1/*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3 *
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7 *
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10 *
11 * This driver is released to the public under the terms of the
12 *  GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
14 *
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20 *                       - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
22 *			 - incorporate into main kernel
23 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24 *			 - use spin_lock_bh instead of _irq
25 *			 - Never block on make_request.  queue
26 *			   bh's instead.
27 *			 - unregister umem from devfs at mod unload
28 *			 - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown   - convert to bio for 2.5
32 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33 *			 - a sequence of writes that cover the card, and
34 *			 - set initialised bit then.
35 */
36
37#undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
38#include <linux/fs.h>
39#include <linux/bio.h>
40#include <linux/kernel.h>
41#include <linux/mm.h>
42#include <linux/mman.h>
43#include <linux/gfp.h>
44#include <linux/ioctl.h>
45#include <linux/module.h>
46#include <linux/init.h>
47#include <linux/interrupt.h>
48#include <linux/timer.h>
49#include <linux/pci.h>
50#include <linux/dma-mapping.h>
51
52#include <linux/fcntl.h>        /* O_ACCMODE */
53#include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55#include "umem.h"
56
57#include <asm/uaccess.h>
58#include <asm/io.h>
59
60#define MM_MAXCARDS 4
61#define MM_RAHEAD 2      /* two sectors */
62#define MM_BLKSIZE 1024  /* 1k blocks */
63#define MM_HARDSECT 512  /* 512-byte hardware sectors */
64#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66/*
67 * Version Information
68 */
69
70#define DRIVER_NAME	"umem"
71#define DRIVER_VERSION	"v2.3"
72#define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
73#define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
74
75static int debug;
76/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77#define HW_TRACE(x)
78
79#define DEBUG_LED_ON_TRANSFER	0x01
80#define DEBUG_BATTERY_POLLING	0x02
81
82module_param(debug, int, 0644);
83MODULE_PARM_DESC(debug, "Debug bitmask");
84
85static int pci_read_cmd = 0x0C;		/* Read Multiple */
86module_param(pci_read_cmd, int, 0);
87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
90module_param(pci_write_cmd, int, 0);
91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93static int pci_cmds;
94
95static int major_nr;
96
97#include <linux/blkdev.h>
98#include <linux/blkpg.h>
99
100struct cardinfo {
101	struct pci_dev	*dev;
102
103	unsigned char	__iomem *csr_remap;
104	unsigned int	mm_size;  /* size in kbytes */
105
106	unsigned int	init_size; /* initial segment, in sectors,
107				    * that we know to
108				    * have been written
109				    */
110	struct bio	*bio, *currentbio, **biotail;
111	struct bvec_iter current_iter;
112
113	struct request_queue *queue;
114
115	struct mm_page {
116		dma_addr_t		page_dma;
117		struct mm_dma_desc	*desc;
118		int	 		cnt, headcnt;
119		struct bio		*bio, **biotail;
120		struct bvec_iter	iter;
121	} mm_pages[2];
122#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
123
124	int  Active, Ready;
125
126	struct tasklet_struct	tasklet;
127	unsigned int dma_status;
128
129	struct {
130		int		good;
131		int		warned;
132		unsigned long	last_change;
133	} battery[2];
134
135	spinlock_t 	lock;
136	int		check_batteries;
137
138	int		flags;
139};
140
141static struct cardinfo cards[MM_MAXCARDS];
142static struct timer_list battery_timer;
143
144static int num_cards;
145
146static struct gendisk *mm_gendisk[MM_MAXCARDS];
147
148static void check_batteries(struct cardinfo *card);
149
150static int get_userbit(struct cardinfo *card, int bit)
151{
152	unsigned char led;
153
154	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
155	return led & bit;
156}
157
158static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
159{
160	unsigned char led;
161
162	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
163	if (state)
164		led |= bit;
165	else
166		led &= ~bit;
167	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
168
169	return 0;
170}
171
172/*
173 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
174 */
