1/*
2 *    Disk Array driver for HP Smart Array controllers.
3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; version 2 of the License.
8 *
9 *    This program is distributed in the hope that it will be useful,
10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 *    General Public License for more details.
13 *
14 *    You should have received a copy of the GNU General Public License
15 *    along with this program; if not, write to the Free Software
16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 *    02111-1307, USA.
18 *
19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/pci-aspm.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/major.h>
32#include <linux/fs.h>
33#include <linux/bio.h>
34#include <linux/blkpg.h>
35#include <linux/timer.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/init.h>
39#include <linux/jiffies.h>
40#include <linux/hdreg.h>
41#include <linux/spinlock.h>
42#include <linux/compat.h>
43#include <linux/mutex.h>
44#include <linux/bitmap.h>
45#include <linux/io.h>
46#include <asm/uaccess.h>
47
48#include <linux/dma-mapping.h>
49#include <linux/blkdev.h>
50#include <linux/genhd.h>
51#include <linux/completion.h>
52#include <scsi/scsi.h>
53#include <scsi/sg.h>
54#include <scsi/scsi_ioctl.h>
55#include <linux/cdrom.h>
56#include <linux/scatterlist.h>
57#include <linux/kthread.h>
58
59#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62
63/* Embedded module documentation macros - see modules.h */
64MODULE_AUTHOR("Hewlett-Packard Company");
65MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67MODULE_VERSION("3.6.26");
68MODULE_LICENSE("GPL");
69static int cciss_tape_cmds = 6;
70module_param(cciss_tape_cmds, int, 0644);
71MODULE_PARM_DESC(cciss_tape_cmds,
72	"number of commands to allocate for tape devices (default: 6)");
73static int cciss_simple_mode;
74module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75MODULE_PARM_DESC(cciss_simple_mode,
76	"Use 'simple mode' rather than 'performant mode'");
77
78static int cciss_allow_hpsa;
79module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
80MODULE_PARM_DESC(cciss_allow_hpsa,
81	"Prevent cciss driver from accessing hardware known to be "
82	" supported by the hpsa driver");
83
84static DEFINE_MUTEX(cciss_mutex);
85static struct proc_dir_entry *proc_cciss;
86
87#include "cciss_cmd.h"
88#include "cciss.h"
89#include <linux/cciss_ioctl.h>
90
91/* define the PCI info for the cards we can control */
92static const struct pci_device_id cciss_pci_device_id[] = {
93	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
94	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
95	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
96	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
97	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
98	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
99	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
100	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
101	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
113	{0,}
114};
115
116MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117
118/*  board_id = Subsystem Device ID & Vendor ID
119 *  product = Marketing Name for the board
120 *  access = Address of the struct of function pointers
121 */
122static struct board_type products[] = {
123	{0x40700E11, "Smart Array 5300", &SA5_access},
124	{0x40800E11, "Smart Array 5i", &SA5B_access},
125	{0x40820E11, "Smart Array 532", &SA5B_access},
126	{0x40830E11, "Smart Array 5312", &SA5B_access},
127	{0x409A0E11, "Smart Array 641", &SA5_access},
128	{0x409B0E11, "Smart Array 642", &SA5_access},
129	{0x409C0E11, "Smart Array 6400", &SA5_access},
130	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131	{0x40910E11, "Smart Array 6i", &SA5_access},
132	{0x3225103C, "Smart Array P600", &SA5_access},
133	{0x3223103C, "Smart Array P800", &SA5_access},
134	{0x3234103C, "Smart Array P400", &SA5_access},
135	{0x3235103C, "Smart Array P400i", &SA5_access},
136	{0x3211103C, "Smart Array E200i", &SA5_access},
137	{0x3212103C, "Smart Array E200", &SA5_access},
138	{0x3213103C, "Smart Array E200i", &SA5_access},
139	{0x3214103C, "Smart Array E200i", &SA5_access},
140	{0x3215103C, "Smart Array E200i", &SA5_access},
141	{0x3237103C, "Smart Array E500", &SA5_access},
142	{0x3223103C, "Smart Array P800", &SA5_access},
143	{0x3234103C, "Smart Array P400", &SA5_access},
144	{0x323D103C, "Smart Array P700m", &SA5_access},
145};
146
147/* How long to wait (in milliseconds) for board to go into simple mode */
148#define MAX_CONFIG_WAIT 30000
149#define MAX_IOCTL_CONFIG_WAIT 1000
150
151/*define how many times we will try a command because of bus resets */
152#define MAX_CMD_RETRIES 3
153
154#define MAX_CTLR	32
155
156/* Originally cciss driver only supports 8 major numbers */
157#define MAX_CTLR_ORIG 	8
158
159static ctlr_info_t *hba[MAX_CTLR];
160
161static struct task_struct *cciss_scan_thread;
162static DEFINE_MUTEX(scan_mutex);
163static LIST_HEAD(scan_q);
164
165static void do_cciss_request(struct request_queue *q);
166static irqreturn_t do_cciss_intx(int irq, void *dev_id);
167static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
168static int cciss_open(struct block_device *bdev, fmode_t mode);
169static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
170static void cciss_release(struct gendisk *disk, fmode_t mode);
171static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
172		       unsigned int cmd, unsigned long arg);
173static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
174
175static int cciss_revalidate(struct gendisk *disk);
176static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
177static int deregister_disk(ctlr_info_t *h, int drv_index,
178			   int clear_all, int via_ioctl);
179
180static void cciss_read_capacity(ctlr_info_t *h, int logvol,
181			sector_t *total_size, unsigned int *block_size);
182static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
183			sector_t *total_size, unsigned int *block_size);
184static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
185			sector_t total_size,
186			unsigned int block_size, InquiryData_struct *inq_buff,
187				   drive_info_struct *drv);
188static void cciss_interrupt_mode(ctlr_info_t *);
189static int cciss_enter_simple_mode(struct ctlr_info *h);
190static void start_io(ctlr_info_t *h);
191static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
192			__u8 page_code, unsigned char scsi3addr[],
193			int cmd_type);
194static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
195	int attempt_retry);
196static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
197
198static int add_to_scan_list(struct ctlr_info *h);
199static int scan_thread(void *data);
200static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201static void cciss_hba_release(struct device *dev);
202static void cciss_device_release(struct device *dev);
203static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
204static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
205static inline u32 next_command(ctlr_info_t *h);
206static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
207				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
208				u64 *cfg_offset);
209static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
210				     unsigned long *memory_bar);
211static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
212static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
213
214/* performant mode helper functions */
215static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
216				int *bucket_map);
217static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
218
219#ifdef CONFIG_PROC_FS
220static void cciss_procinit(ctlr_info_t *h);
221#else
222static void cciss_procinit(ctlr_info_t *h)
223{
224}
225#endif				/* CONFIG_PROC_FS */
226
227#ifdef CONFIG_COMPAT
228static int cciss_compat_ioctl(struct block_device *, fmode_t,
229			      unsigned, unsigned long);
230#endif
231
232static const struct block_device_operations cciss_fops = {
233	.owner = THIS_MODULE,
234	.open = cciss_unlocked_open,
235	.release = cciss_release,
236	.ioctl = cciss_ioctl,
237	.getgeo = cciss_getgeo,
238#ifdef CONFIG_COMPAT
239	.compat_ioctl = cciss_compat_ioctl,
240#endif
241	.revalidate_disk = cciss_revalidate,
242};
243
244/* set_performant_mode: Modify the tag for cciss performant
245 * set bit 0 for pull model, bits 3-1 for block fetch
246 * register number
247 */
248static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
249{
250	if (likely(h->transMethod & CFGTBL_Trans_Performant))
251		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
252}
253
254/*
255 * Enqueuing and dequeuing functions for cmdlists.
256 */
257static inline void addQ(struct list_head *list, CommandList_struct *c)
258{
259	list_add_tail(&c->list, list);
260}
261
262static inline void removeQ(CommandList_struct *c)
263{
264	/*
265	 * After kexec/dump some commands might still
266	 * be in flight, which the firmware will try
267	 * to complete. Resetting the firmware doesn't work
268	 * with old fw revisions, so we have to mark
269	 * them off as 'stale' to prevent the driver from
270	 * falling over.
271	 */
272	if (WARN_ON(list_empty(&c->list))) {
273		c->cmd_type = CMD_MSG_STALE;
274		return;
275	}
276
277	list_del_init(&c->list);
278}
279
280static void enqueue_cmd_and_start_io(ctlr_info_t *h,
281	CommandList_struct *c)
282{
283	unsigned long flags;
284	set_performant_mode(h, c);
285	spin_lock_irqsave(&h->lock, flags);
286	addQ(&h->reqQ, c);
287	h->Qdepth++;
288	if (h->Qdepth > h->maxQsinceinit)
289		h->maxQsinceinit = h->Qdepth;
290	start_io(h);
291	spin_unlock_irqrestore(&h->lock, flags);
292}
293
294static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
295	int nr_cmds)
296{
297	int i;
298
299	if (!cmd_sg_list)
300		return;
301	for (i = 0; i < nr_cmds; i++) {
302		kfree(cmd_sg_list[i]);
303		cmd_sg_list[i] = NULL;
304	}
305	kfree(cmd_sg_list);
306}
307
308static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
309	ctlr_info_t *h, int chainsize, int nr_cmds)
310{
311	int j;
312	SGDescriptor_struct **cmd_sg_list;
313
314	if (chainsize <= 0)
315		return NULL;
316
317	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
318	if (!cmd_sg_list)
319		return NULL;
320
321	/* Build up chain blocks for each command */
322	for (j = 0; j < nr_cmds; j++) {
323		/* Need a block of chainsized s/g elements. */
324		cmd_sg_list[j] = kmalloc((chainsize *
325			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
326		if (!cmd_sg_list[j]) {
327			dev_err(&h->pdev->dev, "Cannot get memory "
328				"for s/g chains.\n");
329			goto clean;
330		}
331	}
332	return cmd_sg_list;
333clean:
334	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
335	return NULL;
336}
337
338static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
339{
340	SGDescriptor_struct *chain_sg;
341	u64bit temp64;
342
343	if (c->Header.SGTotal <= h->max_cmd_sgentries)
344		return;
345
346	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
347	temp64.val32.lower = chain_sg->Addr.lower;
348	temp64.val32.upper = chain_sg->Addr.upper;
349	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
350}
351
352static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
353	SGDescriptor_struct *chain_block, int len)
354{
355	SGDescriptor_struct *chain_sg;
356	u64bit temp64;
357
358	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
359	chain_sg->Ext = CCISS_SG_CHAIN;
360	chain_sg->Len = len;
361	temp64.val = pci_map_single(h->pdev, chain_block, len,
362				PCI_DMA_TODEVICE);
363	chain_sg->Addr.lower = temp64.val32.lower;
364	chain_sg->Addr.upper = temp64.val32.upper;
365}
366
367#include "cciss_scsi.c"		/* For SCSI tape support */
368
369static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
370	"UNKNOWN"
371};
372#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
373
374#ifdef CONFIG_PROC_FS
375
376/*
377 * Report information about this controller.
378 */
379#define ENG_GIG 1000000000
380#define ENG_GIG_FACTOR (ENG_GIG/512)
381#define ENGAGE_SCSI	"engage scsi"
382
383static void cciss_seq_show_header(struct seq_file *seq)
384{
385	ctlr_info_t *h = seq->private;
386
387	seq_printf(seq, "%s: HP %s Controller\n"
388		"Board ID: 0x%08lx\n"
389		"Firmware Version: %c%c%c%c\n"
390		"IRQ: %d\n"
391		"Logical drives: %d\n"
392		"Current Q depth: %d\n"
393		"Current # commands on controller: %d\n"
394		"Max Q depth since init: %d\n"
395		"Max # commands on controller since init: %d\n"
396		"Max SG entries since init: %d\n",
397		h->devname,
398		h->product_name,
399		(unsigned long)h->board_id,
400		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
401		h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
402		h->num_luns,
403		h->Qdepth, h->commands_outstanding,
404		h->maxQsinceinit, h->max_outstanding, h->maxSG);
405
406#ifdef CONFIG_CISS_SCSI_TAPE
407	cciss_seq_tape_report(seq, h);
408#endif /* CONFIG_CISS_SCSI_TAPE */
409}
410
411static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
412{
413	ctlr_info_t *h = seq->private;
414	unsigned long flags;
415
416	/* prevent displaying bogus info during configuration
417	 * or deconfiguration of a logical volume
418	 */
419	spin_lock_irqsave(&h->lock, flags);
420	if (h->busy_configuring) {
421		spin_unlock_irqrestore(&h->lock, flags);
422		return ERR_PTR(-EBUSY);
423	}
424	h->busy_configuring = 1;
425	spin_unlock_irqrestore(&h->lock, flags);
426
427	if (*pos == 0)
428		cciss_seq_show_header(seq);
429
430	return pos;
431}
432
433static int cciss_seq_show(struct seq_file *seq, void *v)
434{
435	sector_t vol_sz, vol_sz_frac;
436	ctlr_info_t *h = seq->private;
437	unsigned ctlr = h->ctlr;
438	loff_t *pos = v;
439	drive_info_struct *drv = h->drv[*pos];
440
441	if (*pos > h->highest_lun)
442		return 0;
443
444	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
445		return 0;
446
447	if (drv->heads == 0)
448		return 0;
449
450	vol_sz = drv->nr_blocks;
451	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
452	vol_sz_frac *= 100;
453	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
454
455	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
456		drv->raid_level = RAID_UNKNOWN;
457	seq_printf(seq, "cciss/c%dd%d:"
458			"\t%4u.%02uGB\tRAID %s\n",
459			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
460			raid_label[drv->raid_level]);
461	return 0;
462}
463
464static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
465{
466	ctlr_info_t *h = seq->private;
467
468	if (*pos > h->highest_lun)
469		return NULL;
470	*pos += 1;
471
472	return pos;
473}
474
475static void cciss_seq_stop(struct seq_file *seq, void *v)
476{
477	ctlr_info_t *h = seq->private;
478
479	/* Only reset h->busy_configuring if we succeeded in setting
480	 * it during cciss_seq_start. */
481	if (v == ERR_PTR(-EBUSY))
482		return;
483
484	h->busy_configuring = 0;
485}
486
487static const struct seq_operations cciss_seq_ops = {
488	.start = cciss_seq_start,
489	.show  = cciss_seq_show,
490	.next  = cciss_seq_next,
491	.stop  = cciss_seq_stop,
492};
493
494static int cciss_seq_open(struct inode *inode, struct file *file)
495{
496	int ret = seq_open(file, &cciss_seq_ops);
497	struct seq_file *seq = file->private_data;
498
499	if (!ret)
500		seq->private = PDE_DATA(inode);
501
502	return ret;
503}
504
505static ssize_t
506cciss_proc_write(struct file *file, const char __user *buf,
507		 size_t length, loff_t *ppos)
508{
509	int err;
510	char *buffer;
511
512#ifndef CONFIG_CISS_SCSI_TAPE
513	return -EINVAL;
514#endif
515
516	if (!buf || length > PAGE_SIZE - 1)
517		return -EINVAL;
518
519	buffer = (char *)__get_free_page(GFP_KERNEL);
520	if (!buffer)
521		return -ENOMEM;
522
523	err = -EFAULT;
524	if (copy_from_user(buffer, buf, length))
525		goto out;
526	buffer[length] = '\0';
527
528#ifdef CONFIG_CISS_SCSI_TAPE
529	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
530		struct seq_file *seq = file->private_data;
531		ctlr_info_t *h = seq->private;
532
533		err = cciss_engage_scsi(h);
534		if (err == 0)
535			err = length;
536	} else
537#endif /* CONFIG_CISS_SCSI_TAPE */
538		err = -EINVAL;
539	/* might be nice to have "disengage" too, but it's not
540	   safely possible. (only 1 module use count, lock issues.) */
541
542out:
543	free_page((unsigned long)buffer);
544	return err;
545}
546
547static const struct file_operations cciss_proc_fops = {
548	.owner	 = THIS_MODULE,
549	.open    = cciss_seq_open,
550	.read    = seq_read,
551	.llseek  = seq_lseek,
552	.release = seq_release,
553	.write	 = cciss_proc_write,
554};
555
556static void cciss_procinit(ctlr_info_t *h)
557{
558	struct proc_dir_entry *pde;
559
560	if (proc_cciss == NULL)
561		proc_cciss = proc_mkdir("driver/cciss", NULL);
562	if (!proc_cciss)
563		return;
564	pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
565					S_IROTH, proc_cciss,
566					&cciss_proc_fops, h);
567}
568#endif				/* CONFIG_PROC_FS */
569
570#define MAX_PRODUCT_NAME_LEN 19
571
572#define to_hba(n) container_of(n, struct ctlr_info, dev)
573#define to_drv(n) container_of(n, drive_info_struct, dev)
574
575/* List of controllers which cannot be hard reset on kexec with reset_devices */
576static u32 unresettable_controller[] = {
577	0x324a103C, /* Smart Array P712m */
578	0x324b103C, /* SmartArray P711m */
579	0x3223103C, /* Smart Array P800 */
580	0x3234103C, /* Smart Array P400 */
581	0x3235103C, /* Smart Array P400i */
582	0x3211103C, /* Smart Array E200i */
583	0x3212103C, /* Smart Array E200 */
584	0x3213103C, /* Smart Array E200i */
585	0x3214103C, /* Smart Array E200i */
586	0x3215103C, /* Smart Array E200i */
587	0x3237103C, /* Smart Array E500 */
588	0x323D103C, /* Smart Array P700m */
589	0x409C0E11, /* Smart Array 6400 */
590	0x409D0E11, /* Smart Array 6400 EM */
591};
592
593/* List of controllers which cannot even be soft reset */
594static u32 soft_unresettable_controller[] = {
595	0x409C0E11, /* Smart Array 6400 */
596	0x409D0E11, /* Smart Array 6400 EM */
597};
598
599static int ctlr_is_hard_resettable(u32 board_id)
600{
601	int i;
602
603	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
604		if (unresettable_controller[i] == board_id)
605			return 0;
606	return 1;
607}
608
609static int ctlr_is_soft_resettable(u32 board_id)
610{
611	int i;
612
613	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
614		if (soft_unresettable_controller[i] == board_id)
615			return 0;
616	return 1;
617}
618
619static int ctlr_is_resettable(u32 board_id)
620{
621	return ctlr_is_hard_resettable(board_id) ||
622		ctlr_is_soft_resettable(board_id);
623}
624
625static ssize_t host_show_resettable(struct device *dev,
626				    struct device_attribute *attr,
627				    char *buf)
628{
629	struct ctlr_info *h = to_hba(dev);
630
631	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
632}
633static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
634
635static ssize_t host_store_rescan(struct device *dev,
636				 struct device_attribute *attr,
637				 const char *buf, size_t count)
638{
639	struct ctlr_info *h = to_hba(dev);
640
641	add_to_scan_list(h);
642	wake_up_process(cciss_scan_thread);
643	wait_for_completion_interruptible(&h->scan_wait);
644
645	return count;
646}
647static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
648
649static ssize_t host_show_transport_mode(struct device *dev,
650				 struct device_attribute *attr,
651				 char *buf)
652{
653	struct ctlr_info *h = to_hba(dev);
654
655	return snprintf(buf, 20, "%s\n",
656		h->transMethod & CFGTBL_Trans_Performant ?
