin_lock_irqsave(&intf->seq_lock, *flags);
4090	}
4091}
4092
4093static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4094{
4095	struct list_head     timeouts;
4096	struct ipmi_recv_msg *msg, *msg2;
4097	unsigned long        flags;
4098	int                  i;
4099	unsigned int         waiting_msgs = 0;
4100
4101	/*
4102	 * Go through the seq table and find any messages that
4103	 * have timed out, putting them in the timeouts
4104	 * list.
4105	 */
4106	INIT_LIST_HEAD(&timeouts);
4107	spin_lock_irqsave(&intf->seq_lock, flags);
4108	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4109		check_msg_timeout(intf, &(intf->seq_table[i]),
4110				  &timeouts, timeout_period, i,
4111				  &flags, &waiting_msgs);
4112	spin_unlock_irqrestore(&intf->seq_lock, flags);
4113
4114	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4115		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4116
4117	/*
4118	 * Maintenance mode handling.  Check the timeout
4119	 * optimistically before we claim the lock.  It may
4120	 * mean a timeout gets missed occasionally, but that
4121	 * only means the timeout gets extended by one period
4122	 * in that case.  No big deal, and it avoids the lock
4123	 * most of the time.
4124	 */
4125	if (intf->auto_maintenance_timeout > 0) {
4126		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4127		if (intf->auto_maintenance_timeout > 0) {
4128			intf->auto_maintenance_timeout
4129				-= timeout_period;
4130			if (!intf->maintenance_mode
4131			    && (intf->auto_maintenance_timeout <= 0)) {
4132				intf->maintenance_mode_enable = false;
4133				maintenance_mode_update(intf);
4134			}
4135		}
4136		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4137				       flags);
4138	}
4139
4140	tasklet_schedule(&intf->recv_tasklet);
4141
4142	return waiting_msgs;
4143}
4144
4145static void ipmi_request_event(ipmi_smi_t intf)
4146{
4147	/* No event requests when in maintenance mode. */
4148	if (intf->maintenance_mode_enable)
4149		return;
4150
4151	if (!intf->in_shutdown)
4152		intf->handlers->request_events(intf->send_info);
4153}
4154
4155static struct timer_list ipmi_timer;
4156
4157static atomic_t stop_operation;
4158
4159static void ipmi_timeout(unsigned long data)
4160{
4161	ipmi_smi_t intf;
4162	int nt = 0;
4163
4164	if (atomic_read(&stop_operation))
4165		return;
4166
4167	rcu_read_lock();
4168	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4169		int lnt = 0;
4170
4171		if (atomic_read(&intf->event_waiters)) {
4172			intf->ticks_to_req_ev--;
4173			if (intf->ticks_to_req_ev == 0) {
4174				ipmi_request_event(intf);
4175				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4176			}
4177			lnt++;
4178		}
4179
4180		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4181
4182		lnt = !!lnt;
4183		if (lnt != intf->last_needs_timer &&
4184					intf->handlers->set_need_watch)
4185			intf->handlers->set_need_watch(intf->send_info, lnt);
4186		intf->last_needs_timer = lnt;
4187
4188		nt += lnt;
4189	}
4190	rcu_read_unlock();
4191
4192	if (nt)
4193		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4194}
4195
4196static void need_waiter(ipmi_smi_t intf)
4197{
4198	/* Racy, but worst case we start the timer twice. */
4199	if (!timer_pending(&ipmi_timer))
4200		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4201}
4202
4203static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4204static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4205
4206static void free_smi_msg(struct ipmi_smi_msg *msg)
4207{
4208	atomic_dec(&smi_msg_inuse_count);
4209	kfree(msg);
4210}
4211
4212struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4213{
4214	struct ipmi_smi_msg *rv;
4215	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4216	if (rv) {
4217		rv->done = free_smi_msg;
4218		rv->user_data = NULL;
4219		atomic_inc(&smi_msg_inuse_count);
4220	}
4221	return rv;
4222}
4223EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4224
4225static void free_recv_msg(struct ipmi_recv_msg *msg)
4226{
4227	atomic_dec(&recv_msg_inuse_count);
4228	kfree(msg);
4229}
4230
4231static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4232{
4233	struct ipmi_recv_msg *rv;
4234
4235	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4236	if (rv) {
4237		rv->user = NULL;
4238		rv->done = free_recv_msg;
4239		atomic_inc(&recv_msg_inuse_count);
4240	}
4241	return rv;
4242}
4243
4244void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4245{
4246	if (msg->user)
4247		kref_put(&msg->user->refcount, free_user);
4248	msg->done(msg);
4249}
4250EXPORT_SYMBOL(ipmi_free_recv_msg);
4251
4252#ifdef CONFIG_IPMI_PANIC_EVENT
4253
4254static atomic_t panic_done_count = ATOMIC_INIT(0);
4255
4256static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4257{
4258	atomic_dec(&panic_done_count);
4259}
4260
4261static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4262{
4263	atomic_dec(&panic_done_count);
4264}
4265
4266/*
4267 * Inside a panic, send a message and wait for a response.