175static void set_led(struct cardinfo *card, int shift, unsigned char state)
176{
177	unsigned char led;
178
179	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
180	if (state == LED_FLIP)
181		led ^= (1<<shift);
182	else {
183		led &= ~(0x03 << shift);
184		led |= (state << shift);
185	}
186	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
187
188}
189
190#ifdef MM_DIAG
191static void dump_regs(struct cardinfo *card)
192{
193	unsigned char *p;
194	int i, i1;
195
196	p = card->csr_remap;
197	for (i = 0; i < 8; i++) {
198		printk(KERN_DEBUG "%p   ", p);
199
200		for (i1 = 0; i1 < 16; i1++)
201			printk("%02x ", *p++);
202
203		printk("\n");
204	}
205}
206#endif
207
208static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
209{
210	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
211	if (dmastat & DMASCR_ANY_ERR)
212		printk(KERN_CONT "ANY_ERR ");
213	if (dmastat & DMASCR_MBE_ERR)
214		printk(KERN_CONT "MBE_ERR ");
215	if (dmastat & DMASCR_PARITY_ERR_REP)
216		printk(KERN_CONT "PARITY_ERR_REP ");
217	if (dmastat & DMASCR_PARITY_ERR_DET)
218		printk(KERN_CONT "PARITY_ERR_DET ");
219	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
220		printk(KERN_CONT "SYSTEM_ERR_SIG ");
221	if (dmastat & DMASCR_TARGET_ABT)
222		printk(KERN_CONT "TARGET_ABT ");
223	if (dmastat & DMASCR_MASTER_ABT)
224		printk(KERN_CONT "MASTER_ABT ");
225	if (dmastat & DMASCR_CHAIN_COMPLETE)
226		printk(KERN_CONT "CHAIN_COMPLETE ");
227	if (dmastat & DMASCR_DMA_COMPLETE)
228		printk(KERN_CONT "DMA_COMPLETE ");
229	printk("\n");
230}
231
232/*
233 * Theory of request handling
234 *
235 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
236 * We have two pages of mm_dma_desc, holding about 64 descriptors
237 * each.  These are allocated at init time.
238 * One page is "Ready" and is either full, or can have request added.
239 * The other page might be "Active", which DMA is happening on it.
240 *
241 * Whenever IO on the active page completes, the Ready page is activated
242 * and the ex-Active page is clean out and made Ready.
243 * Otherwise the Ready page is only activated when it becomes full.
244 *
245 * If a request arrives while both pages a full, it is queued, and b_rdev is
246 * overloaded to record whether it was a read or a write.
247 *
248 * The interrupt handler only polls the device to clear the interrupt.
249 * The processing of the result is done in a tasklet.
250 */
251
252static void mm_start_io(struct cardinfo *card)
253{
254	/* we have the lock, we know there is
255	 * no IO active, and we know that card->Active
256	 * is set
257	 */
258	struct mm_dma_desc *desc;
259	struct mm_page *page;
260	int offset;
261
262	/* make the last descriptor end the chain */
263	page = &card->mm_pages[card->Active];
264	pr_debug("start_io: %d %d->%d\n",
265		card->Active, page->headcnt, page->cnt - 1);
266	desc = &page->desc[page->cnt-1];
267
268	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
269	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
270	desc->sem_control_bits = desc->control_bits;
271
272
273	if (debug & DEBUG_LED_ON_TRANSFER)
274		set_led(card, LED_REMOVE, LED_ON);
275
276	desc = &page->desc[page->headcnt];
277	writel(0, card->csr_remap + DMA_PCI_ADDR);
278	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
279
280	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
281	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
282
283	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
284	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
285
286	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
287	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
288
289	offset = ((char *)desc) - ((char *)page->desc);
290	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
291	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
292	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
293	 * and on some ports will do nothing ! */
294	writel(cpu_to_le32(((u64)page->page_dma)>>32),
295	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
296
297	/* Go, go, go */
298	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
299	       card->csr_remap + DMA_STATUS_CTRL);
300}
301
302static int add_bio(struct cardinfo *card);
303
304static void activate(struct cardinfo *card)
305{
306	/* if No page is Active, and Ready is
307	 * not empty, then switch Ready page
308	 * to active and start IO.