657			"performant" : "simple");
658}
659static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
660
661static ssize_t dev_show_unique_id(struct device *dev,
662				 struct device_attribute *attr,
663				 char *buf)
664{
665	drive_info_struct *drv = to_drv(dev);
666	struct ctlr_info *h = to_hba(drv->dev.parent);
667	__u8 sn[16];
668	unsigned long flags;
669	int ret = 0;
670
671	spin_lock_irqsave(&h->lock, flags);
672	if (h->busy_configuring)
673		ret = -EBUSY;
674	else
675		memcpy(sn, drv->serial_no, sizeof(sn));
676	spin_unlock_irqrestore(&h->lock, flags);
677
678	if (ret)
679		return ret;
680	else
681		return snprintf(buf, 16 * 2 + 2,
682				"%02X%02X%02X%02X%02X%02X%02X%02X"
683				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
684				sn[0], sn[1], sn[2], sn[3],
685				sn[4], sn[5], sn[6], sn[7],
686				sn[8], sn[9], sn[10], sn[11],
687				sn[12], sn[13], sn[14], sn[15]);
688}
689static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
690
691static ssize_t dev_show_vendor(struct device *dev,
692			       struct device_attribute *attr,
693			       char *buf)
694{
695	drive_info_struct *drv = to_drv(dev);
696	struct ctlr_info *h = to_hba(drv->dev.parent);
697	char vendor[VENDOR_LEN + 1];
698	unsigned long flags;
699	int ret = 0;
700
701	spin_lock_irqsave(&h->lock, flags);
702	if (h->busy_configuring)
703		ret = -EBUSY;
704	else
705		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
706	spin_unlock_irqrestore(&h->lock, flags);
707
708	if (ret)
709		return ret;
710	else
711		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
712}
713static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
714
715static ssize_t dev_show_model(struct device *dev,
716			      struct device_attribute *attr,
717			      char *buf)
718{
719	drive_info_struct *drv = to_drv(dev);
720	struct ctlr_info *h = to_hba(drv->dev.parent);
721	char model[MODEL_LEN + 1];
722	unsigned long flags;
723	int ret = 0;
724
725	spin_lock_irqsave(&h->lock, flags);
726	if (h->busy_configuring)
727		ret = -EBUSY;
728	else
729		memcpy(model, drv->model, MODEL_LEN + 1);
730	spin_unlock_irqrestore(&h->lock, flags);
731
732	if (ret)
733		return ret;
734	else
735		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
736}
737static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
738
739static ssize_t dev_show_rev(struct device *dev,
740			    struct device_attribute *attr,
741			    char *buf)
742{
743	drive_info_struct *drv = to_drv(dev);
744	struct ctlr_info *h = to_hba(drv->dev.parent);
745	char rev[REV_LEN + 1];
746	unsigned long flags;
747	int ret = 0;
748
749	spin_lock_irqsave(&h->lock, flags);
750	if (h->busy_configuring)
751		ret = -EBUSY;
752	else
753		memcpy(rev, drv->rev, REV_LEN + 1);
754	spin_unlock_irqrestore(&h->lock, flags);
755
756	if (ret)
757		return ret;
758	else
759		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
760}
761static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
762
763static ssize_t cciss_show_lunid(struct device *dev,
764				struct device_attribute *attr, char *buf)
765{
766	drive_info_struct *drv = to_drv(dev);
767	struct ctlr_info *h = to_hba(drv->dev.parent);
768	unsigned long flags;
769	unsigned char lunid[8];
770
771	spin_lock_irqsave(&h->lock, flags);
772	if (h->busy_configuring) {
773		spin_unlock_irqrestore(&h->lock, flags);
774		return -EBUSY;
775	}
776	if (!drv->heads) {
777		spin_unlock_irqrestore(&h->lock, flags);
778		return -ENOTTY;
779	}
780	memcpy(lunid, drv->LunID, sizeof(lunid));
781	spin_unlock_irqrestore(&h->lock, flags);
782	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
783		lunid[0], lunid[1], lunid[2], lunid[3],
784		lunid[4], lunid[5], lunid[6], lunid[7]);
785}
786static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
787
788static ssize_t cciss_show_raid_level(struct device *dev,
789				     struct device_attribute *attr, char *buf)
790{
791	drive_info_struct *drv = to_drv(dev);
792	struct ctlr_info *h = to_hba(drv->dev.parent);
793	int raid;
794	unsigned long flags;
795
796	spin_lock_irqsave(&h->lock, flags);
797	if (h->busy_configuring) {
798		spin_unlock_irqrestore(&h->lock, flags);
799		return -EBUSY;
800	}
801	raid = drv->raid_level;
802	spin_unlock_irqrestore(&h->lock, flags);
803	if (raid < 0 || raid > RAID_UNKNOWN)
804		raid = RAID_UNKNOWN;
805
806	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
807			raid_label[raid]);
808}
809static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
810
811static ssize_t cciss_show_usage_count(struct device *dev,
812				      struct device_attribute *attr, char *buf)
813{
814	drive_info_struct *drv = to_drv(dev);
815	struct ctlr_info *h = to_hba(drv->dev.parent);
816	unsigned long flags;
817	int count;
818
819	spin_lock_irqsave(&h->lock, flags);
820	if (h->busy_configuring) {
821		spin_unlock_irqrestore(&h->lock, flags);
822		return -EBUSY;
823	}
824	count = drv->usage_count;
825	spin_unlock_irqrestore(&h->lock, flags);
826	return snprintf(buf, 20, "%d\n", count);
827}
828static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
829
830static struct attribute *cciss_host_attrs[] = {
831	&dev_attr_rescan.attr,
832	&dev_attr_resettable.attr,
833	&dev_attr_transport_mode.attr,
834	NULL
835};
836
837static struct attribute_group cciss_host_attr_group = {
838	.attrs = cciss_host_attrs,
839};
840
841static const struct attribute_group *cciss_host_attr_groups[] = {
842	&cciss_host_attr_group,
843	NULL
844};
845
846static struct device_type cciss_host_type = {
847	.name		= "cciss_host",
848	.groups		= cciss_host_attr_groups,
849	.release	= cciss_hba_release,
850};
851
852static struct attribute *cciss_dev_attrs[] = {
853	&dev_attr_unique_id.attr,
854	&dev_attr_model.attr,
855	&dev_attr_vendor.attr,
856	&dev_attr_rev.attr,
857	&dev_attr_lunid.attr,
858	&dev_attr_raid_level.attr,
859	&dev_attr_usage_count.attr,
860	NULL
861};
862
863static struct attribute_group cciss_dev_attr_group = {
864	.attrs = cciss_dev_attrs,
865};
866
867static const struct attribute_group *cciss_dev_attr_groups[] = {
868	&cciss_dev_attr_group,
869	NULL
870};
871
872static struct device_type cciss_dev_type = {
873	.name		= "cciss_device",
874	.groups		= cciss_dev_attr_groups,
875	.release	= cciss_device_release,
876};
877
878static struct bus_type cciss_bus_type = {
879	.name		= "cciss",
880};
881
882/*
883 * cciss_hba_release is called when the reference count
884 * of h->dev goes to zero.
885 */
886static void cciss_hba_release(struct device *dev)
887{
888	/*
889	 * nothing to do, but need this to avoid a warning
890	 * about not having a release handler from lib/kref.c.
891	 */
892}
893
894/*
895 * Initialize sysfs entry for each controller.  This sets up and registers
896 * the 'cciss#' directory for each individual controller under
897 * /sys/bus/pci/devices/<dev>/.
898 */
899static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
900{
901	device_initialize(&h->dev);
902	h->dev.type = &cciss_host_type;
903	h->dev.bus = &cciss_bus_type;
904	dev_set_name(&h->dev, "%s", h->devname);
905	h->dev.parent = &h->pdev->dev;
906
907	return device_add(&h->dev);
908}
909
910/*
911 * Remove sysfs entries for an hba.
912 */
913static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
914{
915	device_del(&h->dev);
916	put_device(&h->dev); /* final put. */
917}
918
919/* cciss_device_release is called when the reference count
920 * of h->drv[x]dev goes to zero.
921 */
922static void cciss_device_release(struct device *dev)
923{
924	drive_info_struct *drv = to_drv(dev);
925	kfree(drv);
926}
927
928/*
929 * Initialize sysfs for each logical drive.  This sets up and registers
930 * the 'c#d#' directory for each individual logical drive under
931 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
932 * /sys/block/cciss!c#d# to this entry.
933 */
934static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
935				       int drv_index)
936{
937	struct device *dev;
938
939	if (h->drv[drv_index]->device_initialized)
940		return 0;
941
942	dev = &h->drv[drv_index]->dev;
943	device_initialize(dev);
944	dev->type = &cciss_dev_type;
945	dev->bus = &cciss_bus_type;
946	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
947	dev->parent = &h->dev;
948	h->drv[drv_index]->device_initialized = 1;
949	return device_add(dev);
950}
951
952/*
953 * Remove sysfs entries for a logical drive.
954 */
955static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
956	int ctlr_exiting)
957{
958	struct device *dev = &h->drv[drv_index]->dev;
959
960	/* special case for c*d0, we only destroy it on controller exit */
961	if (drv_index == 0 && !ctlr_exiting)
962		return;
963
964	device_del(dev);
965	put_device(dev); /* the "final" put. */
966	h->drv[drv_index] = NULL;
967}
968
969/*
970 * For operations that cannot sleep, a command block is allocated at init,
971 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
972 * which ones are free or in use.
973 */
974static CommandList_struct *cmd_alloc(ctlr_info_t *h)
975{
976	CommandList_struct *c;
977	int i;
978	u64bit temp64;
979	dma_addr_t cmd_dma_handle, err_dma_handle;
980
981	do {
982		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
983		if (i == h->nr_cmds)
984			return NULL;
985	} while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
986	c = h->cmd_pool + i;
987	memset(c, 0, sizeof(CommandList_struct));
988	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
989	c->err_info = h->errinfo_pool + i;
990	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
991	err_dma_handle = h->errinfo_pool_dhandle
992	    + i * sizeof(ErrorInfo_struct);
993	h->nr_allocs++;
994
995	c->cmdindex = i;
996
997	INIT_LIST_HEAD(&c->list);
998	c->busaddr = (__u32) cmd_dma_handle;
999	temp64.val = (__u64) err_dma_handle;
1000	c->ErrDesc.Addr.lower = temp64.val32.lower;
1001	c->ErrDesc.Addr.upper = temp64.val32.upper;
1002	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1003
1004	c->ctlr = h->ctlr;
1005	return c;
1006}
1007
1008/* allocate a command using pci_alloc_consistent, used for ioctls,
1009 * etc., not for the main i/o path.
1010 */
1011static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1012{
1013	CommandList_struct *c;
1014	u64bit temp64;
1015	dma_addr_t cmd_dma_handle, err_dma_handle;
1016
1017	c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct),
1018				  &cmd_dma_handle);
1019	if (c == NULL)
1020		return NULL;
1021
1022	c->cmdindex = -1;
1023
1024	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1025					    &err_dma_handle);
1026
1027	if (c->err_info == NULL) {
1028		pci_free_consistent(h->pdev,
1029			sizeof(CommandList_struct), c, cmd_dma_handle);
1030		return NULL;
1031	}
1032
1033	INIT_LIST_HEAD(&c->list);
1034	c->busaddr = (__u32) cmd_dma_handle;
1035	temp64.val = (__u64) err_dma_handle;
1036	c->ErrDesc.Addr.lower = temp64.val32.lower;
1037	c->ErrDesc.Addr.upper = temp64.val32.upper;
1038	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1039
1040	c->ctlr = h->ctlr;
1041	return c;
1042}
1043
1044static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1045{
1046	int i;
1047
1048	i = c - h->cmd_pool;
1049	clear_bit(i, h->cmd_pool_bits);
1050	h->nr_frees++;
1051}
1052
1053static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1054{
1055	u64bit temp64;
1056
1057	temp64.val32.lower = c->ErrDesc.Addr.lower;
1058	temp64.val32.upper = c->ErrDesc.Addr.upper;
1059	pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1060			    c->err_info, (dma_addr_t) temp64.val);
1061	pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1062		(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1063}
1064
1065static inline ctlr_info_t *get_host(struct gendisk *disk)
1066{
1067	return disk->queue->queuedata;
1068}
1069
1070static inline drive_info_struct *get_drv(struct gendisk *disk)
1071{
1072	return disk->private_data;
1073}
1074
1075/*
1076 * Open.  Make sure the device is really there.
1077 */
1078static int cciss_open(struct block_device *bdev, fmode_t mode)
1079{
1080	ctlr_info_t *h = get_host(bdev->bd_disk);
1081	drive_info_struct *drv = get_drv(bdev->bd_disk);
1082
1083	dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1084	if (drv->busy_configuring)
1085		return -EBUSY;
1086	/*
1087	 * Root is allowed to open raw volume zero even if it's not configured
1088	 * so array config can still work. Root is also allowed to open any
1089	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1090	 * disk information.  I don't think I really like this
1091	 * but I'm already using way to many device nodes to claim another one
1092	 * for "raw controller".
1093	 */
1094	if (drv->heads == 0) {
1095		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1096			/* if not node 0 make sure it is a partition = 0 */
1097			if (MINOR(bdev->bd_dev) & 0x0f) {
1098				return -ENXIO;
1099				/* if it is, make sure we have a LUN ID */
1100			} else if (memcmp(drv->LunID, CTLR_LUNID,
1101				sizeof(drv->LunID))) {
1102				return -ENXIO;
1103			}
1104		}
1105		if (!capable(CAP_SYS_ADMIN))
1106			return -EPERM;
1107	}
1108	drv->usage_count++;
1109	h->usage_count++;
1110	return 0;
1111}
1112
1113static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1114{
1115	int ret;
1116
1117	mutex_lock(&cciss_mutex);
1118	ret = cciss_open(bdev, mode);
1119	mutex_unlock(&cciss_mutex);
1120
1121	return ret;
1122}
1123
1124/*
1125 * Close.  Sync first.
1126 */
1127static void cciss_release(struct gendisk *disk, fmode_t mode)
1128{
1129	ctlr_info_t *h;
1130	drive_info_struct *drv;
1131
1132	mutex_lock(&cciss_mutex);
1133	h = get_host(disk);
1134	drv = get_drv(disk);
1135	dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1136	drv->usage_count--;
1137	h->usage_count--;
1138	mutex_unlock(&cciss_mutex);
1139}
1140
1141#ifdef CONFIG_COMPAT
1142
1143static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1144				  unsigned cmd, unsigned long arg);
1145static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1146				      unsigned cmd, unsigned long arg);
1147
1148static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1149			      unsigned cmd, unsigned long arg)
1150{
1151	switch (cmd) {
1152	case CCISS_GETPCIINFO:
1153	case CCISS_GETINTINFO:
1154	case CCISS_SETINTINFO:
1155	case CCISS_GETNODENAME:
1156	case CCISS_SETNODENAME:
1157	case CCISS_GETHEARTBEAT:
1158	case CCISS_GETBUSTYPES:
1159	case CCISS_GETFIRMVER:
1160	case CCISS_GETDRIVVER:
1161	case CCISS_REVALIDVOLS:
1162	case CCISS_DEREGDISK:
1163	case CCISS_REGNEWDISK:
1164	case CCISS_REGNEWD:
1165	case CCISS_RESCANDISK:
1166	case CCISS_GETLUNINFO:
1167		return cciss_ioctl(bdev, mode, cmd, arg);
1168
1169	case CCISS_PASSTHRU32:
1170		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1171	case CCISS_BIG_PASSTHRU32:
1172		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1173
1174	default:
1175		return -ENOIOCTLCMD;
1176	}
1177}
1178
1179static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1180				  unsigned cmd, unsigned long arg)
1181{
1182	IOCTL32_Command_struct __user *arg32 =
1183	    (IOCTL32_Command_struct __user *) arg;
1184	IOCTL_Command_struct arg64;
1185	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1186	int err;
1187	u32 cp;
1188
1189	memset(&arg64, 0, sizeof(arg64));
1190	err = 0;
1191	err |=
1192	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1193			   sizeof(arg64.LUN_info));
1194	err |=
1195	    copy_from_user(&arg64.Request, &arg32->Request,
1196			   sizeof(arg64.Request));
1197	err |=
1198	    copy_from_user(&arg64.error_info, &arg32->error_info,
1199			   sizeof(arg64.error_info));
1200	err |= get_user(arg64.buf_size, &arg32->buf_size);
1201	err |= get_user(cp, &arg32->buf);
1202	arg64.buf = compat_ptr(cp);
1203	err |= copy_to_user(p, &arg64, sizeof(arg64));
1204
1205	if (err)
1206		return -EFAULT;
1207
1208	err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1209	if (err)
1210		return err;
1211	err |=
1212	    copy_in_user(&arg32->error_info, &p->error_info,
1213			 sizeof(arg32->error_info));
1214	if (err)
1215		return -EFAULT;
1216	return err;
1217}
1218
1219static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1220				      unsigned cmd, unsigned long arg)
1221{
1222	BIG_IOCTL32_Command_struct __user *arg32 =
1223	    (BIG_IOCTL32_Command_struct __user *) arg;
1224	BIG_IOCTL_Command_struct arg64;
1225	BIG_IOCTL_Command_struct __user *p =
1226	    compat_alloc_user_space(sizeof(arg64));
1227	int err;
1228	u32 cp;
1229
1230	memset(&arg64, 0, sizeof(arg64));
1231	err = 0;
1232	err |=
1233	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1234			   sizeof(arg64.LUN_info));
1235	err |=
1236	    copy_from_user(&arg64.Request, &arg32->Request,
1237			   sizeof(arg64.Request));
1238	err |=
1239	    copy_from_user(&arg64.error_info, &arg32->error_info,
1240			   sizeof(arg64.error_info));
1241	err |= get_user(arg64.buf_size, &arg32->buf_size);
1242	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1243	err |= get_user(cp, &arg32->buf);
1244	arg64.buf = compat_ptr(cp);
1245	err |= copy_to_user(p, &arg64, sizeof(arg64));
1246
1247	if (err)
1248		return -EFAULT;
1249
1250	err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1251	if (err)
1252		return err;
1253	err |=
1254	    copy_in_user(&arg32->error_info, &p->error_info,
1255			 sizeof(arg32->error_info));
1256	if (err)
1257		return -EFAULT;
1258	return err;
1259}
1260#endif
1261
1262static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1263{
1264	drive_info_struct *drv = get_drv(bdev->bd_disk);
1265
1266	if (!drv->cylinders)
1267		return -ENXIO;
1268
1269	geo->heads = drv->heads;
1270	geo->sectors = drv->sectors;
1271	geo->cylinders = drv->cylinders;
1272	return 0;
1273}
1274
1275static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1276{
1277	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1278			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1279		(void)check_for_unit_attention(h, c);
1280}
1281
1282static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1283{
1284	cciss_pci_info_struct pciinfo;
1285
1286	if (!argp)
1287		return -EINVAL;
1288	pciinfo.domain = pci_domain_nr(h->pdev->bus);
1289	pciinfo.bus = h->pdev->bus->number;
1290	pciinfo.dev_fn = h->pdev->devfn;
1291	pciinfo.board_id = h->board_id;
1292	if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1293		return -EFAULT;
1294	return 0;
1295}
1296
1297static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1298{
1299	cciss_coalint_struct intinfo;
1300	unsigned long flags;
1301
1302	if (!argp)
1303		return -EINVAL;
1304	spin_lock_irqsave(&h->lock, flags);
1305	intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1306	intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1307	spin_unlock_irqrestore(&h->lock, flags);
1308	if (copy_to_user
1309	    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1310		return -EFAULT;
1311	return 0;
1312}
1313
1314static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1315{
1316	cciss_coalint_struct intinfo;
1317	unsigned long flags;
1318	int i;
1319
1320	if (!argp)
1321		return -EINVAL;
1322	if (!capable(CAP_SYS_ADMIN))
1323		return -EPERM;
1324	if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1325		return -EFAULT;
1326	if ((intinfo.delay == 0) && (intinfo.count == 0))
1327		return -EINVAL;
1328	spin_lock_irqsave(&h->lock, flags);
1329	/* Update the field, and then ring the doorbell */
1330	writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1331	writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1332	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1333
1334	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1335		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1336			break;
1337		udelay(1000); /* delay and try again */
1338	}
1339	spin_unlock_irqrestore(&h->lock, flags);
1340	if (i >= MAX_IOCTL_CONFIG_WAIT)
1341		return -EAGAIN;
1342	return 0;
1343}
1344
1345static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1346{
1347	NodeName_type NodeName;
1348	unsigned long flags;
1349	int i;
1350
1351	if (!argp)
1352		return -EINVAL;
1353	spin_lock_irqsave(&h->lock, flags);
1354	for (i = 0; i < 16; i++)
1355		NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1356	spin_unlock_irqrestore(&h->lock, flags);
1357	if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1358		return -EFAULT;
1359	return 0;
1360}
1361
1362static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1363{
1364	NodeName_type NodeName;
1365	unsigned long flags;
1366	int i;
1367
1368	if (!argp)
1369		return -EINVAL;
1370	if (!capable(CAP_SYS_ADMIN))
1371		return -EPERM;
1372	if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1373		return -EFAULT;
1374	spin_lock_irqsave(&h->lock, flags);
1375	/* Update the field, and then ring the doorbell */
1376	for (i = 0; i < 16; i++)
1377		writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1378	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1379	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1380		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1381			break;
1382		udelay(1000); /* delay and try again */
1383	}
1384	spin_unlock_irqrestore(&h->lock, flags);
1385	if (i >= MAX_IOCTL_CONFIG_WAIT)
1386		return -EAGAIN;
1387	return 0;
1388}
1389
1390static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1391{
1392	Heartbeat_type heartbeat;
1393	unsigned long flags;
1394
1395	if (!argp)
1396		return -EINVAL;
1397	spin_lock_irqsave(&h->lock, flags);
1398	heartbeat = readl(&h->cfgtable->HeartBeat);
1399	spin_unlock_irqrestore(&h->lock, flags);