4268 */
4269static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4270					struct ipmi_addr     *addr,
4271					struct kernel_ipmi_msg *msg)
4272{
4273	struct ipmi_smi_msg  smi_msg;
4274	struct ipmi_recv_msg recv_msg;
4275	int rv;
4276
4277	smi_msg.done = dummy_smi_done_handler;
4278	recv_msg.done = dummy_recv_done_handler;
4279	atomic_add(2, &panic_done_count);
4280	rv = i_ipmi_request(NULL,
4281			    intf,
4282			    addr,
4283			    0,
4284			    msg,
4285			    intf,
4286			    &smi_msg,
4287			    &recv_msg,
4288			    0,
4289			    intf->channels[0].address,
4290			    intf->channels[0].lun,
4291			    0, 1); /* Don't retry, and don't wait. */
4292	if (rv)
4293		atomic_sub(2, &panic_done_count);
4294	while (atomic_read(&panic_done_count) != 0)
4295		ipmi_poll(intf);
4296}
4297
4298#ifdef CONFIG_IPMI_PANIC_STRING
4299static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4300{
4301	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4302	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4303	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4304	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4305		/* A get event receiver command, save it. */
4306		intf->event_receiver = msg->msg.data[1];
4307		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4308	}
4309}
4310
4311static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4312{
4313	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4314	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4315	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4316	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4317		/*
4318		 * A get device id command, save if we are an event
4319		 * receiver or generator.
4320		 */
4321		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4322		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4323	}
4324}
4325#endif
4326
4327static void send_panic_events(char *str)
4328{
4329	struct kernel_ipmi_msg            msg;
4330	ipmi_smi_t                        intf;
4331	unsigned char                     data[16];
4332	struct ipmi_system_interface_addr *si;
4333	struct ipmi_addr                  addr;
4334
4335	si = (struct ipmi_system_interface_addr *) &addr;
4336	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4337	si->channel = IPMI_BMC_CHANNEL;
4338	si->lun = 0;
4339
4340	/* Fill in an event telling that we have failed. */
4341	msg.netfn = 0x04; /* Sensor or Event. */
4342	msg.cmd = 2; /* Platform event command. */
4343	msg.data = data;
4344	msg.data_len = 8;
4345	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4346	data[1] = 0x03; /* This is for IPMI 1.0. */
4347	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4348	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4349	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4350
4351	/*
4352	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4353	 * to make the panic events more useful.
4354	 */
4355	if (str) {
4356		data[3] = str[0];
4357		data[6] = str[1];
4358		data[7] = str[2];
4359	}
4360
4361	/* For every registered interface, send the event. */
4362	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4363		if (!intf->handlers)
4364			/* Interface is not ready. */
4365			continue;
4366
4367		intf->run_to_completion = 1;
4368		/* Send the event announcing the panic. */
4369		intf->handlers->set_run_to_completion(intf->send_info, 1);
4370		ipmi_panic_request_and_wait(intf, &addr, &msg);
4371	}
4372
4373#ifdef CONFIG_IPMI_PANIC_STRING
4374	/*
4375	 * On every interface, dump a bunch of OEM event holding the
4376	 * string.
4377	 */
4378	if (!str)
4379		return;
4380
4381	/* For every registered interface, send the event. */
4382	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4383		char                  *p = str;
4384		struct ipmi_ipmb_addr *ipmb;
4385		int                   j;
4386
4387		if (intf->intf_num == -1)
4388			/* Interface was not ready yet. */
4389			continue;
4390
4391		/*
4392		 * intf_num is used as an marker to tell if the
4393		 * interface is valid.  Thus we need a read barrier to
4394		 * make sure data fetched before checking intf_num
4395		 * won't be used.
4396		 */
4397		smp_rmb();
4398
4399		/*
4400		 * First job here is to figure out where to send the
4401		 * OEM events.  There's no way in IPMI to send OEM
4402		 * events using an event send command, so we have to
4403		 * find the SEL to put them in and stick them in
4404		 * there.
4405		 */
4406
4407		/* Get capabilities from the get device id. */
4408		intf->local_sel_device = 0;
4409		intf->local_event_generator = 0;
4410		intf->event_receiver = 0;
4411
4412		/* Request the device info from the local MC. */
4413		msg.netfn = IPMI_NETFN_APP_REQUEST;
4414		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4415		msg.data = NULL;
4416		msg.data_len = 0;
4417		intf->null_user_handler = device_id_fetcher;
4418		ipmi_panic_request_and_wait(intf, &addr, &msg);
4419
4420		if (intf->local_event_generator) {
4421			/* Request the event receiver from the local MC. */
4422			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4423			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4424			msg.data = NULL;
4425			msg.data_len = 0;
4426			intf->null_user_handler = event_receiver_fetcher;
4427			ipmi_panic_request_and_wait(intf, &addr, &msg);
4428		}
4429		intf->null_user_handler = NULL;
4430
4431		/*
4432		 * Validate the event receiver.  The low bit must not
4433		 * be 1 (it must be a valid IPMB address), it cannot
4434		 * be zero, and it must not be my address.