309	 * Then add any bh's that are available to Ready
310	 */
311
312	do {
313		while (add_bio(card))
314			;
315
316		if (card->Active == -1 &&
317		    card->mm_pages[card->Ready].cnt > 0) {
318			card->Active = card->Ready;
319			card->Ready = 1-card->Ready;
320			mm_start_io(card);
321		}
322
323	} while (card->Active == -1 && add_bio(card));
324}
325
326static inline void reset_page(struct mm_page *page)
327{
328	page->cnt = 0;
329	page->headcnt = 0;
330	page->bio = NULL;
331	page->biotail = &page->bio;
332}
333
334/*
335 * If there is room on Ready page, take
336 * one bh off list and add it.
337 * return 1 if there was room, else 0.
338 */
339static int add_bio(struct cardinfo *card)
340{
341	struct mm_page *p;
342	struct mm_dma_desc *desc;
343	dma_addr_t dma_handle;
344	int offset;
345	struct bio *bio;
346	struct bio_vec vec;
347	int rw;
348
349	bio = card->currentbio;
350	if (!bio && card->bio) {
351		card->currentbio = card->bio;
352		card->current_iter = card->bio->bi_iter;
353		card->bio = card->bio->bi_next;
354		if (card->bio == NULL)
355			card->biotail = &card->bio;
356		card->currentbio->bi_next = NULL;
357		return 1;
358	}
359	if (!bio)
360		return 0;
361
362	rw = bio_rw(bio);
363	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
364		return 0;
365
366	vec = bio_iter_iovec(bio, card->current_iter);
367
368	dma_handle = pci_map_page(card->dev,
369				  vec.bv_page,
370				  vec.bv_offset,
371				  vec.bv_len,
372				  (rw == READ) ?
373				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
374
375	p = &card->mm_pages[card->Ready];
376	desc = &p->desc[p->cnt];
377	p->cnt++;
378	if (p->bio == NULL)
379		p->iter = card->current_iter;
380	if ((p->biotail) != &bio->bi_next) {
381		*(p->biotail) = bio;
382		p->biotail = &(bio->bi_next);
383		bio->bi_next = NULL;
384	}
385
386	desc->data_dma_handle = dma_handle;
387
388	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
389	desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
390	desc->transfer_size = cpu_to_le32(vec.bv_len);
391	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
392	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
393	desc->zero1 = desc->zero2 = 0;
394	offset = (((char *)(desc+1)) - ((char *)p->desc));
395	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
396	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
397					 DMASCR_PARITY_INT_EN|
398					 DMASCR_CHAIN_EN |
399					 DMASCR_SEM_EN |
400					 pci_cmds);
401	if (rw == WRITE)
402		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
403	desc->sem_control_bits = desc->control_bits;
404
405
406	bio_advance_iter(bio, &card->current_iter, vec.bv_len);
407	if (!card->current_iter.bi_size)
408		card->currentbio = NULL;
409
410	return 1;
411}
412
413static void process_page(unsigned long data)
414{
415	/* check if any of the requests in the page are DMA_COMPLETE,
416	 * and deal with them appropriately.
417	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
418	 * dma must have hit an error on that descriptor, so use dma_status
419	 * instead and assume that all following descriptors must be re-tried.
420	 */
421	struct mm_page *page;
422	struct bio *return_bio = NULL;
423	struct cardinfo *card = (struct cardinfo *)data;
424	unsigned int dma_status = card->dma_status;
425
426	spin_lock_bh(&card->lock);
427	if (card->Active < 0)
428		goto out_unlock;
429	page = &card->mm_pages[card->Active];
430
431	while (page->headcnt < page->cnt) {
432		struct bio *bio = page->bio;
433		struct mm_dma_desc *desc = &page->desc[page->headcnt];
434		int control = le32_to_cpu(desc->sem_control_bits);
435		int last = 0;
436		struct bio_vec vec;
437
438		if (!(control & DMASCR_DMA_COMPLETE)) {
439			control = dma_status;
440			last = 1;
441		}
442
443		page->headcnt++;
444		vec = bio_iter_iovec(bio, page->iter);
445		bio_advance_iter(bio, &page->iter, vec.bv_len);
446
447		if (!page->iter.bi_size) {
448			page->bio = bio->bi_next;
449			if (page->bio)
450				page->iter = page->bio->bi_iter;
451		}
452
453		pci_unmap_page(card->dev, desc->data_dma_handle,
454			       vec.bv_len,
455				 (control & DMASCR_TRANSFER_READ) ?
