1/*
2 * Coherent per-device memory handling.
3 * Borrowed from i386
4 */
5#include <linux/slab.h>
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/dma-mapping.h>
9
10struct dma_coherent_mem {
11	void		*virt_base;
12	dma_addr_t	device_base;
13	unsigned long	pfn_base;
14	int		size;
15	int		flags;
16	unsigned long	*bitmap;
17	spinlock_t	spinlock;
18};
19
20static int dma_init_coherent_memory(phys_addr_t phys_addr, dma_addr_t device_addr,
21			     size_t size, int flags,
22			     struct dma_coherent_mem **mem)
23{
24	struct dma_coherent_mem *dma_mem = NULL;
25	void __iomem *mem_base = NULL;
26	int pages = size >> PAGE_SHIFT;
27	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
28
29	if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
30		goto out;
31	if (!size)
32		goto out;
33
34	mem_base = ioremap(phys_addr, size);
35	if (!mem_base)
36		goto out;
37
38	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
39	if (!dma_mem)
40		goto out;
41	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
42	if (!dma_mem->bitmap)
43		goto out;
44
45	dma_mem->virt_base = mem_base;
46	dma_mem->device_base = device_addr;
47	dma_mem->pfn_base = PFN_DOWN(phys_addr);
48	dma_mem->size = pages;
49	dma_mem->flags = flags;
50	spin_lock_init(&dma_mem->spinlock);
51
52	*mem = dma_mem;
53
54	if (flags & DMA_MEMORY_MAP)
55		return DMA_MEMORY_MAP;
56
57	return DMA_MEMORY_IO;
58
59out:
60	kfree(dma_mem);
61	if (mem_base)
62		iounmap(mem_base);
63	return 0;
64}
65
66static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
67{
68	if (!mem)
69		return;
70	iounmap(mem->virt_base);
71	kfree(mem->bitmap);
72	kfree(mem);
73}
74
75static int dma_assign_coherent_memory(struct device *dev,
76				      struct dma_coherent_mem *mem)
77{
78	if (dev->dma_mem)
79		return -EBUSY;
80
81	dev->dma_mem = mem;
82	/* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
83
84	return 0;
85}
86
87int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
88				dma_addr_t device_addr, size_t size, int flags)
89{
90	struct dma_coherent_mem *mem;
91	int ret;
92
93	ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags,
94				       &mem);
95	if (ret == 0)
96		return 0;
97
98	if (dma_assign_coherent_memory(dev, mem) == 0)
99		return ret;
100
101	dma_release_coherent_memory(mem);
102	return 0;
103}
104EXPORT_SYMBOL(dma_declare_coherent_memory);
105
106void dma_release_declared_memory(struct device *dev)
107{
108	struct dma_coherent_mem *mem = dev->dma_mem;
109
110	if (!mem)
111		return;
112	dma_release_coherent_memory(mem);
113	dev->dma_mem = NULL;
114}
115EXPORT_SYMBOL(dma_release_declared_memory);
116
117void *dma_mark_declared_memory_occupied(struct device *dev,
118					dma_addr_t device_addr, size_t size)
119{
120	struct dma_coherent_mem *mem = dev->dma_mem;
121	unsigned long flags;
122	int pos, err;
123
124	size += device_addr & ~PAGE_MASK;
125
126	if (!mem)
127		return ERR_PTR(-EINVAL);
128
129	spin_lock_irqsave(&mem->spinlock, flags);
130	pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
131	err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
132	spin_unlock_irqrestore(&mem->spinlock, flags);
133
134	if (err != 0)
135		return ERR_PTR(err);
136	return mem->virt_base + (pos << PAGE_SHIFT);
137}
138EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
139
140/**
141 * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area
142 *
143 * @dev:	device from which we allocate memory
144 * @size:	size of requested memory area
145 * @dma_handle:	This will be filled with the correct dma handle
146 * @ret:	This pointer will be filled with the virtual address
147 *		to allocated area.
148 *
149 * This function should be only called from per-arch dma_alloc_coherent()
150 * to support allocation from per-device coherent memory pools.
151 *
152 * Returns 0 if dma_alloc_coherent should continue with allocating from
153 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
154 */
155int dma_alloc_from_coherent(struct device *dev, ssize_t size,
156				       dma_addr_t *dma_handle, void **ret)
157{
158	struct dma_coherent_mem *mem;
159	int order = get_order(size);
160	unsigned long flags;
161	int pageno;
162
163	if (!dev)
164		return 0;
165	mem = dev->dma_mem;
166	if (!mem)
167		return 0;
168
169	*ret = NULL;
170	spin_lock_irqsave(&mem->spinlock, flags);
171
172	if (unlikely(size > (mem->size << PAGE_SHIFT)))
173		goto err;
174
175	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
176	if (unlikely(pageno < 0))
177		goto err;
178
179	/*
180	 * Memory was found in the per-device area.