1400	if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1401		return -EFAULT;
1402	return 0;
1403}
1404
1405static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1406{
1407	BusTypes_type BusTypes;
1408	unsigned long flags;
1409
1410	if (!argp)
1411		return -EINVAL;
1412	spin_lock_irqsave(&h->lock, flags);
1413	BusTypes = readl(&h->cfgtable->BusTypes);
1414	spin_unlock_irqrestore(&h->lock, flags);
1415	if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1416		return -EFAULT;
1417	return 0;
1418}
1419
1420static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1421{
1422	FirmwareVer_type firmware;
1423
1424	if (!argp)
1425		return -EINVAL;
1426	memcpy(firmware, h->firm_ver, 4);
1427
1428	if (copy_to_user
1429	    (argp, firmware, sizeof(FirmwareVer_type)))
1430		return -EFAULT;
1431	return 0;
1432}
1433
1434static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1435{
1436	DriverVer_type DriverVer = DRIVER_VERSION;
1437
1438	if (!argp)
1439		return -EINVAL;
1440	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1441		return -EFAULT;
1442	return 0;
1443}
1444
1445static int cciss_getluninfo(ctlr_info_t *h,
1446	struct gendisk *disk, void __user *argp)
1447{
1448	LogvolInfo_struct luninfo;
1449	drive_info_struct *drv = get_drv(disk);
1450
1451	if (!argp)
1452		return -EINVAL;
1453	memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1454	luninfo.num_opens = drv->usage_count;
1455	luninfo.num_parts = 0;
1456	if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1457		return -EFAULT;
1458	return 0;
1459}
1460
1461static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1462{
1463	IOCTL_Command_struct iocommand;
1464	CommandList_struct *c;
1465	char *buff = NULL;
1466	u64bit temp64;
1467	DECLARE_COMPLETION_ONSTACK(wait);
1468
1469	if (!argp)
1470		return -EINVAL;
1471
1472	if (!capable(CAP_SYS_RAWIO))
1473		return -EPERM;
1474
1475	if (copy_from_user
1476	    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1477		return -EFAULT;
1478	if ((iocommand.buf_size < 1) &&
1479	    (iocommand.Request.Type.Direction != XFER_NONE)) {
1480		return -EINVAL;
1481	}
1482	if (iocommand.buf_size > 0) {
1483		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1484		if (buff == NULL)
1485			return -EFAULT;
1486	}
1487	if (iocommand.Request.Type.Direction == XFER_WRITE) {
1488		/* Copy the data into the buffer we created */
1489		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1490			kfree(buff);
1491			return -EFAULT;
1492		}
1493	} else {
1494		memset(buff, 0, iocommand.buf_size);
1495	}
1496	c = cmd_special_alloc(h);
1497	if (!c) {
1498		kfree(buff);
1499		return -ENOMEM;
1500	}
1501	/* Fill in the command type */
1502	c->cmd_type = CMD_IOCTL_PEND;
1503	/* Fill in Command Header */
1504	c->Header.ReplyQueue = 0;   /* unused in simple mode */
1505	if (iocommand.buf_size > 0) { /* buffer to fill */
1506		c->Header.SGList = 1;
1507		c->Header.SGTotal = 1;
1508	} else { /* no buffers to fill */
1509		c->Header.SGList = 0;
1510		c->Header.SGTotal = 0;
1511	}
1512	c->Header.LUN = iocommand.LUN_info;
1513	/* use the kernel address the cmd block for tag */
1514	c->Header.Tag.lower = c->busaddr;
1515
1516	/* Fill in Request block */
1517	c->Request = iocommand.Request;
1518
1519	/* Fill in the scatter gather information */
1520	if (iocommand.buf_size > 0) {
1521		temp64.val = pci_map_single(h->pdev, buff,
1522			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1523		c->SG[0].Addr.lower = temp64.val32.lower;
1524		c->SG[0].Addr.upper = temp64.val32.upper;
1525		c->SG[0].Len = iocommand.buf_size;
1526		c->SG[0].Ext = 0;  /* we are not chaining */
1527	}
1528	c->waiting = &wait;
1529
1530	enqueue_cmd_and_start_io(h, c);
1531	wait_for_completion(&wait);
1532
1533	/* unlock the buffers from DMA */
1534	temp64.val32.lower = c->SG[0].Addr.lower;
1535	temp64.val32.upper = c->SG[0].Addr.upper;
1536	pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1537			 PCI_DMA_BIDIRECTIONAL);
1538	check_ioctl_unit_attention(h, c);
1539
1540	/* Copy the error information out */
1541	iocommand.error_info = *(c->err_info);
1542	if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1543		kfree(buff);
1544		cmd_special_free(h, c);
1545		return -EFAULT;
1546	}
1547
1548	if (iocommand.Request.Type.Direction == XFER_READ) {
1549		/* Copy the data out of the buffer we created */
1550		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1551			kfree(buff);
1552			cmd_special_free(h, c);
1553			return -EFAULT;
1554		}
1555	}
1556	kfree(buff);
1557	cmd_special_free(h, c);
1558	return 0;
1559}
1560
1561static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1562{
1563	BIG_IOCTL_Command_struct *ioc;
1564	CommandList_struct *c;
1565	unsigned char **buff = NULL;
1566	int *buff_size = NULL;
1567	u64bit temp64;
1568	BYTE sg_used = 0;
1569	int status = 0;
1570	int i;
1571	DECLARE_COMPLETION_ONSTACK(wait);
1572	__u32 left;
1573	__u32 sz;
1574	BYTE __user *data_ptr;
1575
1576	if (!argp)
1577		return -EINVAL;
1578	if (!capable(CAP_SYS_RAWIO))
1579		return -EPERM;
1580	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1581	if (!ioc) {
1582		status = -ENOMEM;
1583		goto cleanup1;
1584	}
1585	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1586		status = -EFAULT;
1587		goto cleanup1;
1588	}
1589	if ((ioc->buf_size < 1) &&
1590	    (ioc->Request.Type.Direction != XFER_NONE)) {
1591		status = -EINVAL;
1592		goto cleanup1;
1593	}
1594	/* Check kmalloc limits  using all SGs */
1595	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1596		status = -EINVAL;
1597		goto cleanup1;
1598	}
1599	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1600		status = -EINVAL;
1601		goto cleanup1;
1602	}
1603	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1604	if (!buff) {
1605		status = -ENOMEM;
1606		goto cleanup1;
1607	}
1608	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1609	if (!buff_size) {
1610		status = -ENOMEM;
1611		goto cleanup1;
1612	}
1613	left = ioc->buf_size;
1614	data_ptr = ioc->buf;
1615	while (left) {
1616		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1617		buff_size[sg_used] = sz;
1618		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1619		if (buff[sg_used] == NULL) {
1620			status = -ENOMEM;
1621			goto cleanup1;
1622		}
1623		if (ioc->Request.Type.Direction == XFER_WRITE) {
1624			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1625				status = -EFAULT;
1626				goto cleanup1;
1627			}
1628		} else {
1629			memset(buff[sg_used], 0, sz);
1630		}
1631		left -= sz;
1632		data_ptr += sz;
1633		sg_used++;
1634	}
1635	c = cmd_special_alloc(h);
1636	if (!c) {
1637		status = -ENOMEM;
1638		goto cleanup1;
1639	}
1640	c->cmd_type = CMD_IOCTL_PEND;
1641	c->Header.ReplyQueue = 0;
1642	c->Header.SGList = sg_used;
1643	c->Header.SGTotal = sg_used;
1644	c->Header.LUN = ioc->LUN_info;
1645	c->Header.Tag.lower = c->busaddr;
1646
1647	c->Request = ioc->Request;
1648	for (i = 0; i < sg_used; i++) {
1649		temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1650				    PCI_DMA_BIDIRECTIONAL);
1651		c->SG[i].Addr.lower = temp64.val32.lower;
1652		c->SG[i].Addr.upper = temp64.val32.upper;
1653		c->SG[i].Len = buff_size[i];
1654		c->SG[i].Ext = 0;	/* we are not chaining */
1655	}
1656	c->waiting = &wait;
1657	enqueue_cmd_and_start_io(h, c);
1658	wait_for_completion(&wait);
1659	/* unlock the buffers from DMA */
1660	for (i = 0; i < sg_used; i++) {
1661		temp64.val32.lower = c->SG[i].Addr.lower;
1662		temp64.val32.upper = c->SG[i].Addr.upper;
1663		pci_unmap_single(h->pdev,
1664			(dma_addr_t) temp64.val, buff_size[i],
1665			PCI_DMA_BIDIRECTIONAL);
1666	}
1667	check_ioctl_unit_attention(h, c);
1668	/* Copy the error information out */
1669	ioc->error_info = *(c->err_info);
1670	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1671		cmd_special_free(h, c);
1672		status = -EFAULT;
1673		goto cleanup1;
1674	}
1675	if (ioc->Request.Type.Direction == XFER_READ) {
1676		/* Copy the data out of the buffer we created */
1677		BYTE __user *ptr = ioc->buf;
1678		for (i = 0; i < sg_used; i++) {
1679			if (copy_to_user(ptr, buff[i], buff_size[i])) {
1680				cmd_special_free(h, c);
1681				status = -EFAULT;
1682				goto cleanup1;
1683			}
1684			ptr += buff_size[i];
1685		}
1686	}
1687	cmd_special_free(h, c);
1688	status = 0;
1689cleanup1:
1690	if (buff) {
1691		for (i = 0; i < sg_used; i++)
1692			kfree(buff[i]);
1693		kfree(buff);
1694	}
1695	kfree(buff_size);
1696	kfree(ioc);
1697	return status;
1698}
1699
1700static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1701	unsigned int cmd, unsigned long arg)
1702{
1703	struct gendisk *disk = bdev->bd_disk;
1704	ctlr_info_t *h = get_host(disk);
1705	void __user *argp = (void __user *)arg;
1706
1707	dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1708		cmd, arg);
1709	switch (cmd) {
1710	case CCISS_GETPCIINFO:
1711		return cciss_getpciinfo(h, argp);
1712	case CCISS_GETINTINFO:
1713		return cciss_getintinfo(h, argp);
1714	case CCISS_SETINTINFO:
1715		return cciss_setintinfo(h, argp);
1716	case CCISS_GETNODENAME:
1717		return cciss_getnodename(h, argp);
1718	case CCISS_SETNODENAME:
1719		return cciss_setnodename(h, argp);
1720	case CCISS_GETHEARTBEAT:
1721		return cciss_getheartbeat(h, argp);
1722	case CCISS_GETBUSTYPES:
1723		return cciss_getbustypes(h, argp);
1724	case CCISS_GETFIRMVER:
1725		return cciss_getfirmver(h, argp);
1726	case CCISS_GETDRIVVER:
1727		return cciss_getdrivver(h, argp);
1728	case CCISS_DEREGDISK:
1729	case CCISS_REGNEWD:
1730	case CCISS_REVALIDVOLS:
1731		return rebuild_lun_table(h, 0, 1);
1732	case CCISS_GETLUNINFO:
1733		return cciss_getluninfo(h, disk, argp);
1734	case CCISS_PASSTHRU:
1735		return cciss_passthru(h, argp);
1736	case CCISS_BIG_PASSTHRU:
1737		return cciss_bigpassthru(h, argp);
1738
1739	/* scsi_cmd_blk_ioctl handles these, below, though some are not */
1740	/* very meaningful for cciss.  SG_IO is the main one people want. */
1741
1742	case SG_GET_VERSION_NUM:
1743	case SG_SET_TIMEOUT:
1744	case SG_GET_TIMEOUT:
1745	case SG_GET_RESERVED_SIZE:
1746	case SG_SET_RESERVED_SIZE:
1747	case SG_EMULATED_HOST:
1748	case SG_IO:
1749	case SCSI_IOCTL_SEND_COMMAND:
1750		return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1751
1752	/* scsi_cmd_blk_ioctl would normally handle these, below, but */
1753	/* they aren't a good fit for cciss, as CD-ROMs are */
1754	/* not supported, and we don't have any bus/target/lun */
1755	/* which we present to the kernel. */
1756
1757	case CDROM_SEND_PACKET:
1758	case CDROMCLOSETRAY:
1759	case CDROMEJECT:
1760	case SCSI_IOCTL_GET_IDLUN:
1761	case SCSI_IOCTL_GET_BUS_NUMBER:
1762	default:
1763		return -ENOTTY;
1764	}
1765}
1766
1767static void cciss_check_queues(ctlr_info_t *h)
1768{
1769	int start_queue = h->next_to_run;
1770	int i;
1771
1772	/* check to see if we have maxed out the number of commands that can
1773	 * be placed on the queue.  If so then exit.  We do this check here
1774	 * in case the interrupt we serviced was from an ioctl and did not
1775	 * free any new commands.
1776	 */
1777	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1778		return;
1779
1780	/* We have room on the queue for more commands.  Now we need to queue
1781	 * them up.  We will also keep track of the next queue to run so
1782	 * that every queue gets a chance to be started first.
1783	 */
1784	for (i = 0; i < h->highest_lun + 1; i++) {
1785		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1786		/* make sure the disk has been added and the drive is real
1787		 * because this can be called from the middle of init_one.
1788		 */
1789		if (!h->drv[curr_queue])
1790			continue;
1791		if (!(h->drv[curr_queue]->queue) ||
1792			!(h->drv[curr_queue]->heads))
1793			continue;
1794		blk_start_queue(h->gendisk[curr_queue]->queue);
1795
1796		/* check to see if we have maxed out the number of commands
1797		 * that can be placed on the queue.
1798		 */
1799		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1800			if (curr_queue == start_queue) {
1801				h->next_to_run =
1802				    (start_queue + 1) % (h->highest_lun + 1);
1803				break;
1804			} else {
1805				h->next_to_run = curr_queue;
1806				break;
1807			}
1808		}
1809	}
1810}
1811
1812static void cciss_softirq_done(struct request *rq)
1813{
1814	CommandList_struct *c = rq->completion_data;
1815	ctlr_info_t *h = hba[c->ctlr];
1816	SGDescriptor_struct *curr_sg = c->SG;
1817	u64bit temp64;
1818	unsigned long flags;
1819	int i, ddir;
1820	int sg_index = 0;
1821
1822	if (c->Request.Type.Direction == XFER_READ)
1823		ddir = PCI_DMA_FROMDEVICE;
1824	else
1825		ddir = PCI_DMA_TODEVICE;
1826
1827	/* command did not need to be retried */
1828	/* unmap the DMA mapping for all the scatter gather elements */
1829	for (i = 0; i < c->Header.SGList; i++) {
1830		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1831			cciss_unmap_sg_chain_block(h, c);
1832			/* Point to the next block */
1833			curr_sg = h->cmd_sg_list[c->cmdindex];
1834			sg_index = 0;
1835		}
1836		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1837		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1838		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1839				ddir);
1840		++sg_index;
1841	}
1842
1843	dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1844
1845	/* set the residual count for pc requests */
1846	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1847		rq->resid_len = c->err_info->ResidualCnt;
1848
1849	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1850
1851	spin_lock_irqsave(&h->lock, flags);
1852	cmd_free(h, c);
1853	cciss_check_queues(h);
1854	spin_unlock_irqrestore(&h->lock, flags);
1855}
1856
1857static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1858	unsigned char scsi3addr[], uint32_t log_unit)
1859{
1860	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1861		sizeof(h->drv[log_unit]->LunID));
1862}
1863
1864/* This function gets the SCSI vendor, model, and revision of a logical drive
1865 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1866 * they cannot be read.
1867 */
1868static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1869				   char *vendor, char *model, char *rev)
1870{
1871	int rc;
1872	InquiryData_struct *inq_buf;
1873	unsigned char scsi3addr[8];
1874
1875	*vendor = '\0';
1876	*model = '\0';
1877	*rev = '\0';
1878
1879	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1880	if (!inq_buf)
1881		return;
1882
1883	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1884	rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1885			scsi3addr, TYPE_CMD);
1886	if (rc == IO_OK) {
1887		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1888		vendor[VENDOR_LEN] = '\0';
1889		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1890		model[MODEL_LEN] = '\0';
1891		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1892		rev[REV_LEN] = '\0';
1893	}
1894
1895	kfree(inq_buf);
1896	return;
1897}
1898
1899/* This function gets the serial number of a logical drive via
1900 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1901 * number cannot be had, for whatever reason, 16 bytes of 0xff
1902 * are returned instead.
1903 */
1904static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1905				unsigned char *serial_no, int buflen)
1906{
1907#define PAGE_83_INQ_BYTES 64
1908	int rc;
1909	unsigned char *buf;
1910	unsigned char scsi3addr[8];
1911
1912	if (buflen > 16)
1913		buflen = 16;
1914	memset(serial_no, 0xff, buflen);
1915	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1916	if (!buf)
1917		return;
1918	memset(serial_no, 0, buflen);
1919	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1920	rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1921		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1922	if (rc == IO_OK)
1923		memcpy(serial_no, &buf[8], buflen);
1924	kfree(buf);
1925	return;
1926}
1927
1928/*
1929 * cciss_add_disk sets up the block device queue for a logical drive
1930 */
1931static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1932				int drv_index)
1933{
1934	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1935	if (!disk->queue)
1936		goto init_queue_failure;
1937	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1938	disk->major = h->major;
1939	disk->first_minor = drv_index << NWD_SHIFT;
1940	disk->fops = &cciss_fops;
1941	if (cciss_create_ld_sysfs_entry(h, drv_index))
1942		goto cleanup_queue;
1943	disk->private_data = h->drv[drv_index];
1944	disk->driverfs_dev = &h->drv[drv_index]->dev;
1945
1946	/* Set up queue information */
1947	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1948
1949	/* This is a hardware imposed limit. */
1950	blk_queue_max_segments(disk->queue, h->maxsgentries);
1951
1952	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1953
1954	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1955
1956	disk->queue->queuedata = h;
1957
1958	blk_queue_logical_block_size(disk->queue,
1959				     h->drv[drv_index]->block_size);
1960
1961	/* Make sure all queue data is written out before */
1962	/* setting h->drv[drv_index]->queue, as setting this */
1963	/* allows the interrupt handler to start the queue */
1964	wmb();
1965	h->drv[drv_index]->queue = disk->queue;
1966	add_disk(disk);
1967	return 0;
1968
1969cleanup_queue:
1970	blk_cleanup_queue(disk->queue);
1971	disk->queue = NULL;
1972init_queue_failure:
1973	return -1;
1974}
1975
1976/* This function will check the usage_count of the drive to be updated/added.
1977 * If the usage_count is zero and it is a heretofore unknown drive, or,
1978 * the drive's capacity, geometry, or serial number has changed,
1979 * then the drive information will be updated and the disk will be
1980 * re-registered with the kernel.  If these conditions don't hold,
1981 * then it will be left alone for the next reboot.  The exception to this
1982 * is disk 0 which will always be left registered with the kernel since it
1983 * is also the controller node.  Any changes to disk 0 will show up on
1984 * the next reboot.
1985 */
1986static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1987	int first_time, int via_ioctl)
1988{
1989	struct gendisk *disk;
1990	InquiryData_struct *inq_buff = NULL;
1991	unsigned int block_size;
1992	sector_t total_size;
1993	unsigned long flags = 0;
1994	int ret = 0;
1995	drive_info_struct *drvinfo;
1996
1997	/* Get information about the disk and modify the driver structure */
1998	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1999	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2000	if (inq_buff == NULL || drvinfo == NULL)
2001		goto mem_msg;
2002
2003	/* testing to see if 16-byte CDBs are already being used */
2004	if (h->cciss_read == CCISS_READ_16) {
2005		cciss_read_capacity_16(h, drv_index,
2006			&total_size, &block_size);
2007
2008	} else {
2009		cciss_read_capacity(h, drv_index, &total_size, &block_size);
2010		/* if read_capacity returns all F's this volume is >2TB */
2011		/* in size so we switch to 16-byte CDB's for all */
2012		/* read/write ops */
2013		if (total_size == 0xFFFFFFFFULL) {
2014			cciss_read_capacity_16(h, drv_index,
2015			&total_size, &block_size);
2016			h->cciss_read = CCISS_READ_16;
2017			h->cciss_write = CCISS_WRITE_16;
2018		} else {
2019			h->cciss_read = CCISS_READ_10;
2020			h->cciss_write = CCISS_WRITE_10;
2021		}
2022	}
2023
2024	cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2025			       inq_buff, drvinfo);
2026	drvinfo->block_size = block_size;
2027	drvinfo->nr_blocks = total_size + 1;
2028
2029	cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2030				drvinfo->model, drvinfo->rev);
2031	cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2032			sizeof(drvinfo->serial_no));
2033	/* Save the lunid in case we deregister the disk, below. */
2034	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2035		sizeof(drvinfo->LunID));
2036
2037	/* Is it the same disk we already know, and nothing's changed? */
2038	if (h->drv[drv_index]->raid_level != -1 &&
2039		((memcmp(drvinfo->serial_no,
2040				h->drv[drv_index]->serial_no, 16) == 0) &&
2041		drvinfo->block_size == h->drv[drv_index]->block_size &&
2042		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2043		drvinfo->heads == h->drv[drv_index]->heads &&
2044		drvinfo->sectors == h->drv[drv_index]->sectors &&
2045		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2046			/* The disk is unchanged, nothing to update */
2047			goto freeret;
2048
2049	/* If we get here it's not the same disk, or something's changed,
2050	 * so we need to * deregister it, and re-register it, if it's not
2051	 * in use.
2052	 * If the disk already exists then deregister it before proceeding
2053	 * (unless it's the first disk (for the controller node).
2054	 */
2055	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2056		dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2057		spin_lock_irqsave(&h->lock, flags);
2058		h->drv[drv_index]->busy_configuring = 1;
2059		spin_unlock_irqrestore(&h->lock, flags);
2060
2061		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2062		 * which keeps the interrupt handler from starting
2063		 * the queue.
2064		 */
2065		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2066	}
2067
2068	/* If the disk is in use return */
2069	if (ret)
2070		goto freeret;
2071
2072	/* Save the new information from cciss_geometry_inquiry
2073	 * and serial number inquiry.  If the disk was deregistered
2074	 * above, then h->drv[drv_index] will be NULL.