456				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
457		if (control & DMASCR_HARD_ERROR) {
458			/* error */
459			clear_bit(BIO_UPTODATE, &bio->bi_flags);
460			dev_printk(KERN_WARNING, &card->dev->dev,
461				"I/O error on sector %d/%d\n",
462				le32_to_cpu(desc->local_addr)>>9,
463				le32_to_cpu(desc->transfer_size));
464			dump_dmastat(card, control);
465		} else if ((bio->bi_rw & REQ_WRITE) &&
466			   le32_to_cpu(desc->local_addr) >> 9 ==
467				card->init_size) {
468			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
469			if (card->init_size >> 1 >= card->mm_size) {
470				dev_printk(KERN_INFO, &card->dev->dev,
471					"memory now initialised\n");
472				set_userbit(card, MEMORY_INITIALIZED, 1);
473			}
474		}
475		if (bio != page->bio) {
476			bio->bi_next = return_bio;
477			return_bio = bio;
478		}
479
480		if (last)
481			break;
482	}
483
484	if (debug & DEBUG_LED_ON_TRANSFER)
485		set_led(card, LED_REMOVE, LED_OFF);
486
487	if (card->check_batteries) {
488		card->check_batteries = 0;
489		check_batteries(card);
490	}
491	if (page->headcnt >= page->cnt) {
492		reset_page(page);
493		card->Active = -1;
494		activate(card);
495	} else {
496		/* haven't finished with this one yet */
497		pr_debug("do some more\n");
498		mm_start_io(card);
499	}
500 out_unlock:
501	spin_unlock_bh(&card->lock);
502
503	while (return_bio) {
504		struct bio *bio = return_bio;
505
506		return_bio = bio->bi_next;
507		bio->bi_next = NULL;
508		bio_endio(bio, 0);
509	}
510}
511
512static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
513{
514	struct cardinfo *card = cb->data;
515
516	spin_lock_irq(&card->lock);
517	activate(card);
518	spin_unlock_irq(&card->lock);
519	kfree(cb);
520}
521
522static int mm_check_plugged(struct cardinfo *card)
523{
524	return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
525}
526
527static void mm_make_request(struct request_queue *q, struct bio *bio)
528{
529	struct cardinfo *card = q->queuedata;
530	pr_debug("mm_make_request %llu %u\n",
531		 (unsigned long long)bio->bi_iter.bi_sector,
532		 bio->bi_iter.bi_size);
533
534	spin_lock_irq(&card->lock);
535	*card->biotail = bio;
536	bio->bi_next = NULL;
537	card->biotail = &bio->bi_next;
538	if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
539		activate(card);
540	spin_unlock_irq(&card->lock);
541
542	return;
543}
544
545static irqreturn_t mm_interrupt(int irq, void *__card)
546{
547	struct cardinfo *card = (struct cardinfo *) __card;
548	unsigned int dma_status;
549	unsigned short cfg_status;
550
551HW_TRACE(0x30);
552
553	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
554
555	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
556		/* interrupt wasn't for me ... */
557		return IRQ_NONE;
558	}
559
560	/* clear COMPLETION interrupts */
561	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
562		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
563		       card->csr_remap + DMA_STATUS_CTRL);
564	else
565		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
566		       card->csr_remap + DMA_STATUS_CTRL + 2);
567
568	/* log errors and clear interrupt status */
569	if (dma_status & DMASCR_ANY_ERR) {
570		unsigned int	data_log1, data_log2;
571		unsigned int	addr_log1, addr_log2;
572		unsigned char	stat, count, syndrome, check;
573
574		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
575
576		data_log1 = le32_to_cpu(readl(card->csr_remap +
577						ERROR_DATA_LOG));
578		data_log2 = le32_to_cpu(readl(card->csr_remap +
579						ERROR_DATA_LOG + 4));
580		addr_log1 = le32_to_cpu(readl(card->csr_remap +
581						ERROR_ADDR_LOG));
582		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
583
584		count = readb(card->csr_remap + ERROR_COUNT);
585		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
586		check = readb(card->csr_remap + ERROR_CHECK);
587
588		dump_dmastat(card, dma_status);
589
590		if (stat & 0x01)
591			dev_printk(KERN_ERR, &card->dev->dev,
592				"Memory access error detected (err count %d)\n",
593				count);
594		if (stat & 0x02)
595			dev_printk(KERN_ERR, &card->dev->dev,
596				"Multi-bit EDC error\n");
597
598		dev_printk(KERN_ERR, &card->dev->dev,
599			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
600			addr_log2, addr_log1, data_log2, data_log1);
601		dev_printk(KERN_ERR, &card->dev->dev,
602			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
603			check, syndrome);
604
605		writeb(0, card->csr_remap + ERROR_COUNT);
606	}
607
608	if (dma_status & DMASCR_PARITY_ERR_REP) {
609		dev_printk(KERN_ERR, &card->dev->dev,
610			"PARITY ERROR REPORTED\n");