181	 */
182	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
183	*ret = mem->virt_base + (pageno << PAGE_SHIFT);
184	memset(*ret, 0, size);
185	spin_unlock_irqrestore(&mem->spinlock, flags);
186
187	return 1;
188
189err:
190	spin_unlock_irqrestore(&mem->spinlock, flags);
191	/*
192	 * In the case where the allocation can not be satisfied from the
193	 * per-device area, try to fall back to generic memory if the
194	 * constraints allow it.
195	 */
196	return mem->flags & DMA_MEMORY_EXCLUSIVE;
197}
198EXPORT_SYMBOL(dma_alloc_from_coherent);
199
200/**
201 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool
202 * @dev:	device from which the memory was allocated
203 * @order:	the order of pages allocated
204 * @vaddr:	virtual address of allocated pages
205 *
206 * This checks whether the memory was allocated from the per-device
207 * coherent memory pool and if so, releases that memory.
208 *
209 * Returns 1 if we correctly released the memory, or 0 if
210 * dma_release_coherent() should proceed with releasing memory from
211 * generic pools.
212 */
213int dma_release_from_coherent(struct device *dev, int order, void *vaddr)
214{
215	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
216
217	if (mem && vaddr >= mem->virt_base && vaddr <
218		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
219		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
220		unsigned long flags;
221
222		spin_lock_irqsave(&mem->spinlock, flags);
223		bitmap_release_region(mem->bitmap, page, order);
224		spin_unlock_irqrestore(&mem->spinlock, flags);
225		return 1;
226	}
227	return 0;
228}
229EXPORT_SYMBOL(dma_release_from_coherent);
230
231/**
232 * dma_mmap_from_coherent() - try to mmap the memory allocated from
233 * per-device coherent memory pool to userspace
234 * @dev:	device from which the memory was allocated
235 * @vma:	vm_area for the userspace memory
236 * @vaddr:	cpu address returned by dma_alloc_from_coherent
237 * @size:	size of the memory buffer allocated by dma_alloc_from_coherent
238 * @ret:	result from remap_pfn_range()
239 *
240 * This checks whether the memory was allocated from the per-device
241 * coherent memory pool and if so, maps that memory to the provided vma.
242 *
243 * Returns 1 if we correctly mapped the memory, or 0 if the caller should
244 * proceed with mapping memory from generic pools.
245 */
246int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma,
247			   void *vaddr, size_t size, int *ret)
248{
249	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
250
251	if (mem && vaddr >= mem->virt_base && vaddr + size <=
252		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
253		unsigned long off = vma->vm_pgoff;
254		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
255		int user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
256		int count = size >> PAGE_SHIFT;
257
258		*ret = -ENXIO;
259		if (off < count && user_count <= count - off) {
260			unsigned long pfn = mem->pfn_base + start + off;
261			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
262					       user_count << PAGE_SHIFT,
263					       vma->vm_page_prot);
264		}
265		return 1;
266	}
267	return 0;
268}
269EXPORT_SYMBOL(dma_mmap_from_coherent);
270
271/*
272 * Support for reserved memory regions defined in device tree
273 */
274#ifdef CONFIG_OF_RESERVED_MEM
275#include <linux/of.h>
276#include <linux/of_fdt.h>
277#include <linux/of_reserved_mem.h>
278
279static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
280{
281	struct dma_coherent_mem *mem = rmem->priv;
282
283	if (!mem &&
284	    dma_init_coherent_memory(rmem->base, rmem->base, rmem->size,
285				     DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE,
286				     &mem) != DMA_MEMORY_MAP) {
287		pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
288			&rmem->base, (unsigned long)rmem->size / SZ_1M);
289		return -ENODEV;
290	}
291	rmem->priv = mem;
292	dma_assign_coherent_memory(dev, mem);
293	return 0;
294}
295
296static void rmem_dma_device_release(struct reserved_mem *rmem,
297				    struct device *dev)
298{
299	dev->dma_mem = NULL;
300}
301
302static const struct reserved_mem_ops rmem_dma_ops = {
303	.device_init	= rmem_dma_device_init,
304	.device_release	= rmem_dma_device_release,
305};
306
307static int __init rmem_dma_setup(struct reserved_mem *rmem)
308{
309	unsigned long node = rmem->fdt_node;
310
311	if (of_get_flat_dt_prop(node, "reusable", NULL))
312		return -EINVAL;
313
314#ifdef CONFIG_ARM
315	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
316		pr_err("Reserved memory: regions without no-map are not yet supported\n");
317		return -EINVAL;
318	}
319#endif
320
321	rmem->ops = &rmem_dma_ops;
322	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
323		&rmem->base, (unsigned long)rmem->size / SZ_1M);
324	return 0;
325}
326RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
327#endif
328