2075	 */
2076	if (h->drv[drv_index] == NULL) {
2077		drvinfo->device_initialized = 0;
2078		h->drv[drv_index] = drvinfo;
2079		drvinfo = NULL; /* so it won't be freed below. */
2080	} else {
2081		/* special case for cxd0 */
2082		h->drv[drv_index]->block_size = drvinfo->block_size;
2083		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2084		h->drv[drv_index]->heads = drvinfo->heads;
2085		h->drv[drv_index]->sectors = drvinfo->sectors;
2086		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2087		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2088		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2089		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2090			VENDOR_LEN + 1);
2091		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2092		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2093	}
2094
2095	++h->num_luns;
2096	disk = h->gendisk[drv_index];
2097	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2098
2099	/* If it's not disk 0 (drv_index != 0)
2100	 * or if it was disk 0, but there was previously
2101	 * no actual corresponding configured logical drive
2102	 * (raid_leve == -1) then we want to update the
2103	 * logical drive's information.
2104	 */
2105	if (drv_index || first_time) {
2106		if (cciss_add_disk(h, disk, drv_index) != 0) {
2107			cciss_free_gendisk(h, drv_index);
2108			cciss_free_drive_info(h, drv_index);
2109			dev_warn(&h->pdev->dev, "could not update disk %d\n",
2110				drv_index);
2111			--h->num_luns;
2112		}
2113	}
2114
2115freeret:
2116	kfree(inq_buff);
2117	kfree(drvinfo);
2118	return;
2119mem_msg:
2120	dev_err(&h->pdev->dev, "out of memory\n");
2121	goto freeret;
2122}
2123
2124/* This function will find the first index of the controllers drive array
2125 * that has a null drv pointer and allocate the drive info struct and
2126 * will return that index   This is where new drives will be added.
2127 * If the index to be returned is greater than the highest_lun index for
2128 * the controller then highest_lun is set * to this new index.
2129 * If there are no available indexes or if tha allocation fails, then -1
2130 * is returned.  * "controller_node" is used to know if this is a real
2131 * logical drive, or just the controller node, which determines if this
2132 * counts towards highest_lun.
2133 */
2134static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2135{
2136	int i;
2137	drive_info_struct *drv;
2138
2139	/* Search for an empty slot for our drive info */
2140	for (i = 0; i < CISS_MAX_LUN; i++) {
2141
2142		/* if not cxd0 case, and it's occupied, skip it. */
2143		if (h->drv[i] && i != 0)
2144			continue;
2145		/*
2146		 * If it's cxd0 case, and drv is alloc'ed already, and a
2147		 * disk is configured there, skip it.
2148		 */
2149		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2150			continue;
2151
2152		/*
2153		 * We've found an empty slot.  Update highest_lun
2154		 * provided this isn't just the fake cxd0 controller node.
2155		 */
2156		if (i > h->highest_lun && !controller_node)
2157			h->highest_lun = i;
2158
2159		/* If adding a real disk at cxd0, and it's already alloc'ed */
2160		if (i == 0 && h->drv[i] != NULL)
2161			return i;
2162
2163		/*
2164		 * Found an empty slot, not already alloc'ed.  Allocate it.
2165		 * Mark it with raid_level == -1, so we know it's new later on.
2166		 */
2167		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2168		if (!drv)
2169			return -1;
2170		drv->raid_level = -1; /* so we know it's new */
2171		h->drv[i] = drv;
2172		return i;
2173	}
2174	return -1;
2175}
2176
2177static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2178{
2179	kfree(h->drv[drv_index]);
2180	h->drv[drv_index] = NULL;
2181}
2182
2183static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2184{
2185	put_disk(h->gendisk[drv_index]);
2186	h->gendisk[drv_index] = NULL;
2187}
2188
2189/* cciss_add_gendisk finds a free hba[]->drv structure
2190 * and allocates a gendisk if needed, and sets the lunid
2191 * in the drvinfo structure.   It returns the index into
2192 * the ->drv[] array, or -1 if none are free.
2193 * is_controller_node indicates whether highest_lun should
2194 * count this disk, or if it's only being added to provide
2195 * a means to talk to the controller in case no logical
2196 * drives have yet been configured.
2197 */
2198static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2199	int controller_node)
2200{
2201	int drv_index;
2202
2203	drv_index = cciss_alloc_drive_info(h, controller_node);
2204	if (drv_index == -1)
2205		return -1;
2206
2207	/*Check if the gendisk needs to be allocated */
2208	if (!h->gendisk[drv_index]) {
2209		h->gendisk[drv_index] =
2210			alloc_disk(1 << NWD_SHIFT);
2211		if (!h->gendisk[drv_index]) {
2212			dev_err(&h->pdev->dev,
2213				"could not allocate a new disk %d\n",
2214				drv_index);
2215			goto err_free_drive_info;
2216		}
2217	}
2218	memcpy(h->drv[drv_index]->LunID, lunid,
2219		sizeof(h->drv[drv_index]->LunID));
2220	if (cciss_create_ld_sysfs_entry(h, drv_index))
2221		goto err_free_disk;
2222	/* Don't need to mark this busy because nobody */
2223	/* else knows about this disk yet to contend */
2224	/* for access to it. */
2225	h->drv[drv_index]->busy_configuring = 0;
2226	wmb();
2227	return drv_index;
2228
2229err_free_disk:
2230	cciss_free_gendisk(h, drv_index);
2231err_free_drive_info:
2232	cciss_free_drive_info(h, drv_index);
2233	return -1;
2234}
2235
2236/* This is for the special case of a controller which
2237 * has no logical drives.  In this case, we still need
2238 * to register a disk so the controller can be accessed
2239 * by the Array Config Utility.
2240 */
2241static void cciss_add_controller_node(ctlr_info_t *h)
2242{
2243	struct gendisk *disk;
2244	int drv_index;
2245
2246	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2247		return;
2248
2249	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2250	if (drv_index == -1)
2251		goto error;
2252	h->drv[drv_index]->block_size = 512;
2253	h->drv[drv_index]->nr_blocks = 0;
2254	h->drv[drv_index]->heads = 0;
2255	h->drv[drv_index]->sectors = 0;
2256	h->drv[drv_index]->cylinders = 0;
2257	h->drv[drv_index]->raid_level = -1;
2258	memset(h->drv[drv_index]->serial_no, 0, 16);
2259	disk = h->gendisk[drv_index];
2260	if (cciss_add_disk(h, disk, drv_index) == 0)
2261		return;
2262	cciss_free_gendisk(h, drv_index);
2263	cciss_free_drive_info(h, drv_index);
2264error:
2265	dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2266	return;
2267}
2268
2269/* This function will add and remove logical drives from the Logical
2270 * drive array of the controller and maintain persistency of ordering
2271 * so that mount points are preserved until the next reboot.  This allows
2272 * for the removal of logical drives in the middle of the drive array
2273 * without a re-ordering of those drives.
2274 * INPUT
2275 * h		= The controller to perform the operations on
2276 */
2277static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2278	int via_ioctl)
2279{
2280	int num_luns;
2281	ReportLunData_struct *ld_buff = NULL;
2282	int return_code;
2283	int listlength = 0;
2284	int i;
2285	int drv_found;
2286	int drv_index = 0;
2287	unsigned char lunid[8] = CTLR_LUNID;
2288	unsigned long flags;
2289
2290	if (!capable(CAP_SYS_RAWIO))
2291		return -EPERM;
2292
2293	/* Set busy_configuring flag for this operation */
2294	spin_lock_irqsave(&h->lock, flags);
2295	if (h->busy_configuring) {
2296		spin_unlock_irqrestore(&h->lock, flags);
2297		return -EBUSY;
2298	}
2299	h->busy_configuring = 1;
2300	spin_unlock_irqrestore(&h->lock, flags);
2301
2302	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2303	if (ld_buff == NULL)
2304		goto mem_msg;
2305
2306	return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2307				      sizeof(ReportLunData_struct),
2308				      0, CTLR_LUNID, TYPE_CMD);
2309
2310	if (return_code == IO_OK)
2311		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2312	else {	/* reading number of logical volumes failed */
2313		dev_warn(&h->pdev->dev,
2314			"report logical volume command failed\n");
2315		listlength = 0;
2316		goto freeret;
2317	}
2318
2319	num_luns = listlength / 8;	/* 8 bytes per entry */
2320	if (num_luns > CISS_MAX_LUN) {
2321		num_luns = CISS_MAX_LUN;
2322		dev_warn(&h->pdev->dev, "more luns configured"
2323		       " on controller than can be handled by"
2324		       " this driver.\n");
2325	}
2326
2327	if (num_luns == 0)
2328		cciss_add_controller_node(h);
2329
2330	/* Compare controller drive array to driver's drive array
2331	 * to see if any drives are missing on the controller due
2332	 * to action of Array Config Utility (user deletes drive)
2333	 * and deregister logical drives which have disappeared.
2334	 */
2335	for (i = 0; i <= h->highest_lun; i++) {
2336		int j;
2337		drv_found = 0;
2338
2339		/* skip holes in the array from already deleted drives */
2340		if (h->drv[i] == NULL)
2341			continue;
2342
2343		for (j = 0; j < num_luns; j++) {
2344			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2345			if (memcmp(h->drv[i]->LunID, lunid,
2346				sizeof(lunid)) == 0) {
2347				drv_found = 1;
2348				break;
2349			}
2350		}
2351		if (!drv_found) {
2352			/* Deregister it from the OS, it's gone. */
2353			spin_lock_irqsave(&h->lock, flags);
2354			h->drv[i]->busy_configuring = 1;
2355			spin_unlock_irqrestore(&h->lock, flags);
2356			return_code = deregister_disk(h, i, 1, via_ioctl);
2357			if (h->drv[i] != NULL)
2358				h->drv[i]->busy_configuring = 0;
2359		}
2360	}
2361
2362	/* Compare controller drive array to driver's drive array.
2363	 * Check for updates in the drive information and any new drives
2364	 * on the controller due to ACU adding logical drives, or changing
2365	 * a logical drive's size, etc.  Reregister any new/changed drives
2366	 */
2367	for (i = 0; i < num_luns; i++) {
2368		int j;
2369
2370		drv_found = 0;
2371
2372		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2373		/* Find if the LUN is already in the drive array
2374		 * of the driver.  If so then update its info
2375		 * if not in use.  If it does not exist then find
2376		 * the first free index and add it.
2377		 */
2378		for (j = 0; j <= h->highest_lun; j++) {
2379			if (h->drv[j] != NULL &&
2380				memcmp(h->drv[j]->LunID, lunid,
2381					sizeof(h->drv[j]->LunID)) == 0) {
2382				drv_index = j;
2383				drv_found = 1;
2384				break;
2385			}
2386		}
2387
2388		/* check if the drive was found already in the array */
2389		if (!drv_found) {
2390			drv_index = cciss_add_gendisk(h, lunid, 0);
2391			if (drv_index == -1)
2392				goto freeret;
2393		}
2394		cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2395	}		/* end for */
2396
2397freeret:
2398	kfree(ld_buff);
2399	h->busy_configuring = 0;
2400	/* We return -1 here to tell the ACU that we have registered/updated
2401	 * all of the drives that we can and to keep it from calling us
2402	 * additional times.
2403	 */
2404	return -1;
2405mem_msg:
2406	dev_err(&h->pdev->dev, "out of memory\n");
2407	h->busy_configuring = 0;
2408	goto freeret;
2409}
2410
2411static void cciss_clear_drive_info(drive_info_struct *drive_info)
2412{
2413	/* zero out the disk size info */
2414	drive_info->nr_blocks = 0;
2415	drive_info->block_size = 0;
2416	drive_info->heads = 0;
2417	drive_info->sectors = 0;
2418	drive_info->cylinders = 0;
2419	drive_info->raid_level = -1;
2420	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2421	memset(drive_info->model, 0, sizeof(drive_info->model));
2422	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2423	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2424	/*
2425	 * don't clear the LUNID though, we need to remember which
2426	 * one this one is.
2427	 */
2428}
2429
2430/* This function will deregister the disk and it's queue from the
2431 * kernel.  It must be called with the controller lock held and the
2432 * drv structures busy_configuring flag set.  It's parameters are:
2433 *
2434 * disk = This is the disk to be deregistered
2435 * drv  = This is the drive_info_struct associated with the disk to be
2436 *        deregistered.  It contains information about the disk used
2437 *        by the driver.
2438 * clear_all = This flag determines whether or not the disk information
2439 *             is going to be completely cleared out and the highest_lun
2440 *             reset.  Sometimes we want to clear out information about
2441 *             the disk in preparation for re-adding it.  In this case
2442 *             the highest_lun should be left unchanged and the LunID
2443 *             should not be cleared.
2444 * via_ioctl
2445 *    This indicates whether we've reached this path via ioctl.
2446 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2447 *    If this path is reached via ioctl(), then the max_usage_count will
2448 *    be 1, as the process calling ioctl() has got to have the device open.
2449 *    If we get here via sysfs, then the max usage count will be zero.
2450*/
2451static int deregister_disk(ctlr_info_t *h, int drv_index,
2452			   int clear_all, int via_ioctl)
2453{
2454	int i;
2455	struct gendisk *disk;
2456	drive_info_struct *drv;
2457	int recalculate_highest_lun;
2458
2459	if (!capable(CAP_SYS_RAWIO))
2460		return -EPERM;
2461
2462	drv = h->drv[drv_index];
2463	disk = h->gendisk[drv_index];
2464
2465	/* make sure logical volume is NOT is use */
2466	if (clear_all || (h->gendisk[0] == disk)) {
2467		if (drv->usage_count > via_ioctl)
2468			return -EBUSY;
2469	} else if (drv->usage_count > 0)
2470		return -EBUSY;
2471
2472	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2473
2474	/* invalidate the devices and deregister the disk.  If it is disk
2475	 * zero do not deregister it but just zero out it's values.  This
2476	 * allows us to delete disk zero but keep the controller registered.
2477	 */
2478	if (h->gendisk[0] != disk) {
2479		struct request_queue *q = disk->queue;
2480		if (disk->flags & GENHD_FL_UP) {
2481			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2482			del_gendisk(disk);
2483		}
2484		if (q)
2485			blk_cleanup_queue(q);
2486		/* If clear_all is set then we are deleting the logical
2487		 * drive, not just refreshing its info.  For drives
2488		 * other than disk 0 we will call put_disk.  We do not
2489		 * do this for disk 0 as we need it to be able to
2490		 * configure the controller.
2491		 */
2492		if (clear_all){
2493			/* This isn't pretty, but we need to find the
2494			 * disk in our array and NULL our the pointer.
2495			 * This is so that we will call alloc_disk if
2496			 * this index is used again later.
2497			 */
2498			for (i=0; i < CISS_MAX_LUN; i++){
2499				if (h->gendisk[i] == disk) {
2500					h->gendisk[i] = NULL;
2501					break;
2502				}
2503			}
2504			put_disk(disk);
2505		}
2506	} else {
2507		set_capacity(disk, 0);
2508		cciss_clear_drive_info(drv);
2509	}
2510
2511	--h->num_luns;
2512
2513	/* if it was the last disk, find the new hightest lun */
2514	if (clear_all && recalculate_highest_lun) {
2515		int newhighest = -1;
2516		for (i = 0; i <= h->highest_lun; i++) {
2517			/* if the disk has size > 0, it is available */
2518			if (h->drv[i] && h->drv[i]->heads)
2519				newhighest = i;
2520		}
2521		h->highest_lun = newhighest;
2522	}
2523	return 0;
2524}
2525
2526static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2527		size_t size, __u8 page_code, unsigned char *scsi3addr,
2528		int cmd_type)
2529{
2530	u64bit buff_dma_handle;
2531	int status = IO_OK;
2532
2533	c->cmd_type = CMD_IOCTL_PEND;
2534	c->Header.ReplyQueue = 0;
2535	if (buff != NULL) {
2536		c->Header.SGList = 1;
2537		c->Header.SGTotal = 1;
2538	} else {
2539		c->Header.SGList = 0;
2540		c->Header.SGTotal = 0;
2541	}
2542	c->Header.Tag.lower = c->busaddr;
2543	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2544
2545	c->Request.Type.Type = cmd_type;
2546	if (cmd_type == TYPE_CMD) {
2547		switch (cmd) {
2548		case CISS_INQUIRY:
2549			/* are we trying to read a vital product page */
2550			if (page_code != 0) {
2551				c->Request.CDB[1] = 0x01;
2552				c->Request.CDB[2] = page_code;
2553			}
2554			c->Request.CDBLen = 6;
2555			c->Request.Type.Attribute = ATTR_SIMPLE;
2556			c->Request.Type.Direction = XFER_READ;
2557			c->Request.Timeout = 0;
2558			c->Request.CDB[0] = CISS_INQUIRY;
2559			c->Request.CDB[4] = size & 0xFF;
2560			break;
2561		case CISS_REPORT_LOG:
2562		case CISS_REPORT_PHYS:
2563			/* Talking to controller so It's a physical command
2564			   mode = 00 target = 0.  Nothing to write.
2565			 */
2566			c->Request.CDBLen = 12;
2567			c->Request.Type.Attribute = ATTR_SIMPLE;
2568			c->Request.Type.Direction = XFER_READ;
2569			c->Request.Timeout = 0;
2570			c->Request.CDB[0] = cmd;
2571			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2572			c->Request.CDB[7] = (size >> 16) & 0xFF;
2573			c->Request.CDB[8] = (size >> 8) & 0xFF;
2574			c->Request.CDB[9] = size & 0xFF;
2575			break;
2576
2577		case CCISS_READ_CAPACITY:
2578			c->Request.CDBLen = 10;
2579			c->Request.Type.Attribute = ATTR_SIMPLE;
2580			c->Request.Type.Direction = XFER_READ;
2581			c->Request.Timeout = 0;
2582			c->Request.CDB[0] = cmd;
2583			break;
2584		case CCISS_READ_CAPACITY_16:
2585			c->Request.CDBLen = 16;
2586			c->Request.Type.Attribute = ATTR_SIMPLE;
2587			c->Request.Type.Direction = XFER_READ;
2588			c->Request.Timeout = 0;
2589			c->Request.CDB[0] = cmd;
2590			c->Request.CDB[1] = 0x10;
2591			c->Request.CDB[10] = (size >> 24) & 0xFF;
2592			c->Request.CDB[11] = (size >> 16) & 0xFF;
2593			c->Request.CDB[12] = (size >> 8) & 0xFF;
2594			c->Request.CDB[13] = size & 0xFF;
2595			c->Request.Timeout = 0;
2596			c->Request.CDB[0] = cmd;
2597			break;
2598		case CCISS_CACHE_FLUSH:
2599			c->Request.CDBLen = 12;
2600			c->Request.Type.Attribute = ATTR_SIMPLE;
2601			c->Request.Type.Direction = XFER_WRITE;
2602			c->Request.Timeout = 0;
2603			c->Request.CDB[0] = BMIC_WRITE;
2604			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2605			c->Request.CDB[7] = (size >> 8) & 0xFF;
2606			c->Request.CDB[8] = size & 0xFF;
2607			break;
2608		case TEST_UNIT_READY:
2609			c->Request.CDBLen = 6;
2610			c->Request.Type.Attribute = ATTR_SIMPLE;
2611			c->Request.Type.Direction = XFER_NONE;
2612			c->Request.Timeout = 0;
2613			break;
2614		default:
2615			dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2616			return IO_ERROR;
2617		}
2618	} else if (cmd_type == TYPE_MSG) {
2619		switch (cmd) {
2620		case CCISS_ABORT_MSG:
2621			c->Request.CDBLen = 12;
2622			c->Request.Type.Attribute = ATTR_SIMPLE;
2623			c->Request.Type.Direction = XFER_WRITE;
2624			c->Request.Timeout = 0;
2625			c->Request.CDB[0] = cmd;	/* abort */
2626			c->Request.CDB[1] = 0;	/* abort a command */
2627			/* buff contains the tag of the command to abort */
2628			memcpy(&c->Request.CDB[4], buff, 8);
2629			break;
2630		case CCISS_RESET_MSG:
2631			c->Request.CDBLen = 16;
2632			c->Request.Type.Attribute = ATTR_SIMPLE;
2633			c->Request.Type.Direction = XFER_NONE;
2634			c->Request.Timeout = 0;
2635			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2636			c->Request.CDB[0] = cmd;	/* reset */
2637			c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2638			break;
2639		case CCISS_NOOP_MSG:
2640			c->Request.CDBLen = 1;
2641			c->Request.Type.Attribute = ATTR_SIMPLE;
2642			c->Request.Type.Direction = XFER_WRITE;
2643			c->Request.Timeout = 0;
2644			c->Request.CDB[0] = cmd;
2645			break;
2646		default:
2647			dev_warn(&h->pdev->dev,
2648				"unknown message type %d\n", cmd);
2649			return IO_ERROR;
2650		}
2651	} else {
2652		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2653		return IO_ERROR;
2654	}
2655	/* Fill in the scatter gather information */
2656	if (size > 0) {
2657		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2658							     buff, size,
2659							     PCI_DMA_BIDIRECTIONAL);
2660		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2661		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2662		c->SG[0].Len = size;
2663		c->SG[0].Ext = 0;	/* we are not chaining */
2664	}
2665	return status;
2666}
2667
2668static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2669			    u8 reset_type)
2670{
2671	CommandList_struct *c;
2672	int return_status;
2673
2674	c = cmd_alloc(h);
2675	if (!c)
2676		return -ENOMEM;
2677	return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2678		CTLR_LUNID, TYPE_MSG);
2679	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2680	if (return_status != IO_OK) {
2681		cmd_special_free(h, c);
2682		return return_status;
2683	}
2684	c->waiting = NULL;
2685	enqueue_cmd_and_start_io(h, c);
2686	/* Don't wait for completion, the reset won't complete.  Don't free
2687	 * the command either.  This is the last command we will send before
2688	 * re-initializing everything, so it doesn't matter and won't leak.