611		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
612		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
613	}
614
615	if (dma_status & DMASCR_PARITY_ERR_DET) {
616		dev_printk(KERN_ERR, &card->dev->dev,
617			"PARITY ERROR DETECTED\n");
618		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
619		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
620	}
621
622	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
623		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
624		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
625		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
626	}
627
628	if (dma_status & DMASCR_TARGET_ABT) {
629		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
630		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
631		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
632	}
633
634	if (dma_status & DMASCR_MASTER_ABT) {
635		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
636		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
637		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
638	}
639
640	/* and process the DMA descriptors */
641	card->dma_status = dma_status;
642	tasklet_schedule(&card->tasklet);
643
644HW_TRACE(0x36);
645
646	return IRQ_HANDLED;
647}
648
649/*
650 * If both batteries are good, no LED
651 * If either battery has been warned, solid LED
652 * If both batteries are bad, flash the LED quickly
653 * If either battery is bad, flash the LED semi quickly
654 */
655static void set_fault_to_battery_status(struct cardinfo *card)
656{
657	if (card->battery[0].good && card->battery[1].good)
658		set_led(card, LED_FAULT, LED_OFF);
659	else if (card->battery[0].warned || card->battery[1].warned)
660		set_led(card, LED_FAULT, LED_ON);
661	else if (!card->battery[0].good && !card->battery[1].good)
662		set_led(card, LED_FAULT, LED_FLASH_7_0);
663	else
664		set_led(card, LED_FAULT, LED_FLASH_3_5);
665}
666
667static void init_battery_timer(void);
668
669static int check_battery(struct cardinfo *card, int battery, int status)
670{
671	if (status != card->battery[battery].good) {
672		card->battery[battery].good = !card->battery[battery].good;
673		card->battery[battery].last_change = jiffies;
674
675		if (card->battery[battery].good) {
676			dev_printk(KERN_ERR, &card->dev->dev,
677				"Battery %d now good\n", battery + 1);
678			card->battery[battery].warned = 0;
679		} else
680			dev_printk(KERN_ERR, &card->dev->dev,
681				"Battery %d now FAILED\n", battery + 1);
682
683		return 1;
684	} else if (!card->battery[battery].good &&
685		   !card->battery[battery].warned &&
686		   time_after_eq(jiffies, card->battery[battery].last_change +
687				 (HZ * 60 * 60 * 5))) {
688		dev_printk(KERN_ERR, &card->dev->dev,
689			"Battery %d still FAILED after 5 hours\n", battery + 1);
690		card->battery[battery].warned = 1;
691
692		return 1;
693	}
694
695	return 0;
696}
697
698static void check_batteries(struct cardinfo *card)
699{
700	/* NOTE: this must *never* be called while the card
701	 * is doing (bus-to-card) DMA, or you will need the
702	 * reset switch
703	 */
704	unsigned char status;
705	int ret1, ret2;
706
707	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
708	if (debug & DEBUG_BATTERY_POLLING)
709		dev_printk(KERN_DEBUG, &card->dev->dev,
710			"checking battery status, 1 = %s, 2 = %s\n",
711		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
712		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
713
714	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
715	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
716
717	if (ret1 || ret2)
718		set_fault_to_battery_status(card);
719}
720
721static void check_all_batteries(unsigned long ptr)
722{
723	int i;
724
725	for (i = 0; i < num_cards; i++)
726		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
727			struct cardinfo *card = &cards[i];
728			spin_lock_bh(&card->lock);
729			if (card->Active >= 0)
730				card->check_batteries = 1;
731			else
732				check_batteries(card);
733			spin_unlock_bh(&card->lock);
734		}
735
736	init_battery_timer();
737}
738
739static void init_battery_timer(void)
740{
741	init_timer(&battery_timer);
742	battery_timer.function = check_all_batteries;
743	battery_timer.expires = jiffies + (HZ * 60);
744	add_timer(&battery_timer);
745}
746
747static void del_battery_timer(void)
748{
749	del_timer(&battery_timer);
750}
751
752/*
753 * Note no locks taken out here.  In a worst case scenario, we could drop
754 * a chunk of system memory.  But that should never happen, since validation
755 * happens at open or mount time, when locks are held.
