1/* 2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines 3 * 4 * Copyright (c) 2006 SUSE Linux Products GmbH 5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 6 * 7 * This file is released under the GPLv2. 8 */ 9 10#include <linux/dma-mapping.h> 11#include <linux/export.h> 12#include <linux/gfp.h> 13#include <linux/slab.h> 14#include <linux/vmalloc.h> 15#include <asm-generic/dma-coherent.h> 16 17/* 18 * Managed DMA API 19 */ 20struct dma_devres { 21 size_t size; 22 void *vaddr; 23 dma_addr_t dma_handle; 24}; 25 26static void dmam_coherent_release(struct device *dev, void *res) 27{ 28 struct dma_devres *this = res; 29 30 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle); 31} 32 33static void dmam_noncoherent_release(struct device *dev, void *res) 34{ 35 struct dma_devres *this = res; 36 37 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle); 38} 39 40static int dmam_match(struct device *dev, void *res, void *match_data) 41{ 42 struct dma_devres *this = res, *match = match_data; 43 44 if (this->vaddr == match->vaddr) { 45 WARN_ON(this->size != match->size || 46 this->dma_handle != match->dma_handle); 47 return 1; 48 } 49 return 0; 50} 51 52/** 53 * dmam_alloc_coherent - Managed dma_alloc_coherent() 54 * @dev: Device to allocate coherent memory for 55 * @size: Size of allocation 56 * @dma_handle: Out argument for allocated DMA handle 57 * @gfp: Allocation flags 58 * 59 * Managed dma_alloc_coherent(). Memory allocated using this function 60 * will be automatically released on driver detach. 61 * 62 * RETURNS: 63 * Pointer to allocated memory on success, NULL on failure. 64 */ 65void *dmam_alloc_coherent(struct device *dev, size_t size, 66 dma_addr_t *dma_handle, gfp_t gfp) 67{ 68 struct dma_devres *dr; 69 void *vaddr; 70 71 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp); 72 if (!dr) 73 return NULL; 74 75 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp); 76 if (!vaddr) { 77 devres_free(dr); 78 return NULL; 79 } 80 81 dr->vaddr = vaddr; 82 dr->dma_handle = *dma_handle; 83 dr->size = size; 84 85 devres_add(dev, dr); 86 87 return vaddr; 88} 89EXPORT_SYMBOL(dmam_alloc_coherent); 90 91/** 92 * dmam_free_coherent - Managed dma_free_coherent() 93 * @dev: Device to free coherent memory for 94 * @size: Size of allocation 95 * @vaddr: Virtual address of the memory to free 96 * @dma_handle: DMA handle of the memory to free 97 * 98 * Managed dma_free_coherent(). 99 */ 100void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 101 dma_addr_t dma_handle) 102{ 103 struct dma_devres match_data = { size, vaddr, dma_handle }; 104 105 dma_free_coherent(dev, size, vaddr, dma_handle); 106 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match, 107 &match_data)); 108} 109EXPORT_SYMBOL(dmam_free_coherent); 110 111/** 112 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent() 113 * @dev: Device to allocate non_coherent memory for 114 * @size: Size of allocation 115 * @dma_handle: Out argument for allocated DMA handle 116 * @gfp: Allocation flags 117 * 118 * Managed dma_alloc_non_coherent(). Memory allocated using this 119 * function will be automatically released on driver detach. 120 * 121 * RETURNS: 122 * Pointer to allocated memory on success, NULL on failure. 123 */ 124void *dmam_alloc_noncoherent(struct device *dev, size_t size, 125 dma_addr_t *dma_handle, gfp_t gfp) 126{ 127 struct dma_devres *dr; 128 void *vaddr; 129 130 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp); 131 if (!dr) 132 return NULL; 133 134 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp); 135 if (!vaddr) { 136 devres_free(dr); 137 return NULL; 138 } 139 140 dr->vaddr = vaddr; 141 dr->dma_handle = *dma_handle; 142 dr->size = size; 143 144 devres_add(dev, dr); 145 146 return vaddr; 147} 148EXPORT_SYMBOL(dmam_alloc_noncoherent); 149 150/** 151 * dmam_free_coherent - Managed dma_free_noncoherent() 152 * @dev: Device to free noncoherent memory for 153 * @size: Size of allocation 154 * @vaddr: Virtual address of the memory to free 155 * @dma_handle: DMA handle of the memory to free 156 * 157 * Managed dma_free_noncoherent(). 