2689	 */
2690	return 0;
2691}
2692
2693static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2694{
2695	switch (c->err_info->ScsiStatus) {
2696	case SAM_STAT_GOOD:
2697		return IO_OK;
2698	case SAM_STAT_CHECK_CONDITION:
2699		switch (0xf & c->err_info->SenseInfo[2]) {
2700		case 0: return IO_OK; /* no sense */
2701		case 1: return IO_OK; /* recovered error */
2702		default:
2703			if (check_for_unit_attention(h, c))
2704				return IO_NEEDS_RETRY;
2705			dev_warn(&h->pdev->dev, "cmd 0x%02x "
2706				"check condition, sense key = 0x%02x\n",
2707				c->Request.CDB[0], c->err_info->SenseInfo[2]);
2708		}
2709		break;
2710	default:
2711		dev_warn(&h->pdev->dev, "cmd 0x%02x"
2712			"scsi status = 0x%02x\n",
2713			c->Request.CDB[0], c->err_info->ScsiStatus);
2714		break;
2715	}
2716	return IO_ERROR;
2717}
2718
2719static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2720{
2721	int return_status = IO_OK;
2722
2723	if (c->err_info->CommandStatus == CMD_SUCCESS)
2724		return IO_OK;
2725
2726	switch (c->err_info->CommandStatus) {
2727	case CMD_TARGET_STATUS:
2728		return_status = check_target_status(h, c);
2729		break;
2730	case CMD_DATA_UNDERRUN:
2731	case CMD_DATA_OVERRUN:
2732		/* expected for inquiry and report lun commands */
2733		break;
2734	case CMD_INVALID:
2735		dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2736		       "reported invalid\n", c->Request.CDB[0]);
2737		return_status = IO_ERROR;
2738		break;
2739	case CMD_PROTOCOL_ERR:
2740		dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2741		       "protocol error\n", c->Request.CDB[0]);
2742		return_status = IO_ERROR;
2743		break;
2744	case CMD_HARDWARE_ERR:
2745		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2746		       " hardware error\n", c->Request.CDB[0]);
2747		return_status = IO_ERROR;
2748		break;
2749	case CMD_CONNECTION_LOST:
2750		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2751		       "connection lost\n", c->Request.CDB[0]);
2752		return_status = IO_ERROR;
2753		break;
2754	case CMD_ABORTED:
2755		dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2756		       "aborted\n", c->Request.CDB[0]);
2757		return_status = IO_ERROR;
2758		break;
2759	case CMD_ABORT_FAILED:
2760		dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2761		       "abort failed\n", c->Request.CDB[0]);
2762		return_status = IO_ERROR;
2763		break;
2764	case CMD_UNSOLICITED_ABORT:
2765		dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2766			c->Request.CDB[0]);
2767		return_status = IO_NEEDS_RETRY;
2768		break;
2769	case CMD_UNABORTABLE:
2770		dev_warn(&h->pdev->dev, "cmd unabortable\n");
2771		return_status = IO_ERROR;
2772		break;
2773	default:
2774		dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2775		       "unknown status %x\n", c->Request.CDB[0],
2776		       c->err_info->CommandStatus);
2777		return_status = IO_ERROR;
2778	}
2779	return return_status;
2780}
2781
2782static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2783	int attempt_retry)
2784{
2785	DECLARE_COMPLETION_ONSTACK(wait);
2786	u64bit buff_dma_handle;
2787	int return_status = IO_OK;
2788
2789resend_cmd2:
2790	c->waiting = &wait;
2791	enqueue_cmd_and_start_io(h, c);
2792
2793	wait_for_completion(&wait);
2794
2795	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2796		goto command_done;
2797
2798	return_status = process_sendcmd_error(h, c);
2799
2800	if (return_status == IO_NEEDS_RETRY &&
2801		c->retry_count < MAX_CMD_RETRIES) {
2802		dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2803			c->Request.CDB[0]);
2804		c->retry_count++;
2805		/* erase the old error information */
2806		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2807		return_status = IO_OK;
2808		reinit_completion(&wait);
2809		goto resend_cmd2;
2810	}
2811
2812command_done:
2813	/* unlock the buffers from DMA */
2814	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2815	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2816	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2817			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2818	return return_status;
2819}
2820
2821static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2822			   __u8 page_code, unsigned char scsi3addr[],
2823			int cmd_type)
2824{
2825	CommandList_struct *c;
2826	int return_status;
2827
2828	c = cmd_special_alloc(h);
2829	if (!c)
2830		return -ENOMEM;
2831	return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2832		scsi3addr, cmd_type);
2833	if (return_status == IO_OK)
2834		return_status = sendcmd_withirq_core(h, c, 1);
2835
2836	cmd_special_free(h, c);
2837	return return_status;
2838}
2839
2840static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2841				   sector_t total_size,
2842				   unsigned int block_size,
2843				   InquiryData_struct *inq_buff,
2844				   drive_info_struct *drv)
2845{
2846	int return_code;
2847	unsigned long t;
2848	unsigned char scsi3addr[8];
2849
2850	memset(inq_buff, 0, sizeof(InquiryData_struct));
2851	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2852	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2853			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2854	if (return_code == IO_OK) {
2855		if (inq_buff->data_byte[8] == 0xFF) {
2856			dev_warn(&h->pdev->dev,
2857			       "reading geometry failed, volume "
2858			       "does not support reading geometry\n");
2859			drv->heads = 255;
2860			drv->sectors = 32;	/* Sectors per track */
2861			drv->cylinders = total_size + 1;
2862			drv->raid_level = RAID_UNKNOWN;
2863		} else {
2864			drv->heads = inq_buff->data_byte[6];
2865			drv->sectors = inq_buff->data_byte[7];
2866			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2867			drv->cylinders += inq_buff->data_byte[5];
2868			drv->raid_level = inq_buff->data_byte[8];
2869		}
2870		drv->block_size = block_size;
2871		drv->nr_blocks = total_size + 1;
2872		t = drv->heads * drv->sectors;
2873		if (t > 1) {
2874			sector_t real_size = total_size + 1;
2875			unsigned long rem = sector_div(real_size, t);
2876			if (rem)
2877				real_size++;
2878			drv->cylinders = real_size;
2879		}
2880	} else {		/* Get geometry failed */
2881		dev_warn(&h->pdev->dev, "reading geometry failed\n");
2882	}
2883}
2884
2885static void
2886cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2887		    unsigned int *block_size)
2888{
2889	ReadCapdata_struct *buf;
2890	int return_code;
2891	unsigned char scsi3addr[8];
2892
2893	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2894	if (!buf) {
2895		dev_warn(&h->pdev->dev, "out of memory\n");
2896		return;
2897	}
2898
2899	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2900	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2901		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2902	if (return_code == IO_OK) {
2903		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2904		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2905	} else {		/* read capacity command failed */
2906		dev_warn(&h->pdev->dev, "read capacity failed\n");
2907		*total_size = 0;
2908		*block_size = BLOCK_SIZE;
2909	}
2910	kfree(buf);
2911}
2912
2913static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2914	sector_t *total_size, unsigned int *block_size)
2915{
2916	ReadCapdata_struct_16 *buf;
2917	int return_code;
2918	unsigned char scsi3addr[8];
2919
2920	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2921	if (!buf) {
2922		dev_warn(&h->pdev->dev, "out of memory\n");
2923		return;
2924	}
2925
2926	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2927	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2928		buf, sizeof(ReadCapdata_struct_16),
2929			0, scsi3addr, TYPE_CMD);
2930	if (return_code == IO_OK) {
2931		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2932		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2933	} else {		/* read capacity command failed */
2934		dev_warn(&h->pdev->dev, "read capacity failed\n");
2935		*total_size = 0;
2936		*block_size = BLOCK_SIZE;
2937	}
2938	dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2939	       (unsigned long long)*total_size+1, *block_size);
2940	kfree(buf);
2941}
2942
2943static int cciss_revalidate(struct gendisk *disk)
2944{
2945	ctlr_info_t *h = get_host(disk);
2946	drive_info_struct *drv = get_drv(disk);
2947	int logvol;
2948	int FOUND = 0;
2949	unsigned int block_size;
2950	sector_t total_size;
2951	InquiryData_struct *inq_buff = NULL;
2952
2953	for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2954		if (!h->drv[logvol])
2955			continue;
2956		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2957			sizeof(drv->LunID)) == 0) {
2958			FOUND = 1;
2959			break;
2960		}
2961	}
2962
2963	if (!FOUND)
2964		return 1;
2965
2966	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2967	if (inq_buff == NULL) {
2968		dev_warn(&h->pdev->dev, "out of memory\n");
2969		return 1;
2970	}
2971	if (h->cciss_read == CCISS_READ_10) {
2972		cciss_read_capacity(h, logvol,
2973					&total_size, &block_size);
2974	} else {
2975		cciss_read_capacity_16(h, logvol,
2976					&total_size, &block_size);
2977	}
2978	cciss_geometry_inquiry(h, logvol, total_size, block_size,
2979			       inq_buff, drv);
2980
2981	blk_queue_logical_block_size(drv->queue, drv->block_size);
2982	set_capacity(disk, drv->nr_blocks);
2983
2984	kfree(inq_buff);
2985	return 0;
2986}
2987
2988/*
2989 * Map (physical) PCI mem into (virtual) kernel space
2990 */
2991static void __iomem *remap_pci_mem(ulong base, ulong size)
2992{
2993	ulong page_base = ((ulong) base) & PAGE_MASK;
2994	ulong page_offs = ((ulong) base) - page_base;
2995	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2996
2997	return page_remapped ? (page_remapped + page_offs) : NULL;
2998}
2999
3000/*
3001 * Takes jobs of the Q and sends them to the hardware, then puts it on
3002 * the Q to wait for completion.
3003 */
3004static void start_io(ctlr_info_t *h)
3005{
3006	CommandList_struct *c;
3007
3008	while (!list_empty(&h->reqQ)) {
3009		c = list_entry(h->reqQ.next, CommandList_struct, list);
3010		/* can't do anything if fifo is full */
3011		if ((h->access.fifo_full(h))) {
3012			dev_warn(&h->pdev->dev, "fifo full\n");
3013			break;
3014		}
3015
3016		/* Get the first entry from the Request Q */
3017		removeQ(c);
3018		h->Qdepth--;
3019
3020		/* Tell the controller execute command */
3021		h->access.submit_command(h, c);
3022
3023		/* Put job onto the completed Q */
3024		addQ(&h->cmpQ, c);
3025	}
3026}
3027
3028/* Assumes that h->lock is held. */
3029/* Zeros out the error record and then resends the command back */
3030/* to the controller */
3031static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3032{
3033	/* erase the old error information */
3034	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3035
3036	/* add it to software queue and then send it to the controller */
3037	addQ(&h->reqQ, c);
3038	h->Qdepth++;
3039	if (h->Qdepth > h->maxQsinceinit)
3040		h->maxQsinceinit = h->Qdepth;
3041
3042	start_io(h);
3043}
3044
3045static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3046	unsigned int msg_byte, unsigned int host_byte,
3047	unsigned int driver_byte)
3048{
3049	/* inverse of macros in scsi.h */
3050	return (scsi_status_byte & 0xff) |
3051		((msg_byte & 0xff) << 8) |
3052		((host_byte & 0xff) << 16) |
3053		((driver_byte & 0xff) << 24);
3054}
3055
3056static inline int evaluate_target_status(ctlr_info_t *h,
3057			CommandList_struct *cmd, int *retry_cmd)
3058{
3059	unsigned char sense_key;
3060	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3061	int error_value;
3062
3063	*retry_cmd = 0;
3064	/* If we get in here, it means we got "target status", that is, scsi status */
3065	status_byte = cmd->err_info->ScsiStatus;
3066	driver_byte = DRIVER_OK;
3067	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3068
3069	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3070		host_byte = DID_PASSTHROUGH;
3071	else
3072		host_byte = DID_OK;
3073
3074	error_value = make_status_bytes(status_byte, msg_byte,
3075		host_byte, driver_byte);
3076
3077	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3078		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3079			dev_warn(&h->pdev->dev, "cmd %p "
3080			       "has SCSI Status 0x%x\n",
3081			       cmd, cmd->err_info->ScsiStatus);
3082		return error_value;
3083	}
3084
3085	/* check the sense key */
3086	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3087	/* no status or recovered error */
3088	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3089	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3090		error_value = 0;
3091
3092	if (check_for_unit_attention(h, cmd)) {
3093		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3094		return 0;
3095	}
3096
3097	/* Not SG_IO or similar? */
3098	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3099		if (error_value != 0)
3100			dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3101			       " sense key = 0x%x\n", cmd, sense_key);
3102		return error_value;
3103	}
3104
3105	/* SG_IO or similar, copy sense data back */
3106	if (cmd->rq->sense) {
3107		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3108			cmd->rq->sense_len = cmd->err_info->SenseLen;
3109		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3110			cmd->rq->sense_len);
3111	} else
3112		cmd->rq->sense_len = 0;
3113
3114	return error_value;
3115}
3116
3117/* checks the status of the job and calls complete buffers to mark all
3118 * buffers for the completed job. Note that this function does not need
3119 * to hold the hba/queue lock.
3120 */
3121static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3122				    int timeout)
3123{
3124	int retry_cmd = 0;
3125	struct request *rq = cmd->rq;
3126
3127	rq->errors = 0;
3128
3129	if (timeout)
3130		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3131
3132	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3133		goto after_error_processing;
3134
3135	switch (cmd->err_info->CommandStatus) {
3136	case CMD_TARGET_STATUS:
3137		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3138		break;
3139	case CMD_DATA_UNDERRUN:
3140		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3141			dev_warn(&h->pdev->dev, "cmd %p has"
3142			       " completed with data underrun "
3143			       "reported\n", cmd);
3144			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3145		}
3146		break;
3147	case CMD_DATA_OVERRUN:
3148		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3149			dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3150			       " completed with data overrun "
3151			       "reported\n", cmd);
3152		break;
3153	case CMD_INVALID:
3154		dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3155		       "reported invalid\n", cmd);
3156		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3157			cmd->err_info->CommandStatus, DRIVER_OK,
3158			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3159				DID_PASSTHROUGH : DID_ERROR);
3160		break;
3161	case CMD_PROTOCOL_ERR:
3162		dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3163		       "protocol error\n", cmd);
3164		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3165			cmd->err_info->CommandStatus, DRIVER_OK,
3166			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3167				DID_PASSTHROUGH : DID_ERROR);
3168		break;
3169	case CMD_HARDWARE_ERR:
3170		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3171		       " hardware error\n", cmd);
3172		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3173			cmd->err_info->CommandStatus, DRIVER_OK,
3174			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3175				DID_PASSTHROUGH : DID_ERROR);
3176		break;
3177	case CMD_CONNECTION_LOST:
3178		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3179		       "connection lost\n", cmd);
3180		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181			cmd->err_info->CommandStatus, DRIVER_OK,
3182			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3183				DID_PASSTHROUGH : DID_ERROR);
3184		break;
3185	case CMD_ABORTED:
3186		dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3187		       "aborted\n", cmd);
3188		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3189			cmd->err_info->CommandStatus, DRIVER_OK,
3190			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3191				DID_PASSTHROUGH : DID_ABORT);
3192		break;
3193	case CMD_ABORT_FAILED:
3194		dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3195		       "abort failed\n", cmd);
3196		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197			cmd->err_info->CommandStatus, DRIVER_OK,
3198			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199				DID_PASSTHROUGH : DID_ERROR);
3200		break;
3201	case CMD_UNSOLICITED_ABORT:
3202		dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3203		       "abort %p\n", h->ctlr, cmd);
3204		if (cmd->retry_count < MAX_CMD_RETRIES) {
3205			retry_cmd = 1;
3206			dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3207			cmd->retry_count++;
3208		} else
3209			dev_warn(&h->pdev->dev,
3210				"%p retried too many times\n", cmd);
3211		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3212			cmd->err_info->CommandStatus, DRIVER_OK,
3213			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3214				DID_PASSTHROUGH : DID_ABORT);
3215		break;
3216	case CMD_TIMEOUT:
3217		dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3218		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3219			cmd->err_info->CommandStatus, DRIVER_OK,
3220			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3221				DID_PASSTHROUGH : DID_ERROR);
3222		break;
3223	case CMD_UNABORTABLE:
3224		dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3225		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3226			cmd->err_info->CommandStatus, DRIVER_OK,
3227			cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3228				DID_PASSTHROUGH : DID_ERROR);
3229		break;
3230	default:
3231		dev_warn(&h->pdev->dev, "cmd %p returned "
3232		       "unknown status %x\n", cmd,
3233		       cmd->err_info->CommandStatus);
3234		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3235			cmd->err_info->CommandStatus, DRIVER_OK,
3236			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3237				DID_PASSTHROUGH : DID_ERROR);
3238	}
3239
3240after_error_processing:
3241
3242	/* We need to return this command */
3243	if (retry_cmd) {
3244		resend_cciss_cmd(h, cmd);
3245		return;
3246	}
3247	cmd->rq->completion_data = cmd;
3248	blk_complete_request(cmd->rq);
3249}
3250
3251static inline u32 cciss_tag_contains_index(u32 tag)
3252{
3253#define DIRECT_LOOKUP_BIT 0x10
3254	return tag & DIRECT_LOOKUP_BIT;
3255}
3256
3257static inline u32 cciss_tag_to_index(u32 tag)
3258{
3259#define DIRECT_LOOKUP_SHIFT 5
3260	return tag >> DIRECT_LOOKUP_SHIFT;
3261}
3262
3263static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3264{
3265#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3266#define CCISS_SIMPLE_ERROR_BITS 0x03
3267	if (likely(h->transMethod & CFGTBL_Trans_Performant))
3268		return tag & ~CCISS_PERF_ERROR_BITS;
3269	return tag & ~CCISS_SIMPLE_ERROR_BITS;
3270}
3271
3272static inline void cciss_mark_tag_indexed(u32 *tag)
3273{
3274	*tag |= DIRECT_LOOKUP_BIT;
3275}
3276
3277static inline void cciss_set_tag_index(u32 *tag, u32 index)
3278{
3279	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3280}
3281
3282/*
3283 * Get a request and submit it to the controller.
3284 */
3285static void do_cciss_request(struct request_queue *q)
3286{
3287	ctlr_info_t *h = q->queuedata;
3288	CommandList_struct *c;
3289	sector_t start_blk;
3290	int seg;
3291	struct request *creq;
3292	u64bit temp64;
3293	struct scatterlist *tmp_sg;
3294	SGDescriptor_struct *curr_sg;
3295	drive_info_struct *drv;
3296	int i, dir;
3297	int sg_index = 0;
3298	int chained = 0;
3299
3300      queue:
3301	creq = blk_peek_request(q);
3302	if (!creq)
3303		goto startio;
3304
3305	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3306
3307	c = cmd_alloc(h);
3308	if (!c)
3309		goto full;
3310
3311	blk_start_request(creq);
3312
3313	tmp_sg = h->scatter_list[c->cmdindex];
3314	spin_unlock_irq(q->queue_lock);
3315
3316	c->cmd_type = CMD_RWREQ;
3317	c->rq = creq;
3318
3319	/* fill in the request */
3320	drv = creq->rq_disk->private_data;
3321	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3322	/* got command from pool, so use the command block index instead */
3323	/* for direct lookups. */
3324	/* The first 2 bits are reserved for controller error reporting. */
3325	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3326	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3327	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3328	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3329	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3330	c->Request.Type.Attribute = ATTR_SIMPLE;
3331	c->Request.Type.Direction =
3332	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3333	c->Request.Timeout = 0;	/* Don't time out */
3334	c->Request.CDB[0] =
3335	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3336	start_blk = blk_rq_pos(creq);
3337	dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3338	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3339	sg_init_table(tmp_sg, h->maxsgentries);
3340	seg = blk_rq_map_sg(q, creq, tmp_sg);
3341
3342	/* get the DMA records for the setup */
3343	if (c->Request.Type.Direction == XFER_READ)
3344		dir = PCI_DMA_FROMDEVICE;
3345	else
3346		dir = PCI_DMA_TODEVICE;
3347
3348	curr_sg = c->SG;
3349	sg_index = 0;
3350	chained = 0;
3351
3352	for (i = 0; i < seg; i++) {
3353		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3354			!chained && ((seg - i) > 1)) {
3355			/* Point to next chain block. */
3356			curr_sg = h->cmd_sg_list[c->cmdindex];
3357			sg_index = 0;
3358			chained = 1;
3359		}
3360		curr_sg[sg_index].Len = tmp_sg[i].length;
3361		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3362						tmp_sg[i].offset,
3363						tmp_sg[i].length, dir);
3364		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3365		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3366		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3367		++sg_index;
3368	}
3369	if (chained)
3370		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3371			(seg - (h->max_cmd_sgentries - 1)) *
3372				sizeof(SGDescriptor_struct));
3373
3374	/* track how many SG entries we are using */
3375	if (seg > h->maxSG)
3376		h->maxSG = seg;
3377
3378	dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3379			"chained[%d]\n",
3380			blk_rq_sectors(creq), seg, chained);
3381
3382	c->Header.SGTotal = seg + chained;
3383	if (seg <= h->max_cmd_sgentries)
3384		c->Header.SGList = c->Header.SGTotal;
3385	else
3386		c->Header.SGList = h->max_cmd_sgentries;
3387	set_performant_mode(h, c);
3388
3389	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3390		if(h->cciss_read == CCISS_READ_10) {
3391			c->Request.CDB[1] = 0;
3392			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3393			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3394			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3395			c->Request.CDB[5] = start_blk & 0xff;
3396			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3397			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3398			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3399			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3400		} else {
3401			u32 upper32 = upper_32_bits(start_blk);
3402
3403			c->Request.CDBLen = 16;
3404			c->Request.CDB[1]= 0;
3405			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3406			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3407			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3408			c->Request.CDB[5]= upper32 & 0xff;
3409			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3410			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3411			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3412			c->Request.CDB[9]= start_blk & 0xff;
3413			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3414			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3415			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3416			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3417			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3418		}
3419	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3420		c->Request.CDBLen = creq->cmd_len;
3421		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3422	} else {
3423		dev_warn(&h->pdev->dev, "bad request type %d\n",
3424			creq->cmd_type);
3425		BUG();
3426	}
3427
3428	spin_lock_irq(q->queue_lock);
3429
3430	addQ(&h->reqQ, c);
3431	h->Qdepth++;
3432	if (h->Qdepth > h->maxQsinceinit)
3433		h->maxQsinceinit = h->Qdepth;
3434
3435	goto queue;
3436full:
3437	blk_stop_queue(q);
3438startio:
3439	/* We will already have the driver lock here so not need
3440	 * to lock it.