756 *
757 *	That's crap, since doing that while some partitions are opened
758 * or mounted will give you really nasty results.
759 */
760static int mm_revalidate(struct gendisk *disk)
761{
762	struct cardinfo *card = disk->private_data;
763	set_capacity(disk, card->mm_size << 1);
764	return 0;
765}
766
767static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
768{
769	struct cardinfo *card = bdev->bd_disk->private_data;
770	int size = card->mm_size * (1024 / MM_HARDSECT);
771
772	/*
773	 * get geometry: we have to fake one...  trim the size to a
774	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
775	 * whatever cylinders.
776	 */
777	geo->heads     = 64;
778	geo->sectors   = 32;
779	geo->cylinders = size / (geo->heads * geo->sectors);
780	return 0;
781}
782
783static const struct block_device_operations mm_fops = {
784	.owner		= THIS_MODULE,
785	.getgeo		= mm_getgeo,
786	.revalidate_disk = mm_revalidate,
787};
788
789static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
790{
791	int ret = -ENODEV;
792	struct cardinfo *card = &cards[num_cards];
793	unsigned char	mem_present;
794	unsigned char	batt_status;
795	unsigned int	saved_bar, data;
796	unsigned long	csr_base;
797	unsigned long	csr_len;
798	int		magic_number;
799	static int	printed_version;
800
801	if (!printed_version++)
802		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
803
804	ret = pci_enable_device(dev);
805	if (ret)
806		return ret;
807
808	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
809	pci_set_master(dev);
810
811	card->dev         = dev;
812
813	csr_base = pci_resource_start(dev, 0);
814	csr_len  = pci_resource_len(dev, 0);
815	if (!csr_base || !csr_len)
816		return -ENODEV;
817
818	dev_printk(KERN_INFO, &dev->dev,
819	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
820
821	if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
822	    pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
823		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
824		return  -ENOMEM;
825	}
826
827	ret = pci_request_regions(dev, DRIVER_NAME);
828	if (ret) {
829		dev_printk(KERN_ERR, &card->dev->dev,
830			"Unable to request memory region\n");
831		goto failed_req_csr;
832	}
833
834	card->csr_remap = ioremap_nocache(csr_base, csr_len);
835	if (!card->csr_remap) {
836		dev_printk(KERN_ERR, &card->dev->dev,
837			"Unable to remap memory region\n");
838		ret = -ENOMEM;
839
840		goto failed_remap_csr;
841	}
842
843	dev_printk(KERN_INFO, &card->dev->dev,
844		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
845	       csr_base, card->csr_remap, csr_len);
846
847	switch (card->dev->device) {
848	case 0x5415:
849		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
850		magic_number = 0x59;
851		break;
852
853	case 0x5425:
854		card->flags |= UM_FLAG_NO_BYTE_STATUS;
855		magic_number = 0x5C;
856		break;
857
858	case 0x6155:
859		card->flags |= UM_FLAG_NO_BYTE_STATUS |
860				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
861		magic_number = 0x99;
862		break;
863
864	default:
865		magic_number = 0x100;
866		break;
867	}
868
869	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
870		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
871		ret = -ENOMEM;
872		goto failed_magic;
873	}
874
875	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
876						PAGE_SIZE * 2,
877						&card->mm_pages[0].page_dma);
878	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
879						PAGE_SIZE * 2,
880						&card->mm_pages[1].page_dma);
881	if (card->mm_pages[0].desc == NULL ||
882	    card->mm_pages[1].desc == NULL) {