4435		 */
4436		if (((intf->event_receiver & 1) == 0)
4437		    && (intf->event_receiver != 0)
4438		    && (intf->event_receiver != intf->channels[0].address)) {
4439			/*
4440			 * The event receiver is valid, send an IPMB
4441			 * message.
4442			 */
4443			ipmb = (struct ipmi_ipmb_addr *) &addr;
4444			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4445			ipmb->channel = 0; /* FIXME - is this right? */
4446			ipmb->lun = intf->event_receiver_lun;
4447			ipmb->slave_addr = intf->event_receiver;
4448		} else if (intf->local_sel_device) {
4449			/*
4450			 * The event receiver was not valid (or was
4451			 * me), but I am an SEL device, just dump it
4452			 * in my SEL.
4453			 */
4454			si = (struct ipmi_system_interface_addr *) &addr;
4455			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4456			si->channel = IPMI_BMC_CHANNEL;
4457			si->lun = 0;
4458		} else
4459			continue; /* No where to send the event. */
4460
4461		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4462		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4463		msg.data = data;
4464		msg.data_len = 16;
4465
4466		j = 0;
4467		while (*p) {
4468			int size = strlen(p);
4469
4470			if (size > 11)
4471				size = 11;
4472			data[0] = 0;
4473			data[1] = 0;
4474			data[2] = 0xf0; /* OEM event without timestamp. */
4475			data[3] = intf->channels[0].address;
4476			data[4] = j++; /* sequence # */
4477			/*
4478			 * Always give 11 bytes, so strncpy will fill
4479			 * it with zeroes for me.
4480			 */
4481			strncpy(data+5, p, 11);
4482			p += size;
4483
4484			ipmi_panic_request_and_wait(intf, &addr, &msg);
4485		}
4486	}
4487#endif /* CONFIG_IPMI_PANIC_STRING */
4488}
4489#endif /* CONFIG_IPMI_PANIC_EVENT */
4490
4491static int has_panicked;
4492
4493static int panic_event(struct notifier_block *this,
4494		       unsigned long         event,
4495		       void                  *ptr)
4496{
4497	ipmi_smi_t intf;
4498
4499	if (has_panicked)
4500		return NOTIFY_DONE;
4501	has_panicked = 1;
4502
4503	/* For every registered interface, set it to run to completion. */
4504	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4505		if (!intf->handlers)
4506			/* Interface is not ready. */
4507			continue;
4508
4509		intf->run_to_completion = 1;
4510		intf->handlers->set_run_to_completion(intf->send_info, 1);
4511	}
4512
4513#ifdef CONFIG_IPMI_PANIC_EVENT
4514	send_panic_events(ptr);
4515#endif
4516
4517	return NOTIFY_DONE;
4518}
4519
4520static struct notifier_block panic_block = {
4521	.notifier_call	= panic_event,
4522	.next		= NULL,
4523	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4524};
4525
4526static int ipmi_init_msghandler(void)
4527{
4528	int rv;
4529
4530	if (initialized)
4531		return 0;
4532
4533	rv = driver_register(&ipmidriver.driver);
4534	if (rv) {
4535		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4536		return rv;
4537	}
4538
4539	printk(KERN_INFO "ipmi message handler version "
4540	       IPMI_DRIVER_VERSION "\n");
4541
4542#ifdef CONFIG_PROC_FS
4543	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4544	if (!proc_ipmi_root) {
4545	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4546	    driver_unregister(&ipmidriver.driver);
4547	    return -ENOMEM;
4548	}
4549
4550#endif /* CONFIG_PROC_FS */
4551
4552	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4553	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4554
4555	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4556
4557	initialized = 1;
4558
4559	return 0;
4560}
4561
4562static int __init ipmi_init_msghandler_mod(void)
4563{
4564	ipmi_init_msghandler();
4565	return 0;
4566}
4567
4568static void __exit cleanup_ipmi(void)
4569{
4570	int count;
4571
4572	if (!initialized)
4573		return;
4574
4575	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4576
4577	/*
4578	 * This can't be called if any interfaces exist, so no worry
4579	 * about shutting down the interfaces.
4580	 */
4581
4582	/*
4583	 * Tell the timer to stop, then wait for it to stop.  This
4584	 * avoids problems with race conditions removing the timer
4585	 * here.
4586	 */
4587	atomic_inc(&stop_operation);
4588	del_timer_sync(&ipmi_timer);
4589
4590#ifdef CONFIG_PROC_FS
4591	proc_remove(proc_ipmi_root);
4592#endif /* CONFIG_PROC_FS */
4593
4594	driver_unregister(&ipmidriver.driver);
4595
4596	initialized = 0;
4597
4598	/* Check for buffer leaks. */
4599	count = atomic_read(&smi_msg_inuse_count);
4600	if (count != 0)
4601		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4602		       count);
4603	count = atomic_read(&recv_msg_inuse_count);
4604	if (count != 0)
4605		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4606		       count);
4607}
4608module_exit(cleanup_ipmi);
4609
4610module_init(ipmi_init_msghandler_mod);
4611MODULE_LICENSE("GPL");
4612MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4613MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4614		   " interface.");
4615MODULE_VERSION(IPMI_DRIVER_VERSION);
4616