3441	 */
3442	start_io(h);
3443}
3444
3445static inline unsigned long get_next_completion(ctlr_info_t *h)
3446{
3447	return h->access.command_completed(h);
3448}
3449
3450static inline int interrupt_pending(ctlr_info_t *h)
3451{
3452	return h->access.intr_pending(h);
3453}
3454
3455static inline long interrupt_not_for_us(ctlr_info_t *h)
3456{
3457	return ((h->access.intr_pending(h) == 0) ||
3458		(h->interrupts_enabled == 0));
3459}
3460
3461static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3462			u32 raw_tag)
3463{
3464	if (unlikely(tag_index >= h->nr_cmds)) {
3465		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3466		return 1;
3467	}
3468	return 0;
3469}
3470
3471static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3472				u32 raw_tag)
3473{
3474	removeQ(c);
3475	if (likely(c->cmd_type == CMD_RWREQ))
3476		complete_command(h, c, 0);
3477	else if (c->cmd_type == CMD_IOCTL_PEND)
3478		complete(c->waiting);
3479#ifdef CONFIG_CISS_SCSI_TAPE
3480	else if (c->cmd_type == CMD_SCSI)
3481		complete_scsi_command(c, 0, raw_tag);
3482#endif
3483}
3484
3485static inline u32 next_command(ctlr_info_t *h)
3486{
3487	u32 a;
3488
3489	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3490		return h->access.command_completed(h);
3491
3492	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3493		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3494		(h->reply_pool_head)++;
3495		h->commands_outstanding--;
3496	} else {
3497		a = FIFO_EMPTY;
3498	}
3499	/* Check for wraparound */
3500	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3501		h->reply_pool_head = h->reply_pool;
3502		h->reply_pool_wraparound ^= 1;
3503	}
3504	return a;
3505}
3506
3507/* process completion of an indexed ("direct lookup") command */
3508static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3509{
3510	u32 tag_index;
3511	CommandList_struct *c;
3512
3513	tag_index = cciss_tag_to_index(raw_tag);
3514	if (bad_tag(h, tag_index, raw_tag))
3515		return next_command(h);
3516	c = h->cmd_pool + tag_index;
3517	finish_cmd(h, c, raw_tag);
3518	return next_command(h);
3519}
3520
3521/* process completion of a non-indexed command */
3522static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3523{
3524	CommandList_struct *c = NULL;
3525	__u32 busaddr_masked, tag_masked;
3526
3527	tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3528	list_for_each_entry(c, &h->cmpQ, list) {
3529		busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3530		if (busaddr_masked == tag_masked) {
3531			finish_cmd(h, c, raw_tag);
3532			return next_command(h);
3533		}
3534	}
3535	bad_tag(h, h->nr_cmds + 1, raw_tag);
3536	return next_command(h);
3537}
3538
3539/* Some controllers, like p400, will give us one interrupt
3540 * after a soft reset, even if we turned interrupts off.
3541 * Only need to check for this in the cciss_xxx_discard_completions
3542 * functions.
3543 */
3544static int ignore_bogus_interrupt(ctlr_info_t *h)
3545{
3546	if (likely(!reset_devices))
3547		return 0;
3548
3549	if (likely(h->interrupts_enabled))
3550		return 0;
3551
3552	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3553		"(known firmware bug.)  Ignoring.\n");
3554
3555	return 1;
3556}
3557
3558static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3559{
3560	ctlr_info_t *h = dev_id;
3561	unsigned long flags;
3562	u32 raw_tag;
3563
3564	if (ignore_bogus_interrupt(h))
3565		return IRQ_NONE;
3566
3567	if (interrupt_not_for_us(h))
3568		return IRQ_NONE;
3569	spin_lock_irqsave(&h->lock, flags);
3570	while (interrupt_pending(h)) {
3571		raw_tag = get_next_completion(h);
3572		while (raw_tag != FIFO_EMPTY)
3573			raw_tag = next_command(h);
3574	}
3575	spin_unlock_irqrestore(&h->lock, flags);
3576	return IRQ_HANDLED;
3577}
3578
3579static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3580{
3581	ctlr_info_t *h = dev_id;
3582	unsigned long flags;
3583	u32 raw_tag;
3584
3585	if (ignore_bogus_interrupt(h))
3586		return IRQ_NONE;
3587
3588	spin_lock_irqsave(&h->lock, flags);
3589	raw_tag = get_next_completion(h);
3590	while (raw_tag != FIFO_EMPTY)
3591		raw_tag = next_command(h);
3592	spin_unlock_irqrestore(&h->lock, flags);
3593	return IRQ_HANDLED;
3594}
3595
3596static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3597{
3598	ctlr_info_t *h = dev_id;
3599	unsigned long flags;
3600	u32 raw_tag;
3601
3602	if (interrupt_not_for_us(h))
3603		return IRQ_NONE;
3604	spin_lock_irqsave(&h->lock, flags);
3605	while (interrupt_pending(h)) {
3606		raw_tag = get_next_completion(h);
3607		while (raw_tag != FIFO_EMPTY) {
3608			if (cciss_tag_contains_index(raw_tag))
3609				raw_tag = process_indexed_cmd(h, raw_tag);
3610			else
3611				raw_tag = process_nonindexed_cmd(h, raw_tag);
3612		}
3613	}
3614	spin_unlock_irqrestore(&h->lock, flags);
3615	return IRQ_HANDLED;
3616}
3617
3618/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3619 * check the interrupt pending register because it is not set.
3620 */
3621static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3622{
3623	ctlr_info_t *h = dev_id;
3624	unsigned long flags;
3625	u32 raw_tag;
3626
3627	spin_lock_irqsave(&h->lock, flags);
3628	raw_tag = get_next_completion(h);
3629	while (raw_tag != FIFO_EMPTY) {
3630		if (cciss_tag_contains_index(raw_tag))
3631			raw_tag = process_indexed_cmd(h, raw_tag);
3632		else
3633			raw_tag = process_nonindexed_cmd(h, raw_tag);
3634	}
3635	spin_unlock_irqrestore(&h->lock, flags);
3636	return IRQ_HANDLED;
3637}
3638
3639/**
3640 * add_to_scan_list() - add controller to rescan queue
3641 * @h:		      Pointer to the controller.
3642 *
3643 * Adds the controller to the rescan queue if not already on the queue.
3644 *
3645 * returns 1 if added to the queue, 0 if skipped (could be on the
3646 * queue already, or the controller could be initializing or shutting
3647 * down).
3648 **/
3649static int add_to_scan_list(struct ctlr_info *h)
3650{
3651	struct ctlr_info *test_h;
3652	int found = 0;
3653	int ret = 0;
3654
3655	if (h->busy_initializing)
3656		return 0;
3657
3658	if (!mutex_trylock(&h->busy_shutting_down))
3659		return 0;
3660
3661	mutex_lock(&scan_mutex);
3662	list_for_each_entry(test_h, &scan_q, scan_list) {
3663		if (test_h == h) {
3664			found = 1;
3665			break;
3666		}
3667	}
3668	if (!found && !h->busy_scanning) {
3669		reinit_completion(&h->scan_wait);
3670		list_add_tail(&h->scan_list, &scan_q);
3671		ret = 1;
3672	}
3673	mutex_unlock(&scan_mutex);
3674	mutex_unlock(&h->busy_shutting_down);
3675
3676	return ret;
3677}
3678
3679/**
3680 * remove_from_scan_list() - remove controller from rescan queue
3681 * @h:			   Pointer to the controller.
3682 *
3683 * Removes the controller from the rescan queue if present. Blocks if
3684 * the controller is currently conducting a rescan.  The controller
3685 * can be in one of three states:
3686 * 1. Doesn't need a scan
3687 * 2. On the scan list, but not scanning yet (we remove it)
3688 * 3. Busy scanning (and not on the list). In this case we want to wait for
3689 *    the scan to complete to make sure the scanning thread for this
3690 *    controller is completely idle.
3691 **/
3692static void remove_from_scan_list(struct ctlr_info *h)
3693{
3694	struct ctlr_info *test_h, *tmp_h;
3695
3696	mutex_lock(&scan_mutex);
3697	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3698		if (test_h == h) { /* state 2. */
3699			list_del(&h->scan_list);
3700			complete_all(&h->scan_wait);
3701			mutex_unlock(&scan_mutex);
3702			return;
3703		}
3704	}
3705	if (h->busy_scanning) { /* state 3. */
3706		mutex_unlock(&scan_mutex);
3707		wait_for_completion(&h->scan_wait);
3708	} else { /* state 1, nothing to do. */
3709		mutex_unlock(&scan_mutex);
3710	}
3711}
3712
3713/**
3714 * scan_thread() - kernel thread used to rescan controllers
3715 * @data:	 Ignored.
3716 *
3717 * A kernel thread used scan for drive topology changes on
3718 * controllers. The thread processes only one controller at a time
3719 * using a queue.  Controllers are added to the queue using
3720 * add_to_scan_list() and removed from the queue either after done
3721 * processing or using remove_from_scan_list().
3722 *
3723 * returns 0.
3724 **/
3725static int scan_thread(void *data)
3726{
3727	struct ctlr_info *h;
3728
3729	while (1) {
3730		set_current_state(TASK_INTERRUPTIBLE);
3731		schedule();
3732		if (kthread_should_stop())
3733			break;
3734
3735		while (1) {
3736			mutex_lock(&scan_mutex);
3737			if (list_empty(&scan_q)) {
3738				mutex_unlock(&scan_mutex);
3739				break;
3740			}
3741
3742			h = list_entry(scan_q.next,
3743				       struct ctlr_info,
3744				       scan_list);
3745			list_del(&h->scan_list);
3746			h->busy_scanning = 1;
3747			mutex_unlock(&scan_mutex);
3748
3749			rebuild_lun_table(h, 0, 0);
3750			complete_all(&h->scan_wait);
3751			mutex_lock(&scan_mutex);
3752			h->busy_scanning = 0;
3753			mutex_unlock(&scan_mutex);
3754		}
3755	}
3756
3757	return 0;
3758}
3759
3760static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3761{
3762	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3763		return 0;
3764
3765	switch (c->err_info->SenseInfo[12]) {
3766	case STATE_CHANGED:
3767		dev_warn(&h->pdev->dev, "a state change "
3768			"detected, command retried\n");
3769		return 1;
3770	break;
3771	case LUN_FAILED:
3772		dev_warn(&h->pdev->dev, "LUN failure "
3773			"detected, action required\n");
3774		return 1;
3775	break;
3776	case REPORT_LUNS_CHANGED:
3777		dev_warn(&h->pdev->dev, "report LUN data changed\n");
3778	/*
3779	 * Here, we could call add_to_scan_list and wake up the scan thread,
3780	 * except that it's quite likely that we will get more than one
3781	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3782	 * that those which occur after the first one will likely happen
3783	 * *during* the scan_thread's rescan.  And the rescan code is not
3784	 * robust enough to restart in the middle, undoing what it has already
3785	 * done, and it's not clear that it's even possible to do this, since
3786	 * part of what it does is notify the block layer, which starts
3787	 * doing it's own i/o to read partition tables and so on, and the
3788	 * driver doesn't have visibility to know what might need undoing.
3789	 * In any event, if possible, it is horribly complicated to get right
3790	 * so we just don't do it for now.
3791	 *
3792	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3793	 */
3794		return 1;
3795	break;
3796	case POWER_OR_RESET:
3797		dev_warn(&h->pdev->dev,
3798			"a power on or device reset detected\n");
3799		return 1;
3800	break;
3801	case UNIT_ATTENTION_CLEARED:
3802		dev_warn(&h->pdev->dev,
3803			"unit attention cleared by another initiator\n");
3804		return 1;
3805	break;
3806	default:
3807		dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3808		return 1;
3809	}
3810}
3811
3812/*
3813 *  We cannot read the structure directly, for portability we must use
3814 *   the io functions.
3815 *   This is for debug only.
3816 */
3817static void print_cfg_table(ctlr_info_t *h)
3818{
3819	int i;
3820	char temp_name[17];
3821	CfgTable_struct *tb = h->cfgtable;
3822
3823	dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3824	dev_dbg(&h->pdev->dev, "------------------------------------\n");
3825	for (i = 0; i < 4; i++)
3826		temp_name[i] = readb(&(tb->Signature[i]));
3827	temp_name[4] = '\0';
3828	dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3829	dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3830		readl(&(tb->SpecValence)));
3831	dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3832	       readl(&(tb->TransportSupport)));
3833	dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3834	       readl(&(tb->TransportActive)));
3835	dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3836	       readl(&(tb->HostWrite.TransportRequest)));
3837	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3838	       readl(&(tb->HostWrite.CoalIntDelay)));
3839	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3840	       readl(&(tb->HostWrite.CoalIntCount)));
3841	dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3842	       readl(&(tb->CmdsOutMax)));
3843	dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3844		readl(&(tb->BusTypes)));
3845	for (i = 0; i < 16; i++)
3846		temp_name[i] = readb(&(tb->ServerName[i]));
3847	temp_name[16] = '\0';
3848	dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3849	dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3850		readl(&(tb->HeartBeat)));
3851}
3852
3853static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3854{
3855	int i, offset, mem_type, bar_type;
3856	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3857		return 0;
3858	offset = 0;
3859	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3860		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3861		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3862			offset += 4;
3863		else {
3864			mem_type = pci_resource_flags(pdev, i) &
3865			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3866			switch (mem_type) {
3867			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3868			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3869				offset += 4;	/* 32 bit */
3870				break;
3871			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3872				offset += 8;
3873				break;
3874			default:	/* reserved in PCI 2.2 */
3875				dev_warn(&pdev->dev,
3876				       "Base address is invalid\n");
3877				return -1;
3878				break;
3879			}
3880		}
3881		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3882			return i + 1;
3883	}
3884	return -1;
3885}
3886
3887/* Fill in bucket_map[], given nsgs (the max number of
3888 * scatter gather elements supported) and bucket[],
3889 * which is an array of 8 integers.  The bucket[] array
3890 * contains 8 different DMA transfer sizes (in 16
3891 * byte increments) which the controller uses to fetch
3892 * commands.  This function fills in bucket_map[], which
3893 * maps a given number of scatter gather elements to one of
3894 * the 8 DMA transfer sizes.  The point of it is to allow the
3895 * controller to only do as much DMA as needed to fetch the
3896 * command, with the DMA transfer size encoded in the lower
3897 * bits of the command address.
3898 */
3899static void  calc_bucket_map(int bucket[], int num_buckets,
3900	int nsgs, int *bucket_map)
3901{
3902	int i, j, b, size;
3903
3904	/* even a command with 0 SGs requires 4 blocks */
3905#define MINIMUM_TRANSFER_BLOCKS 4
3906#define NUM_BUCKETS 8
3907	/* Note, bucket_map must have nsgs+1 entries. */
3908	for (i = 0; i <= nsgs; i++) {
3909		/* Compute size of a command with i SG entries */
3910		size = i + MINIMUM_TRANSFER_BLOCKS;
3911		b = num_buckets; /* Assume the biggest bucket */
3912		/* Find the bucket that is just big enough */
3913		for (j = 0; j < 8; j++) {
3914			if (bucket[j] >= size) {
3915				b = j;
3916				break;
3917			}
3918		}
3919		/* for a command with i SG entries, use bucket b. */
3920		bucket_map[i] = b;
3921	}
3922}
3923
3924static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3925{
3926	int i;
3927
3928	/* under certain very rare conditions, this can take awhile.
3929	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3930	 * as we enter this code.) */
3931	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3932		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3933			break;
3934		usleep_range(10000, 20000);
3935	}
3936}
3937
3938static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3939{
3940	/* This is a bit complicated.  There are 8 registers on
3941	 * the controller which we write to to tell it 8 different
3942	 * sizes of commands which there may be.  It's a way of
3943	 * reducing the DMA done to fetch each command.  Encoded into
3944	 * each command's tag are 3 bits which communicate to the controller
3945	 * which of the eight sizes that command fits within.  The size of
3946	 * each command depends on how many scatter gather entries there are.
3947	 * Each SG entry requires 16 bytes.  The eight registers are programmed
3948	 * with the number of 16-byte blocks a command of that size requires.
3949	 * The smallest command possible requires 5 such 16 byte blocks.
3950	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3951	 * blocks.  Note, this only extends to the SG entries contained
3952	 * within the command block, and does not extend to chained blocks
3953	 * of SG elements.   bft[] contains the eight values we write to
3954	 * the registers.  They are not evenly distributed, but have more
3955	 * sizes for small commands, and fewer sizes for larger commands.
3956	 */
3957	__u32 trans_offset;
3958	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3959			/*
3960			 *  5 = 1 s/g entry or 4k
3961			 *  6 = 2 s/g entry or 8k
3962			 *  8 = 4 s/g entry or 16k
3963			 * 10 = 6 s/g entry or 24k
3964			 */
3965	unsigned long register_value;
3966	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3967
3968	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3969
3970	/* Controller spec: zero out this buffer. */
3971	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3972	h->reply_pool_head = h->reply_pool;
3973
3974	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3975	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3976				h->blockFetchTable);
3977	writel(bft[0], &h->transtable->BlockFetch0);
3978	writel(bft[1], &h->transtable->BlockFetch1);
3979	writel(bft[2], &h->transtable->BlockFetch2);
3980	writel(bft[3], &h->transtable->BlockFetch3);
3981	writel(bft[4], &h->transtable->BlockFetch4);
3982	writel(bft[5], &h->transtable->BlockFetch5);
3983	writel(bft[6], &h->transtable->BlockFetch6);
3984	writel(bft[7], &h->transtable->BlockFetch7);
3985
3986	/* size of controller ring buffer */
3987	writel(h->max_commands, &h->transtable->RepQSize);
3988	writel(1, &h->transtable->RepQCount);
3989	writel(0, &h->transtable->RepQCtrAddrLow32);
3990	writel(0, &h->transtable->RepQCtrAddrHigh32);
3991	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3992	writel(0, &h->transtable->RepQAddr0High32);
3993	writel(CFGTBL_Trans_Performant | use_short_tags,
3994			&(h->cfgtable->HostWrite.TransportRequest));
3995
3996	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3997	cciss_wait_for_mode_change_ack(h);
3998	register_value = readl(&(h->cfgtable->TransportActive));
3999	if (!(register_value & CFGTBL_Trans_Performant))
4000		dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4001					" performant mode\n");
4002}
4003
4004static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4005{
4006	__u32 trans_support;
4007
4008	if (cciss_simple_mode)
4009		return;
4010
4011	dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4012	/* Attempt to put controller into performant mode if supported */
4013	/* Does board support performant mode? */
4014	trans_support = readl(&(h->cfgtable->TransportSupport));
4015	if (!(trans_support & PERFORMANT_MODE))
4016		return;
4017
4018	dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4019	/* Performant mode demands commands on a 32 byte boundary
4020	 * pci_alloc_consistent aligns on page boundarys already.