883		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
884		goto failed_alloc;
885	}
886	reset_page(&card->mm_pages[0]);
887	reset_page(&card->mm_pages[1]);
888	card->Ready = 0;	/* page 0 is ready */
889	card->Active = -1;	/* no page is active */
890	card->bio = NULL;
891	card->biotail = &card->bio;
892
893	card->queue = blk_alloc_queue(GFP_KERNEL);
894	if (!card->queue)
895		goto failed_alloc;
896
897	blk_queue_make_request(card->queue, mm_make_request);
898	card->queue->queue_lock = &card->lock;
899	card->queue->queuedata = card;
900
901	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
902
903	card->check_batteries = 0;
904
905	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
906	switch (mem_present) {
907	case MEM_128_MB:
908		card->mm_size = 1024 * 128;
909		break;
910	case MEM_256_MB:
911		card->mm_size = 1024 * 256;
912		break;
913	case MEM_512_MB:
914		card->mm_size = 1024 * 512;
915		break;
916	case MEM_1_GB:
917		card->mm_size = 1024 * 1024;
918		break;
919	case MEM_2_GB:
920		card->mm_size = 1024 * 2048;
921		break;
922	default:
923		card->mm_size = 0;
924		break;
925	}
926
927	/* Clear the LED's we control */
928	set_led(card, LED_REMOVE, LED_OFF);
929	set_led(card, LED_FAULT, LED_OFF);
930
931	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
932
933	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
934	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
935	card->battery[0].last_change = card->battery[1].last_change = jiffies;
936
937	if (card->flags & UM_FLAG_NO_BATT)
938		dev_printk(KERN_INFO, &card->dev->dev,
939			"Size %d KB\n", card->mm_size);
940	else {
941		dev_printk(KERN_INFO, &card->dev->dev,
942			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
943		       card->mm_size,
944		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
945		       card->battery[0].good ? "OK" : "FAILURE",
946		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
947		       card->battery[1].good ? "OK" : "FAILURE");
948
949		set_fault_to_battery_status(card);
950	}
951
952	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
953	data = 0xffffffff;
954	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
955	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
956	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
957	data &= 0xfffffff0;
958	data = ~data;
959	data += 1;
960
961	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
962			card)) {
963		dev_printk(KERN_ERR, &card->dev->dev,
964			"Unable to allocate IRQ\n");
965		ret = -ENODEV;
966		goto failed_req_irq;
967	}
968
969	dev_printk(KERN_INFO, &card->dev->dev,
970		"Window size %d bytes, IRQ %d\n", data, dev->irq);
971
972	spin_lock_init(&card->lock);
973
974	pci_set_drvdata(dev, card);
975
976	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
977		pci_write_cmd = 0x07;	/* then Memory Write command */
978
979	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
980		unsigned short cfg_command;
981		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
982		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
983		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
984	}
985	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
986
987	num_cards++;
988
989	if (!get_userbit(card, MEMORY_INITIALIZED)) {
990		dev_printk(KERN_INFO, &card->dev->dev,
991		  "memory NOT initialized. Consider over-writing whole device.\n");
992		card->init_size = 0;
993	} else {
994		dev_printk(KERN_INFO, &card->dev->dev,
995			"memory already initialized\n");
996		card->init_size = card->mm_size;
997	}
998
999	/* Enable ECC */
1000	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1001