158 */ 159void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr, 160 dma_addr_t dma_handle) 161{ 162 struct dma_devres match_data = { size, vaddr, dma_handle }; 163 164 dma_free_noncoherent(dev, size, vaddr, dma_handle); 165 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match, 166 &match_data)); 167} 168EXPORT_SYMBOL(dmam_free_noncoherent); 169 170#ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY 171 172static void dmam_coherent_decl_release(struct device *dev, void *res) 173{ 174 dma_release_declared_memory(dev); 175} 176 177/** 178 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory() 179 * @dev: Device to declare coherent memory for 180 * @phys_addr: Physical address of coherent memory to be declared 181 * @device_addr: Device address of coherent memory to be declared 182 * @size: Size of coherent memory to be declared 183 * @flags: Flags 184 * 185 * Managed dma_declare_coherent_memory(). 186 * 187 * RETURNS: 188 * 0 on success, -errno on failure. 189 */ 190int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 191 dma_addr_t device_addr, size_t size, int flags) 192{ 193 void *res; 194 int rc; 195 196 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL); 197 if (!res) 198 return -ENOMEM; 199 200 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size, 201 flags); 202 if (rc == 0) 203 devres_add(dev, res); 204 else 205 devres_free(res); 206 207 return rc; 208} 209EXPORT_SYMBOL(dmam_declare_coherent_memory); 210 211/** 212 * dmam_release_declared_memory - Managed dma_release_declared_memory(). 213 * @dev: Device to release declared coherent memory for 214 * 215 * Managed dmam_release_declared_memory(). 216 */ 217void dmam_release_declared_memory(struct device *dev) 218{ 219 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL)); 220} 221EXPORT_SYMBOL(dmam_release_declared_memory); 222 223#endif 224 225/* 226 * Create scatter-list for the already allocated DMA buffer. 227 */ 228int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, 229 void *cpu_addr, dma_addr_t handle, size_t size) 230{ 231 struct page *page = virt_to_page(cpu_addr); 232 int ret; 233 234 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 235 if (unlikely(ret)) 236 return ret; 237 238 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 239 return 0; 240} 241EXPORT_SYMBOL(dma_common_get_sgtable); 242 243/* 244 * Create userspace mapping for the DMA-coherent memory. 245 */ 246int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, 247 void *cpu_addr, dma_addr_t dma_addr, size_t size) 248{ 249 int ret = -ENXIO; 250#ifdef CONFIG_MMU 251 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 252 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 253 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr)); 254 unsigned long off = vma->vm_pgoff; 255 256 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 257 258 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 259 return ret; 260 261 if (off < count && user_count <= (count - off)) { 262 ret = remap_pfn_range(vma, vma->vm_start, 263 pfn + off, 264 user_count << PAGE_SHIFT, 265 vma->vm_page_prot); 266 } 267#endif /* CONFIG_MMU */ 268 269 return ret; 270} 271EXPORT_SYMBOL(dma_common_mmap); 272 273#ifdef CONFIG_MMU 274/* 275 * remaps an array of PAGE_SIZE pages into another vm_area 276 * Cannot be used in non-sleeping contexts 277 */ 278void *dma_common_pages_remap(struct page **pages, size_t size, 279 unsigned long vm_flags, pgprot_t prot, 280 const void *caller) 281{ 282 struct vm_struct *area; 283 284 area = get_vm_area_caller(size, vm_flags, caller); 285 if (!area) 286 return NULL; 287 288 area->pages = pages; 289 290 if (map_vm_area(area, prot, pages)) { 291 vunmap(area->addr); 292 return NULL; 293 } 294 295 return area->addr; 296} 297 298/* 299 * remaps an allocated contiguous region into another vm_area. 300 * Cannot be used in non-sleeping contexts 301 */ 302 303void *dma_common_contiguous_remap(struct page *page, size_t size, 304 unsigned long vm_flags, 305 pgprot_t prot, const void *caller) 306{ 307 int i; 308 struct page **pages; 309 void *ptr; 310 unsigned long pfn; 311 312 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL); 313 if (!pages) 314 return NULL; 315 316 for (i = 0, pfn = page_to_pfn(page); i < (size >> PAGE_SHIFT); i++) 317 pages[i] = pfn_to_page(pfn + i); 318 319 ptr = dma_common_pages_remap(pages, size, vm_flags, prot, caller); 320 321 kfree(pages); 322 323 return ptr; 324} 325 326/* 327 * unmaps a range previously mapped by dma_common_*_remap 328 */ 329void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags) 330{ 331 struct vm_struct *area = find_vm_area(cpu_addr); 332 333 if (!area || (area->flags & vm_flags) != vm_flags) { 334 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 335 return; 336 } 337 338 unmap_kernel_range((unsigned long)cpu_addr, size); 339 vunmap(cpu_addr); 340} 341#endif 342