4021	 * Just need to check if divisible by 32
4022	 */
4023	if ((sizeof(CommandList_struct) % 32) != 0) {
4024		dev_warn(&h->pdev->dev, "%s %d %s\n",
4025			"cciss info: command size[",
4026			(int)sizeof(CommandList_struct),
4027			"] not divisible by 32, no performant mode..\n");
4028		return;
4029	}
4030
4031	/* Performant mode ring buffer and supporting data structures */
4032	h->reply_pool = (__u64 *)pci_alloc_consistent(
4033		h->pdev, h->max_commands * sizeof(__u64),
4034		&(h->reply_pool_dhandle));
4035
4036	/* Need a block fetch table for performant mode */
4037	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4038		sizeof(__u32)), GFP_KERNEL);
4039
4040	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4041		goto clean_up;
4042
4043	cciss_enter_performant_mode(h,
4044		trans_support & CFGTBL_Trans_use_short_tags);
4045
4046	/* Change the access methods to the performant access methods */
4047	h->access = SA5_performant_access;
4048	h->transMethod = CFGTBL_Trans_Performant;
4049
4050	return;
4051clean_up:
4052	kfree(h->blockFetchTable);
4053	if (h->reply_pool)
4054		pci_free_consistent(h->pdev,
4055				h->max_commands * sizeof(__u64),
4056				h->reply_pool,
4057				h->reply_pool_dhandle);
4058	return;
4059
4060} /* cciss_put_controller_into_performant_mode */
4061
4062/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4063 * controllers that are capable. If not, we use IO-APIC mode.
4064 */
4065
4066static void cciss_interrupt_mode(ctlr_info_t *h)
4067{
4068#ifdef CONFIG_PCI_MSI
4069	int err;
4070	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4071	{0, 2}, {0, 3}
4072	};
4073
4074	/* Some boards advertise MSI but don't really support it */
4075	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4076	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4077		goto default_int_mode;
4078
4079	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4080		err = pci_enable_msix_exact(h->pdev, cciss_msix_entries, 4);
4081		if (!err) {
4082			h->intr[0] = cciss_msix_entries[0].vector;
4083			h->intr[1] = cciss_msix_entries[1].vector;
4084			h->intr[2] = cciss_msix_entries[2].vector;
4085			h->intr[3] = cciss_msix_entries[3].vector;
4086			h->msix_vector = 1;
4087			return;
4088		} else {
4089			dev_warn(&h->pdev->dev,
4090				"MSI-X init failed %d\n", err);
4091		}
4092	}
4093	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4094		if (!pci_enable_msi(h->pdev))
4095			h->msi_vector = 1;
4096		else
4097			dev_warn(&h->pdev->dev, "MSI init failed\n");
4098	}
4099default_int_mode:
4100#endif				/* CONFIG_PCI_MSI */
4101	/* if we get here we're going to use the default interrupt mode */
4102	h->intr[h->intr_mode] = h->pdev->irq;
4103	return;
4104}
4105
4106static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4107{
4108	int i;
4109	u32 subsystem_vendor_id, subsystem_device_id;
4110
4111	subsystem_vendor_id = pdev->subsystem_vendor;
4112	subsystem_device_id = pdev->subsystem_device;
4113	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4114			subsystem_vendor_id;
4115
4116	for (i = 0; i < ARRAY_SIZE(products); i++) {
4117		/* Stand aside for hpsa driver on request */
4118		if (cciss_allow_hpsa)
4119			return -ENODEV;
4120		if (*board_id == products[i].board_id)
4121			return i;
4122	}
4123	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4124		*board_id);
4125	return -ENODEV;
4126}
4127
4128static inline bool cciss_board_disabled(ctlr_info_t *h)
4129{
4130	u16 command;
4131
4132	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4133	return ((command & PCI_COMMAND_MEMORY) == 0);
4134}
4135
4136static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4137				     unsigned long *memory_bar)
4138{
4139	int i;
4140
4141	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4142		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4143			/* addressing mode bits already removed */
4144			*memory_bar = pci_resource_start(pdev, i);
4145			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4146				*memory_bar);
4147			return 0;
4148		}
4149	dev_warn(&pdev->dev, "no memory BAR found\n");
4150	return -ENODEV;
4151}
4152
4153static int cciss_wait_for_board_state(struct pci_dev *pdev,
4154				      void __iomem *vaddr, int wait_for_ready)
4155#define BOARD_READY 1
4156#define BOARD_NOT_READY 0
4157{
4158	int i, iterations;
4159	u32 scratchpad;
4160
4161	if (wait_for_ready)
4162		iterations = CCISS_BOARD_READY_ITERATIONS;
4163	else
4164		iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4165
4166	for (i = 0; i < iterations; i++) {
4167		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4168		if (wait_for_ready) {
4169			if (scratchpad == CCISS_FIRMWARE_READY)
4170				return 0;
4171		} else {
4172			if (scratchpad != CCISS_FIRMWARE_READY)
4173				return 0;
4174		}
4175		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4176	}
4177	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4178	return -ENODEV;
4179}
4180
4181static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4182				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4183				u64 *cfg_offset)
4184{
4185	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4186	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4187	*cfg_base_addr &= (u32) 0x0000ffff;
4188	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4189	if (*cfg_base_addr_index == -1) {
4190		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4191			"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4192		return -ENODEV;
4193	}
4194	return 0;
4195}
4196
4197static int cciss_find_cfgtables(ctlr_info_t *h)
4198{
4199	u64 cfg_offset;
4200	u32 cfg_base_addr;
4201	u64 cfg_base_addr_index;
4202	u32 trans_offset;
4203	int rc;
4204
4205	rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4206		&cfg_base_addr_index, &cfg_offset);
4207	if (rc)
4208		return rc;
4209	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4210		cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4211	if (!h->cfgtable)
4212		return -ENOMEM;
4213	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4214	if (rc)
4215		return rc;
4216	/* Find performant mode table. */
4217	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4218	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4219				cfg_base_addr_index)+cfg_offset+trans_offset,
4220				sizeof(*h->transtable));
4221	if (!h->transtable)
4222		return -ENOMEM;
4223	return 0;
4224}
4225
4226static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4227{
4228	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4229
4230	/* Limit commands in memory limited kdump scenario. */
4231	if (reset_devices && h->max_commands > 32)
4232		h->max_commands = 32;
4233
4234	if (h->max_commands < 16) {
4235		dev_warn(&h->pdev->dev, "Controller reports "
4236			"max supported commands of %d, an obvious lie. "
4237			"Using 16.  Ensure that firmware is up to date.\n",
4238			h->max_commands);
4239		h->max_commands = 16;
4240	}
4241}
4242
4243/* Interrogate the hardware for some limits:
4244 * max commands, max SG elements without chaining, and with chaining,
4245 * SG chain block size, etc.
4246 */
4247static void cciss_find_board_params(ctlr_info_t *h)
4248{
4249	cciss_get_max_perf_mode_cmds(h);
4250	h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4251	h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4252	/*
4253	 * The P600 may exhibit poor performnace under some workloads
4254	 * if we use the value in the configuration table. Limit this
4255	 * controller to MAXSGENTRIES (32) instead.
4256	 */
4257	if (h->board_id == 0x3225103C)
4258		h->maxsgentries = MAXSGENTRIES;
4259	/*
4260	 * Limit in-command s/g elements to 32 save dma'able memory.
4261	 * Howvever spec says if 0, use 31
4262	 */
4263	h->max_cmd_sgentries = 31;
4264	if (h->maxsgentries > 512) {
4265		h->max_cmd_sgentries = 32;
4266		h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4267		h->maxsgentries--; /* save one for chain pointer */
4268	} else {
4269		h->maxsgentries = 31; /* default to traditional values */
4270		h->chainsize = 0;
4271	}
4272}
4273
4274static inline bool CISS_signature_present(ctlr_info_t *h)
4275{
4276	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4277		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4278		return false;
4279	}
4280	return true;
4281}
4282
4283/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4284static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4285{
4286#ifdef CONFIG_X86
4287	u32 prefetch;
4288
4289	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4290	prefetch |= 0x100;
4291	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4292#endif
4293}
4294
4295/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4296 * in a prefetch beyond physical memory.
4297 */
4298static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4299{
4300	u32 dma_prefetch;
4301	__u32 dma_refetch;
4302
4303	if (h->board_id != 0x3225103C)
4304		return;
4305	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4306	dma_prefetch |= 0x8000;
4307	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4308	pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4309	dma_refetch |= 0x1;
4310	pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4311}
4312
4313static int cciss_pci_init(ctlr_info_t *h)
4314{
4315	int prod_index, err;
4316
4317	prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4318	if (prod_index < 0)
4319		return -ENODEV;
4320	h->product_name = products[prod_index].product_name;
4321	h->access = *(products[prod_index].access);
4322
4323	if (cciss_board_disabled(h)) {
4324		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4325		return -ENODEV;
4326	}
4327
4328	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4329				PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4330
4331	err = pci_enable_device(h->pdev);
4332	if (err) {
4333		dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4334		return err;
4335	}
4336
4337	err = pci_request_regions(h->pdev, "cciss");
4338	if (err) {
4339		dev_warn(&h->pdev->dev,
4340			"Cannot obtain PCI resources, aborting\n");
4341		return err;
4342	}
4343
4344	dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4345	dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4346
4347/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4348 * else we use the IO-APIC interrupt assigned to us by system ROM.
4349 */
4350	cciss_interrupt_mode(h);
4351	err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4352	if (err)
4353		goto err_out_free_res;
4354	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4355	if (!h->vaddr) {
4356		err = -ENOMEM;
4357		goto err_out_free_res;
4358	}
4359	err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4360	if (err)
4361		goto err_out_free_res;
4362	err = cciss_find_cfgtables(h);
4363	if (err)
4364		goto err_out_free_res;
4365	print_cfg_table(h);
4366	cciss_find_board_params(h);
4367
4368	if (!CISS_signature_present(h)) {
4369		err = -ENODEV;
4370		goto err_out_free_res;
4371	}
4372	cciss_enable_scsi_prefetch(h);
4373	cciss_p600_dma_prefetch_quirk(h);
4374	err = cciss_enter_simple_mode(h);
4375	if (err)
4376		goto err_out_free_res;
4377	cciss_put_controller_into_performant_mode(h);
4378	return 0;
4379
4380err_out_free_res:
4381	/*
4382	 * Deliberately omit pci_disable_device(): it does something nasty to
4383	 * Smart Array controllers that pci_enable_device does not undo
4384	 */
4385	if (h->transtable)
4386		iounmap(h->transtable);
4387	if (h->cfgtable)
4388		iounmap(h->cfgtable);
4389	if (h->vaddr)
4390		iounmap(h->vaddr);
4391	pci_release_regions(h->pdev);
4392	return err;
4393}
4394
4395/* Function to find the first free pointer into our hba[] array
4396 * Returns -1 if no free entries are left.
4397 */
4398static int alloc_cciss_hba(struct pci_dev *pdev)
4399{
4400	int i;
4401
4402	for (i = 0; i < MAX_CTLR; i++) {
4403		if (!hba[i]) {
4404			ctlr_info_t *h;
4405
4406			h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4407			if (!h)
4408				goto Enomem;
4409			hba[i] = h;
4410			return i;
4411		}
4412	}
4413	dev_warn(&pdev->dev, "This driver supports a maximum"
4414	       " of %d controllers.\n", MAX_CTLR);
4415	return -1;
4416Enomem:
4417	dev_warn(&pdev->dev, "out of memory.\n");
4418	return -1;
4419}
4420
4421static void free_hba(ctlr_info_t *h)
4422{
4423	int i;
4424
4425	hba[h->ctlr] = NULL;
4426	for (i = 0; i < h->highest_lun + 1; i++)
4427		if (h->gendisk[i] != NULL)
4428			put_disk(h->gendisk[i]);
4429	kfree(h);
4430}
4431
4432/* Send a message CDB to the firmware. */
4433static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4434			 unsigned char type)
4435{
4436	typedef struct {
4437		CommandListHeader_struct CommandHeader;
4438		RequestBlock_struct Request;
4439		ErrDescriptor_struct ErrorDescriptor;
4440	} Command;
4441	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4442	Command *cmd;
4443	dma_addr_t paddr64;
4444	uint32_t paddr32, tag;
4445	void __iomem *vaddr;
4446	int i, err;
4447
4448	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4449	if (vaddr == NULL)
4450		return -ENOMEM;
4451
4452	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4453	   CCISS commands, so they must be allocated from the lower 4GiB of
4454	   memory. */
4455	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4456	if (err) {
4457		iounmap(vaddr);
4458		return -ENOMEM;
4459	}
4460
4461	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4462	if (cmd == NULL) {
4463		iounmap(vaddr);
4464		return -ENOMEM;
4465	}
4466
4467	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4468	   although there's no guarantee, we assume that the address is at
4469	   least 4-byte aligned (most likely, it's page-aligned). */
4470	paddr32 = paddr64;
4471
4472	cmd->CommandHeader.ReplyQueue = 0;
4473	cmd->CommandHeader.SGList = 0;
4474	cmd->CommandHeader.SGTotal = 0;
4475	cmd->CommandHeader.Tag.lower = paddr32;
4476	cmd->CommandHeader.Tag.upper = 0;
4477	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4478
4479	cmd->Request.CDBLen = 16;
4480	cmd->Request.Type.Type = TYPE_MSG;
4481	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4482	cmd->Request.Type.Direction = XFER_NONE;
4483	cmd->Request.Timeout = 0; /* Don't time out */
4484	cmd->Request.CDB[0] = opcode;
4485	cmd->Request.CDB[1] = type;
4486	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4487
4488	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4489	cmd->ErrorDescriptor.Addr.upper = 0;
4490	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4491
4492	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4493
4494	for (i = 0; i < 10; i++) {
4495		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4496		if ((tag & ~3) == paddr32)
4497			break;
4498		msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4499	}
4500
4501	iounmap(vaddr);
4502
4503	/* we leak the DMA buffer here ... no choice since the controller could
4504	   still complete the command. */
4505	if (i == 10) {
4506		dev_err(&pdev->dev,
4507			"controller message %02x:%02x timed out\n",
4508			opcode, type);
4509		return -ETIMEDOUT;
4510	}
4511
4512	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4513
4514	if (tag & 2) {
4515		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4516			opcode, type);
4517		return -EIO;
4518	}
4519
4520	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4521		opcode, type);
4522	return 0;
4523}
4524
4525#define cciss_noop(p) cciss_message(p, 3, 0)
4526
4527static int cciss_controller_hard_reset(struct pci_dev *pdev,
4528	void * __iomem vaddr, u32 use_doorbell)
4529{
4530	u16 pmcsr;
4531	int pos;
4532
4533	if (use_doorbell) {
4534		/* For everything after the P600, the PCI power state method
4535		 * of resetting the controller doesn't work, so we have this
4536		 * other way using the doorbell register.
4537		 */
4538		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4539		writel(use_doorbell, vaddr + SA5_DOORBELL);
4540	} else { /* Try to do it the PCI power state way */
4541
4542		/* Quoting from the Open CISS Specification: "The Power
4543		 * Management Control/Status Register (CSR) controls the power
4544		 * state of the device.  The normal operating state is D0,
4545		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4546		 * the controller, place the interface device in D3 then to D0,
4547		 * this causes a secondary PCI reset which will reset the
4548		 * controller." */
4549
4550		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4551		if (pos == 0) {
4552			dev_err(&pdev->dev,
4553				"cciss_controller_hard_reset: "
4554				"PCI PM not supported\n");
4555			return -ENODEV;
4556		}
4557		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4558		/* enter the D3hot power management state */
4559		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4560		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4561		pmcsr |= PCI_D3hot;
4562		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4563
4564		msleep(500);
4565
4566		/* enter the D0 power management state */
4567		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4568		pmcsr |= PCI_D0;
4569		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4570
4571		/*
4572		 * The P600 requires a small delay when changing states.
4573		 * Otherwise we may think the board did not reset and we bail.
4574		 * This for kdump only and is particular to the P600.
4575		 */
4576		msleep(500);
4577	}
4578	return 0;
4579}
4580
4581static void init_driver_version(char *driver_version, int len)
4582{
4583	memset(driver_version, 0, len);
4584	strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4585}
4586
4587static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4588{
4589	char *driver_version;
4590	int i, size = sizeof(cfgtable->driver_version);
4591
4592	driver_version = kmalloc(size, GFP_KERNEL);
4593	if (!driver_version)
4594		return -ENOMEM;
4595
4596	init_driver_version(driver_version, size);
4597	for (i = 0; i < size; i++)
4598		writeb(driver_version[i], &cfgtable->driver_version[i]);
4599	kfree(driver_version);
4600	return 0;
4601}
4602
4603static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4604					  unsigned char *driver_ver)
4605{
4606	int i;
4607
4608	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4609		driver_ver[i] = readb(&cfgtable->driver_version[i]);
4610}
4611
4612static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4613{
4614
4615	char *driver_ver, *old_driver_ver;
4616	int rc, size = sizeof(cfgtable->driver_version);
4617
4618	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4619	if (!old_driver_ver)
4620		return -ENOMEM;
4621	driver_ver = old_driver_ver + size;
4622
4623	/* After a reset, the 32 bytes of "driver version" in the cfgtable
4624	 * should have been changed, otherwise we know the reset failed.
4625	 */
4626	init_driver_version(old_driver_ver, size);
4627	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4628	rc = !memcmp(driver_ver, old_driver_ver, size);
4629	kfree(old_driver_ver);
4630	return rc;
4631}
4632
4633/* This does a hard reset of the controller using PCI power management
4634 * states or using the doorbell register. */
4635static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4636{
4637	u64 cfg_offset;
4638	u32 cfg_base_addr;
4639	u64 cfg_base_addr_index;
4640	void __iomem *vaddr;
4641	unsigned long paddr;
4642	u32 misc_fw_support;
4643	int rc;
4644	CfgTable_struct __iomem *cfgtable;
4645	u32 use_doorbell;
4646	u32 board_id;
4647	u16 command_register;
4648
4649	/* For controllers as old a the p600, this is very nearly
4650	 * the same thing as
4651	 *
4652	 * pci_save_state(pci_dev);
4653	 * pci_set_power_state(pci_dev, PCI_D3hot);
4654	 * pci_set_power_state(pci_dev, PCI_D0);
4655	 * pci_restore_state(pci_dev);
4656	 *
4657	 * For controllers newer than the P600, the pci power state
4658	 * method of resetting doesn't work so we have another way
4659	 * using the doorbell register.
4660	 */
4661
4662	/* Exclude 640x boards.  These are two pci devices in one slot
4663	 * which share a battery backed cache module.  One controls the
4664	 * cache, the other accesses the cache through the one that controls
4665	 * it.  If we reset the one controlling the cache, the other will
4666	 * likely not be happy.  Just forbid resetting this conjoined mess.
4667	 */
4668	cciss_lookup_board_id(pdev, &board_id);
4669	if (!ctlr_is_resettable(board_id)) {
4670		dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4671				"due to shared cache module.");
4672		return -ENODEV;
4673	}
4674
4675	/* if controller is soft- but not hard resettable... */
4676	if (!ctlr_is_hard_resettable(board_id))
4677		return -ENOTSUPP; /* try soft reset later. */
4678
4679	/* Save the PCI command register */
4680	pci_read_config_word(pdev, 4, &command_register);
4681	/* Turn the board off.  This is so that later pci_restore_state()
4682	 * won't turn the board on before the rest of config space is ready.
4683	 */
4684	pci_disable_device(pdev);
4685	pci_save_state(pdev);
4686
4687	/* find the first memory BAR, so we can find the cfg table */
4688	rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4689	if (rc)
4690		return rc;
4691	vaddr = remap_pci_mem(paddr, 0x250);
4692	if (!vaddr)
4693		return -ENOMEM;
4694
4695	/* find cfgtable in order to check if reset via doorbell is supported */
4696	rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4697					&cfg_base_addr_index, &cfg_offset);
4698	if (rc)
4699		goto unmap_vaddr;
4700	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4701		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4702	if (!cfgtable) {
4703		rc = -ENOMEM;
4704		goto unmap_vaddr;
4705	}
4706	rc = write_driver_ver_to_cfgtable(cfgtable);
4707	if (rc)
4708		goto unmap_vaddr;
4709
4710	/* If reset via doorbell register is supported, use that.
4711	 * There are two such methods.  Favor the newest method.
