1/*
2 *  libata-core.c - helper library for ATA
3 *
4 *  Maintained by:  Tejun Heo <tj@kernel.org>
5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6 *		    on emails.
7 *
8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9 *  Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 *  This program is free software; you can redistribute it and/or modify
13 *  it under the terms of the GNU General Public License as published by
14 *  the Free Software Foundation; either version 2, or (at your option)
15 *  any later version.
16 *
17 *  This program is distributed in the hope that it will be useful,
18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 *  GNU General Public License for more details.
21 *
22 *  You should have received a copy of the GNU General Public License
23 *  along with this program; see the file COPYING.  If not, write to
24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 *  libata documentation is available via 'make {ps|pdf}docs',
28 *  as Documentation/DocBook/libata.*
29 *
30 *  Hardware documentation available from http://www.t13.org/ and
31 *  http://www.sata-io.org/
32 *
33 *  Standards documents from:
34 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 *	http://www.sata-io.org (SATA)
37 *	http://www.compactflash.org (CF)
38 *	http://www.qic.org (QIC157 - Tape and DSC)
39 *	http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
57#include <linux/scatterlist.h>
58#include <linux/io.h>
59#include <linux/async.h>
60#include <linux/log2.h>
61#include <linux/slab.h>
62#include <linux/glob.h>
63#include <scsi/scsi.h>
64#include <scsi/scsi_cmnd.h>
65#include <scsi/scsi_host.h>
66#include <linux/libata.h>
67#include <asm/byteorder.h>
68#include <linux/cdrom.h>
69#include <linux/ratelimit.h>
70#include <linux/pm_runtime.h>
71#include <linux/platform_device.h>
72
73#define CREATE_TRACE_POINTS
74#include <trace/events/libata.h>
75
76#include "libata.h"
77#include "libata-transport.h"
78
79/* debounce timing parameters in msecs { interval, duration, timeout } */
80const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
81const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
82const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
83
84const struct ata_port_operations ata_base_port_ops = {
85	.prereset		= ata_std_prereset,
86	.postreset		= ata_std_postreset,
87	.error_handler		= ata_std_error_handler,
88	.sched_eh		= ata_std_sched_eh,
89	.end_eh			= ata_std_end_eh,
90};
91
92const struct ata_port_operations sata_port_ops = {
93	.inherits		= &ata_base_port_ops,
94
95	.qc_defer		= ata_std_qc_defer,
96	.hardreset		= sata_std_hardreset,
97};
98
99static unsigned int ata_dev_init_params(struct ata_device *dev,
100					u16 heads, u16 sectors);
101static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
102static void ata_dev_xfermask(struct ata_device *dev);
103static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
104
105atomic_t ata_print_id = ATOMIC_INIT(0);
106
107struct ata_force_param {
108	const char	*name;
109	unsigned int	cbl;
110	int		spd_limit;
111	unsigned long	xfer_mask;
112	unsigned int	horkage_on;
113	unsigned int	horkage_off;
114	unsigned int	lflags;
115};
116
117struct ata_force_ent {
118	int			port;
119	int			device;
120	struct ata_force_param	param;
121};
122
123static struct ata_force_ent *ata_force_tbl;
124static int ata_force_tbl_size;
125
126static char ata_force_param_buf[PAGE_SIZE] __initdata;
127/* param_buf is thrown away after initialization, disallow read */
128module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
129MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
130
131static int atapi_enabled = 1;
132module_param(atapi_enabled, int, 0444);
133MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
134
135static int atapi_dmadir = 0;
136module_param(atapi_dmadir, int, 0444);
137MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
138
139int atapi_passthru16 = 1;
140module_param(atapi_passthru16, int, 0444);
141MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
142
143int libata_fua = 0;
144module_param_named(fua, libata_fua, int, 0444);
145MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
146
147static int ata_ignore_hpa;
148module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
149MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
150
151static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
152module_param_named(dma, libata_dma_mask, int, 0444);
153MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
154
155static int ata_probe_timeout;
156module_param(ata_probe_timeout, int, 0444);
157MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
158
159int libata_noacpi = 0;
160module_param_named(noacpi, libata_noacpi, int, 0444);
161MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
162
163int libata_allow_tpm = 0;
164module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
165MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
166
167static int atapi_an;
168module_param(atapi_an, int, 0444);
169MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
170
171MODULE_AUTHOR("Jeff Garzik");
172MODULE_DESCRIPTION("Library module for ATA devices");
173MODULE_LICENSE("GPL");
174MODULE_VERSION(DRV_VERSION);
175
176
177static bool ata_sstatus_online(u32 sstatus)
178{
179	return (sstatus & 0xf) == 0x3;
180}
181
182/**
183 *	ata_link_next - link iteration helper
184 *	@link: the previous link, NULL to start
185 *	@ap: ATA port containing links to iterate
186 *	@mode: iteration mode, one of ATA_LITER_*
187 *
188 *	LOCKING:
189 *	Host lock or EH context.