1002	return 0;
1003
1004 failed_req_irq:
1005 failed_alloc:
1006	if (card->mm_pages[0].desc)
1007		pci_free_consistent(card->dev, PAGE_SIZE*2,
1008				    card->mm_pages[0].desc,
1009				    card->mm_pages[0].page_dma);
1010	if (card->mm_pages[1].desc)
1011		pci_free_consistent(card->dev, PAGE_SIZE*2,
1012				    card->mm_pages[1].desc,
1013				    card->mm_pages[1].page_dma);
1014 failed_magic:
1015	iounmap(card->csr_remap);
1016 failed_remap_csr:
1017	pci_release_regions(dev);
1018 failed_req_csr:
1019
1020	return ret;
1021}
1022
1023static void mm_pci_remove(struct pci_dev *dev)
1024{
1025	struct cardinfo *card = pci_get_drvdata(dev);
1026
1027	tasklet_kill(&card->tasklet);
1028	free_irq(dev->irq, card);
1029	iounmap(card->csr_remap);
1030
1031	if (card->mm_pages[0].desc)
1032		pci_free_consistent(card->dev, PAGE_SIZE*2,
1033				    card->mm_pages[0].desc,
1034				    card->mm_pages[0].page_dma);
1035	if (card->mm_pages[1].desc)
1036		pci_free_consistent(card->dev, PAGE_SIZE*2,
1037				    card->mm_pages[1].desc,
1038				    card->mm_pages[1].page_dma);
1039	blk_cleanup_queue(card->queue);
1040
1041	pci_release_regions(dev);
1042	pci_disable_device(dev);
1043}
1044
1045static const struct pci_device_id mm_pci_ids[] = {
1046    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1047    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1048    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1049    {
1050	.vendor	=	0x8086,
1051	.device	=	0xB555,
1052	.subvendor =	0x1332,
1053	.subdevice =	0x5460,
1054	.class =	0x050000,
1055	.class_mask =	0,
1056    }, { /* end: all zeroes */ }
1057};
1058
1059MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1060
1061static struct pci_driver mm_pci_driver = {
1062	.name		= DRIVER_NAME,
1063	.id_table	= mm_pci_ids,
1064	.probe		= mm_pci_probe,
1065	.remove		= mm_pci_remove,
1066};
1067
1068static int __init mm_init(void)
1069{
1070	int retval, i;
1071	int err;
1072
1073	retval = pci_register_driver(&mm_pci_driver);
1074	if (retval)
1075		return -ENOMEM;
1076
1077	err = major_nr = register_blkdev(0, DRIVER_NAME);
1078	if (err < 0) {
1079		pci_unregister_driver(&mm_pci_driver);
1080		return -EIO;
1081	}
1082
1083	for (i = 0; i < num_cards; i++) {
1084		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1085		if (!mm_gendisk[i])
1086			goto out;
1087	}
1088
1089	for (i = 0; i < num_cards; i++) {
1090		struct gendisk *disk = mm_gendisk[i];
1091		sprintf(disk->disk_name, "umem%c", 'a'+i);
1092		spin_lock_init(&cards[i].lock);
1093		disk->major = major_nr;
1094		disk->first_minor  = i << MM_SHIFT;
1095		disk->fops = &mm_fops;
1096		disk->private_data = &cards[i];
1097		disk->queue = cards[i].queue;
1098		set_capacity(disk, cards[i].mm_size << 1);
1099		add_disk(disk);
1100	}
1101
1102	init_battery_timer();
1103	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1104/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1105	return 0;
1106
1107out:
1108	pci_unregister_driver(&mm_pci_driver);
1109	unregister_blkdev(major_nr, DRIVER_NAME);
1110	while (i--)
1111		put_disk(mm_gendisk[i]);
1112	return -ENOMEM;
1113}
1114
1115static void __exit mm_cleanup(void)
1116{
1117	int i;
1118
1119	del_battery_timer();
1120
1121	for (i = 0; i < num_cards ; i++) {
1122		del_gendisk(mm_gendisk[i]);
1123		put_disk(mm_gendisk[i]);
1124	}
1125
1126	pci_unregister_driver(&mm_pci_driver);
1127
1128	unregister_blkdev(major_nr, DRIVER_NAME);
1129}
1130
1131module_init(mm_init);
1132module_exit(mm_cleanup);
1133
1134MODULE_AUTHOR(DRIVER_AUTHOR);
1135MODULE_DESCRIPTION(DRIVER_DESC);
1136MODULE_LICENSE("GPL");
1137