4712	 */
4713	misc_fw_support = readl(&cfgtable->misc_fw_support);
4714	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4715	if (use_doorbell) {
4716		use_doorbell = DOORBELL_CTLR_RESET2;
4717	} else {
4718		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4719		if (use_doorbell) {
4720			dev_warn(&pdev->dev, "Controller claims that "
4721				"'Bit 2 doorbell reset' is "
4722				"supported, but not 'bit 5 doorbell reset'.  "
4723				"Firmware update is recommended.\n");
4724			rc = -ENOTSUPP; /* use the soft reset */
4725			goto unmap_cfgtable;
4726		}
4727	}
4728
4729	rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4730	if (rc)
4731		goto unmap_cfgtable;
4732	pci_restore_state(pdev);
4733	rc = pci_enable_device(pdev);
4734	if (rc) {
4735		dev_warn(&pdev->dev, "failed to enable device.\n");
4736		goto unmap_cfgtable;
4737	}
4738	pci_write_config_word(pdev, 4, command_register);
4739
4740	/* Some devices (notably the HP Smart Array 5i Controller)
4741	   need a little pause here */
4742	msleep(CCISS_POST_RESET_PAUSE_MSECS);
4743
4744	/* Wait for board to become not ready, then ready. */
4745	dev_info(&pdev->dev, "Waiting for board to reset.\n");
4746	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4747	if (rc) {
4748		dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4749				"  Will try soft reset.\n");
4750		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4751		goto unmap_cfgtable;
4752	}
4753	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4754	if (rc) {
4755		dev_warn(&pdev->dev,
4756			"failed waiting for board to become ready "
4757			"after hard reset\n");
4758		goto unmap_cfgtable;
4759	}
4760
4761	rc = controller_reset_failed(vaddr);
4762	if (rc < 0)
4763		goto unmap_cfgtable;
4764	if (rc) {
4765		dev_warn(&pdev->dev, "Unable to successfully hard reset "
4766			"controller. Will try soft reset.\n");
4767		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4768	} else {
4769		dev_info(&pdev->dev, "Board ready after hard reset.\n");
4770	}
4771
4772unmap_cfgtable:
4773	iounmap(cfgtable);
4774
4775unmap_vaddr:
4776	iounmap(vaddr);
4777	return rc;
4778}
4779
4780static int cciss_init_reset_devices(struct pci_dev *pdev)
4781{
4782	int rc, i;
4783
4784	if (!reset_devices)
4785		return 0;
4786
4787	/* Reset the controller with a PCI power-cycle or via doorbell */
4788	rc = cciss_kdump_hard_reset_controller(pdev);
4789
4790	/* -ENOTSUPP here means we cannot reset the controller
4791	 * but it's already (and still) up and running in
4792	 * "performant mode".  Or, it might be 640x, which can't reset
4793	 * due to concerns about shared bbwc between 6402/6404 pair.
4794	 */
4795	if (rc == -ENOTSUPP)
4796		return rc; /* just try to do the kdump anyhow. */
4797	if (rc)
4798		return -ENODEV;
4799
4800	/* Now try to get the controller to respond to a no-op */
4801	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4802	for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4803		if (cciss_noop(pdev) == 0)
4804			break;
4805		else
4806			dev_warn(&pdev->dev, "no-op failed%s\n",
4807				(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4808					"; re-trying" : ""));
4809		msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4810	}
4811	return 0;
4812}
4813
4814static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4815{
4816	h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4817		sizeof(unsigned long), GFP_KERNEL);
4818	h->cmd_pool = pci_alloc_consistent(h->pdev,
4819		h->nr_cmds * sizeof(CommandList_struct),
4820		&(h->cmd_pool_dhandle));
4821	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4822		h->nr_cmds * sizeof(ErrorInfo_struct),
4823		&(h->errinfo_pool_dhandle));
4824	if ((h->cmd_pool_bits == NULL)
4825		|| (h->cmd_pool == NULL)
4826		|| (h->errinfo_pool == NULL)) {
4827		dev_err(&h->pdev->dev, "out of memory");
4828		return -ENOMEM;
4829	}
4830	return 0;
4831}
4832
4833static int cciss_allocate_scatterlists(ctlr_info_t *h)
4834{
4835	int i;
4836
4837	/* zero it, so that on free we need not know how many were alloc'ed */
4838	h->scatter_list = kzalloc(h->max_commands *
4839				sizeof(struct scatterlist *), GFP_KERNEL);
4840	if (!h->scatter_list)
4841		return -ENOMEM;
4842
4843	for (i = 0; i < h->nr_cmds; i++) {
4844		h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4845						h->maxsgentries, GFP_KERNEL);
4846		if (h->scatter_list[i] == NULL) {
4847			dev_err(&h->pdev->dev, "could not allocate "
4848				"s/g lists\n");
4849			return -ENOMEM;
4850		}
4851	}
4852	return 0;
4853}
4854
4855static void cciss_free_scatterlists(ctlr_info_t *h)
4856{
4857	int i;
4858
4859	if (h->scatter_list) {
4860		for (i = 0; i < h->nr_cmds; i++)
4861			kfree(h->scatter_list[i]);
4862		kfree(h->scatter_list);
4863	}
4864}
4865
4866static void cciss_free_cmd_pool(ctlr_info_t *h)
4867{
4868	kfree(h->cmd_pool_bits);
4869	if (h->cmd_pool)
4870		pci_free_consistent(h->pdev,
4871			h->nr_cmds * sizeof(CommandList_struct),
4872			h->cmd_pool, h->cmd_pool_dhandle);
4873	if (h->errinfo_pool)
4874		pci_free_consistent(h->pdev,
4875			h->nr_cmds * sizeof(ErrorInfo_struct),
4876			h->errinfo_pool, h->errinfo_pool_dhandle);
4877}
4878
4879static int cciss_request_irq(ctlr_info_t *h,
4880	irqreturn_t (*msixhandler)(int, void *),
4881	irqreturn_t (*intxhandler)(int, void *))
4882{
4883	if (h->msix_vector || h->msi_vector) {
4884		if (!request_irq(h->intr[h->intr_mode], msixhandler,
4885				0, h->devname, h))
4886			return 0;
4887		dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4888			" for %s\n", h->intr[h->intr_mode],
4889			h->devname);
4890		return -1;
4891	}
4892
4893	if (!request_irq(h->intr[h->intr_mode], intxhandler,
4894			IRQF_SHARED, h->devname, h))
4895		return 0;
4896	dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4897		h->intr[h->intr_mode], h->devname);
4898	return -1;
4899}
4900
4901static int cciss_kdump_soft_reset(ctlr_info_t *h)
4902{
4903	if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4904		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4905		return -EIO;
4906	}
4907
4908	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4909	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4910		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4911		return -1;
4912	}
4913
4914	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4915	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4916		dev_warn(&h->pdev->dev, "Board failed to become ready "
4917			"after soft reset.\n");
4918		return -1;
4919	}
4920
4921	return 0;
4922}
4923
4924static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4925{
4926	int ctlr = h->ctlr;
4927
4928	free_irq(h->intr[h->intr_mode], h);
4929#ifdef CONFIG_PCI_MSI
4930	if (h->msix_vector)
4931		pci_disable_msix(h->pdev);
4932	else if (h->msi_vector)
4933		pci_disable_msi(h->pdev);
4934#endif /* CONFIG_PCI_MSI */
4935	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4936	cciss_free_scatterlists(h);
4937	cciss_free_cmd_pool(h);
4938	kfree(h->blockFetchTable);
4939	if (h->reply_pool)
4940		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4941				h->reply_pool, h->reply_pool_dhandle);
4942	if (h->transtable)
4943		iounmap(h->transtable);
4944	if (h->cfgtable)
4945		iounmap(h->cfgtable);
4946	if (h->vaddr)
4947		iounmap(h->vaddr);
4948	unregister_blkdev(h->major, h->devname);
4949	cciss_destroy_hba_sysfs_entry(h);
4950	pci_release_regions(h->pdev);
4951	kfree(h);
4952	hba[ctlr] = NULL;
4953}
4954
4955/*
4956 *  This is it.  Find all the controllers and register them.  I really hate
4957 *  stealing all these major device numbers.
4958 *  returns the number of block devices registered.
4959 */
4960static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4961{
4962	int i;
4963	int j = 0;
4964	int rc;
4965	int try_soft_reset = 0;
4966	int dac, return_code;
4967	InquiryData_struct *inq_buff;
4968	ctlr_info_t *h;
4969	unsigned long flags;
4970
4971	/*
4972	 * By default the cciss driver is used for all older HP Smart Array
4973	 * controllers. There are module paramaters that allow a user to
4974	 * override this behavior and instead use the hpsa SCSI driver. If
4975	 * this is the case cciss may be loaded first from the kdump initrd
4976	 * image and cause a kernel panic. So if reset_devices is true and
4977	 * cciss_allow_hpsa is set just bail.
4978	 */
4979	if ((reset_devices) && (cciss_allow_hpsa == 1))
4980		return -ENODEV;
4981	rc = cciss_init_reset_devices(pdev);
4982	if (rc) {
4983		if (rc != -ENOTSUPP)
4984			return rc;
4985		/* If the reset fails in a particular way (it has no way to do
4986		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4987		 * a soft reset once we get the controller configured up to the
4988		 * point that it can accept a command.
4989		 */
4990		try_soft_reset = 1;
4991		rc = 0;
4992	}
4993
4994reinit_after_soft_reset:
4995
4996	i = alloc_cciss_hba(pdev);
4997	if (i < 0)
4998		return -ENOMEM;
4999
5000	h = hba[i];
5001	h->pdev = pdev;
5002	h->busy_initializing = 1;
5003	h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5004	INIT_LIST_HEAD(&h->cmpQ);
5005	INIT_LIST_HEAD(&h->reqQ);
5006	mutex_init(&h->busy_shutting_down);
5007
5008	if (cciss_pci_init(h) != 0)
5009		goto clean_no_release_regions;
5010
5011	sprintf(h->devname, "cciss%d", i);
5012	h->ctlr = i;
5013
5014	if (cciss_tape_cmds < 2)
5015		cciss_tape_cmds = 2;
5016	if (cciss_tape_cmds > 16)
5017		cciss_tape_cmds = 16;
5018
5019	init_completion(&h->scan_wait);
5020
5021	if (cciss_create_hba_sysfs_entry(h))
5022		goto clean0;
5023
5024	/* configure PCI DMA stuff */
5025	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5026		dac = 1;
5027	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5028		dac = 0;
5029	else {
5030		dev_err(&h->pdev->dev, "no suitable DMA available\n");
5031		goto clean1;
5032	}
5033
5034	/*
5035	 * register with the major number, or get a dynamic major number
5036	 * by passing 0 as argument.  This is done for greater than
5037	 * 8 controller support.
5038	 */
5039	if (i < MAX_CTLR_ORIG)
5040		h->major = COMPAQ_CISS_MAJOR + i;
5041	rc = register_blkdev(h->major, h->devname);
5042	if (rc == -EBUSY || rc == -EINVAL) {
5043		dev_err(&h->pdev->dev,
5044		       "Unable to get major number %d for %s "
5045		       "on hba %d\n", h->major, h->devname, i);
5046		goto clean1;
5047	} else {
5048		if (i >= MAX_CTLR_ORIG)
5049			h->major = rc;
5050	}
5051
5052	/* make sure the board interrupts are off */
5053	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5054	rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5055	if (rc)
5056		goto clean2;
5057
5058	dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5059	       h->devname, pdev->device, pci_name(pdev),
5060	       h->intr[h->intr_mode], dac ? "" : " not");
5061
5062	if (cciss_allocate_cmd_pool(h))
5063		goto clean4;
5064
5065	if (cciss_allocate_scatterlists(h))
5066		goto clean4;
5067
5068	h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5069		h->chainsize, h->nr_cmds);
5070	if (!h->cmd_sg_list && h->chainsize > 0)
5071		goto clean4;
5072
5073	spin_lock_init(&h->lock);
5074
5075	/* Initialize the pdev driver private data.
5076	   have it point to h.  */
5077	pci_set_drvdata(pdev, h);
5078	/* command and error info recs zeroed out before
5079	   they are used */
5080	bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5081
5082	h->num_luns = 0;
5083	h->highest_lun = -1;
5084	for (j = 0; j < CISS_MAX_LUN; j++) {
5085		h->drv[j] = NULL;
5086		h->gendisk[j] = NULL;
5087	}
5088
5089	/* At this point, the controller is ready to take commands.
5090	 * Now, if reset_devices and the hard reset didn't work, try
5091	 * the soft reset and see if that works.
5092	 */
5093	if (try_soft_reset) {
5094
5095		/* This is kind of gross.  We may or may not get a completion
5096		 * from the soft reset command, and if we do, then the value
5097		 * from the fifo may or may not be valid.  So, we wait 10 secs
5098		 * after the reset throwing away any completions we get during
5099		 * that time.  Unregister the interrupt handler and register
5100		 * fake ones to scoop up any residual completions.
5101		 */
5102		spin_lock_irqsave(&h->lock, flags);
5103		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5104		spin_unlock_irqrestore(&h->lock, flags);
5105		free_irq(h->intr[h->intr_mode], h);
5106		rc = cciss_request_irq(h, cciss_msix_discard_completions,
5107					cciss_intx_discard_completions);
5108		if (rc) {
5109			dev_warn(&h->pdev->dev, "Failed to request_irq after "
5110				"soft reset.\n");
5111			goto clean4;
5112		}
5113
5114		rc = cciss_kdump_soft_reset(h);
5115		if (rc) {
5116			dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5117			goto clean4;
5118		}
5119
5120		dev_info(&h->pdev->dev, "Board READY.\n");
5121		dev_info(&h->pdev->dev,
5122			"Waiting for stale completions to drain.\n");
5123		h->access.set_intr_mask(h, CCISS_INTR_ON);
5124		msleep(10000);
5125		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5126
5127		rc = controller_reset_failed(h->cfgtable);
5128		if (rc)
5129			dev_info(&h->pdev->dev,
5130				"Soft reset appears to have failed.\n");
5131
5132		/* since the controller's reset, we have to go back and re-init
5133		 * everything.  Easiest to just forget what we've done and do it
5134		 * all over again.
5135		 */
5136		cciss_undo_allocations_after_kdump_soft_reset(h);
5137		try_soft_reset = 0;
5138		if (rc)
5139			/* don't go to clean4, we already unallocated */
5140			return -ENODEV;
5141
5142		goto reinit_after_soft_reset;
5143	}
5144
5145	cciss_scsi_setup(h);
5146
5147	/* Turn the interrupts on so we can service requests */
5148	h->access.set_intr_mask(h, CCISS_INTR_ON);
5149
5150	/* Get the firmware version */
5151	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5152	if (inq_buff == NULL) {
5153		dev_err(&h->pdev->dev, "out of memory\n");
5154		goto clean4;
5155	}
5156
5157	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5158		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5159	if (return_code == IO_OK) {
5160		h->firm_ver[0] = inq_buff->data_byte[32];
5161		h->firm_ver[1] = inq_buff->data_byte[33];
5162		h->firm_ver[2] = inq_buff->data_byte[34];
5163		h->firm_ver[3] = inq_buff->data_byte[35];
5164	} else {	 /* send command failed */
5165		dev_warn(&h->pdev->dev, "unable to determine firmware"
5166			" version of controller\n");
5167	}
5168	kfree(inq_buff);
5169
5170	cciss_procinit(h);
5171
5172	h->cciss_max_sectors = 8192;
5173
5174	rebuild_lun_table(h, 1, 0);
5175	cciss_engage_scsi(h);
5176	h->busy_initializing = 0;
5177	return 0;
5178
5179clean4:
5180	cciss_free_cmd_pool(h);
5181	cciss_free_scatterlists(h);
5182	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5183	free_irq(h->intr[h->intr_mode], h);
5184clean2:
5185	unregister_blkdev(h->major, h->devname);
5186clean1:
5187	cciss_destroy_hba_sysfs_entry(h);
5188clean0:
5189	pci_release_regions(pdev);
5190clean_no_release_regions:
5191	h->busy_initializing = 0;
5192
5193	/*
5194	 * Deliberately omit pci_disable_device(): it does something nasty to
5195	 * Smart Array controllers that pci_enable_device does not undo
5196	 */
5197	pci_set_drvdata(pdev, NULL);
5198	free_hba(h);
5199	return -ENODEV;
5200}
5201
5202static void cciss_shutdown(struct pci_dev *pdev)
5203{
5204	ctlr_info_t *h;
5205	char *flush_buf;
5206	int return_code;
5207
5208	h = pci_get_drvdata(pdev);
5209	flush_buf = kzalloc(4, GFP_KERNEL);
5210	if (!flush_buf) {
5211		dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5212		return;
5213	}
5214	/* write all data in the battery backed cache to disk */
5215	return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5216		4, 0, CTLR_LUNID, TYPE_CMD);
5217	kfree(flush_buf);
5218	if (return_code != IO_OK)
5219		dev_warn(&h->pdev->dev, "Error flushing cache\n");
5220	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5221	free_irq(h->intr[h->intr_mode], h);
5222}
5223
5224static int cciss_enter_simple_mode(struct ctlr_info *h)
5225{
5226	u32 trans_support;
5227
5228	trans_support = readl(&(h->cfgtable->TransportSupport));
5229	if (!(trans_support & SIMPLE_MODE))
5230		return -ENOTSUPP;
5231
5232	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5233	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5234	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5235	cciss_wait_for_mode_change_ack(h);
5236	print_cfg_table(h);
5237	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5238		dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5239		return -ENODEV;
5240	}
5241	h->transMethod = CFGTBL_Trans_Simple;
5242	return 0;
5243}
5244
5245
5246static void cciss_remove_one(struct pci_dev *pdev)
5247{
5248	ctlr_info_t *h;
5249	int i, j;
5250
5251	if (pci_get_drvdata(pdev) == NULL) {
5252		dev_err(&pdev->dev, "Unable to remove device\n");
5253		return;
5254	}
5255
5256	h = pci_get_drvdata(pdev);
5257	i = h->ctlr;
5258	if (hba[i] == NULL) {
5259		dev_err(&pdev->dev, "device appears to already be removed\n");
5260		return;
5261	}
5262
5263	mutex_lock(&h->busy_shutting_down);
5264
5265	remove_from_scan_list(h);
5266	remove_proc_entry(h->devname, proc_cciss);
5267	unregister_blkdev(h->major, h->devname);
5268
5269	/* remove it from the disk list */
5270	for (j = 0; j < CISS_MAX_LUN; j++) {
5271		struct gendisk *disk = h->gendisk[j];
5272		if (disk) {
5273			struct request_queue *q = disk->queue;
5274
5275			if (disk->flags & GENHD_FL_UP) {
5276				cciss_destroy_ld_sysfs_entry(h, j, 1);
5277				del_gendisk(disk);
5278			}
5279			if (q)
5280				blk_cleanup_queue(q);
5281		}
5282	}
5283
5284#ifdef CONFIG_CISS_SCSI_TAPE
5285	cciss_unregister_scsi(h);	/* unhook from SCSI subsystem */
5286#endif
5287
5288	cciss_shutdown(pdev);
5289
5290#ifdef CONFIG_PCI_MSI
5291	if (h->msix_vector)
5292		pci_disable_msix(h->pdev);
5293	else if (h->msi_vector)
5294		pci_disable_msi(h->pdev);
5295#endif				/* CONFIG_PCI_MSI */
5296
5297	iounmap(h->transtable);
5298	iounmap(h->cfgtable);
5299	iounmap(h->vaddr);
5300
5301	cciss_free_cmd_pool(h);
5302	/* Free up sg elements */
5303	for (j = 0; j < h->nr_cmds; j++)
5304		kfree(h->scatter_list[j]);
5305	kfree(h->scatter_list);
5306	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5307	kfree(h->blockFetchTable);
5308	if (h->reply_pool)
5309		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5310				h->reply_pool, h->reply_pool_dhandle);
5311	/*
5312	 * Deliberately omit pci_disable_device(): it does something nasty to
5313	 * Smart Array controllers that pci_enable_device does not undo
5314	 */
5315	pci_release_regions(pdev);
5316	pci_set_drvdata(pdev, NULL);
5317	cciss_destroy_hba_sysfs_entry(h);
5318	mutex_unlock(&h->busy_shutting_down);
5319	free_hba(h);
5320}
5321
5322static struct pci_driver cciss_pci_driver = {
5323	.name = "cciss",
5324	.probe = cciss_init_one,
5325	.remove = cciss_remove_one,
5326	.id_table = cciss_pci_device_id,	/* id_table */
5327	.shutdown = cciss_shutdown,
5328};
5329
5330/*
5331 *  This is it.  Register the PCI driver information for the cards we control
5332 *  the OS will call our registered routines when it finds one of our cards.
5333 */
5334static int __init cciss_init(void)
5335{
5336	int err;
5337
5338	/*
5339	 * The hardware requires that commands are aligned on a 64-bit
5340	 * boundary. Given that we use pci_alloc_consistent() to allocate an
5341	 * array of them, the size must be a multiple of 8 bytes.
5342	 */
5343	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5344	printk(KERN_INFO DRIVER_NAME "\n");
5345
5346	err = bus_register(&cciss_bus_type);
5347	if (err)
5348		return err;
5349
5350	/* Start the scan thread */
5351	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5352	if (IS_ERR(cciss_scan_thread)) {
5353		err = PTR_ERR(cciss_scan_thread);
5354		goto err_bus_unregister;
5355	}
5356
5357	/* Register for our PCI devices */
5358	err = pci_register_driver(&cciss_pci_driver);
5359	if (err)
5360		goto err_thread_stop;
5361
5362	return err;
5363
5364err_thread_stop:
5365	kthread_stop(cciss_scan_thread);
5366err_bus_unregister:
5367	bus_unregister(&cciss_bus_type);
5368
5369	return err;
5370}
5371
5372static void __exit cciss_cleanup(void)
5373{
5374	int i;
5375
5376	pci_unregister_driver(&cciss_pci_driver);
5377	/* double check that all controller entrys have been removed */
5378	for (i = 0; i < MAX_CTLR; i++) {
5379		if (hba[i] != NULL) {
5380			dev_warn(&hba[i]->pdev->dev,
5381				"had to remove controller\n");
5382			cciss_remove_one(hba[i]->pdev);
5383		}
5384	}
5385	kthread_stop(cciss_scan_thread);
5386	if (proc_cciss)
5387		remove_proc_entry("driver/cciss", NULL);
5388	bus_unregister(&cciss_bus_type);
5389}
5390
5391module_init(cciss_init);
5392module_exit(cciss_cleanup);
5393