190 *
191 *	RETURNS:
192 *	Pointer to the next link.
193 */
194struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
195			       enum ata_link_iter_mode mode)
196{
197	BUG_ON(mode != ATA_LITER_EDGE &&
198	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
199
200	/* NULL link indicates start of iteration */
201	if (!link)
202		switch (mode) {
203		case ATA_LITER_EDGE:
204		case ATA_LITER_PMP_FIRST:
205			if (sata_pmp_attached(ap))
206				return ap->pmp_link;
207			/* fall through */
208		case ATA_LITER_HOST_FIRST:
209			return &ap->link;
210		}
211
212	/* we just iterated over the host link, what's next? */
213	if (link == &ap->link)
214		switch (mode) {
215		case ATA_LITER_HOST_FIRST:
216			if (sata_pmp_attached(ap))
217				return ap->pmp_link;
218			/* fall through */
219		case ATA_LITER_PMP_FIRST:
220			if (unlikely(ap->slave_link))
221				return ap->slave_link;
222			/* fall through */
223		case ATA_LITER_EDGE:
224			return NULL;
225		}
226
227	/* slave_link excludes PMP */
228	if (unlikely(link == ap->slave_link))
229		return NULL;
230
231	/* we were over a PMP link */
232	if (++link < ap->pmp_link + ap->nr_pmp_links)
233		return link;
234
235	if (mode == ATA_LITER_PMP_FIRST)
236		return &ap->link;
237
238	return NULL;
239}
240
241/**
242 *	ata_dev_next - device iteration helper
243 *	@dev: the previous device, NULL to start
244 *	@link: ATA link containing devices to iterate
245 *	@mode: iteration mode, one of ATA_DITER_*
246 *
247 *	LOCKING:
248 *	Host lock or EH context.
249 *
250 *	RETURNS:
251 *	Pointer to the next device.
252 */
253struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
254				enum ata_dev_iter_mode mode)
255{
256	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
257	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
258
259	/* NULL dev indicates start of iteration */
260	if (!dev)
261		switch (mode) {
262		case ATA_DITER_ENABLED:
263		case ATA_DITER_ALL:
264			dev = link->device;
265			goto check;
266		case ATA_DITER_ENABLED_REVERSE:
267		case ATA_DITER_ALL_REVERSE:
268			dev = link->device + ata_link_max_devices(link) - 1;
269			goto check;
270		}
271
272 next:
273	/* move to the next one */
274	switch (mode) {
275	case ATA_DITER_ENABLED:
276	case ATA_DITER_ALL:
277		if (++dev < link->device + ata_link_max_devices(link))
278			goto check;
279		return NULL;
280	case ATA_DITER_ENABLED_REVERSE:
281	case ATA_DITER_ALL_REVERSE:
282		if (--dev >= link->device)
283			goto check;
284		return NULL;
285	}
286
287 check:
288	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
289	    !ata_dev_enabled(dev))
290		goto next;
291	return dev;
292}
293
294/**
295 *	ata_dev_phys_link - find physical link for a device
296 *	@dev: ATA device to look up physical link for
297 *
298 *	Look up physical link which @dev is attached to.  Note that
299 *	this is different from @dev->link only when @dev is on slave
300 *	link.  For all other cases, it's the same as @dev->link.
301 *
302 *	LOCKING:
303 *	Don't care.
304 *
305 *	RETURNS:
306 *	Pointer to the found physical link.
307 */
308struct ata_link *ata_dev_phys_link(struct ata_device *dev)
309{
310	struct ata_port *ap = dev->link->ap;
311
312	if (!ap->slave_link)
313		return dev->link;
314	if (!dev->devno)
315		return &ap->link;
316	return ap->slave_link;
317}
318
319/**
320 *	ata_force_cbl - force cable type according to libata.force
321 *	@ap: ATA port of interest
322 *
323 *	Force cable type according to libata.force and whine about it.
324 *	The last entry which has matching port number is used, so it
325 *	can be specified as part of device force parameters.  For
326 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
327 *	same effect.
328 *
329 *	LOCKING:
330 *	EH context.
331 */
332void ata_force_cbl(struct ata_port *ap)
333{
334	int i;
335
336	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
337		const struct ata_force_ent *fe = &ata_force_tbl[i];
338
339		if (fe->port != -1 && fe->port != ap->print_id)
340			continue;
341
342		if (fe->param.cbl == ATA_CBL_NONE)
343			continue;
344
345		ap->cbl = fe->param.cbl;
346		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
347		return;
348	}
349}
350
351/**
352 *	ata_force_link_limits - force link limits according to libata.force
353 *	@link: ATA link of interest
354 *
355 *	Force link flags and SATA spd limit according to libata.force
356 *	and whine about it.  When only the port part is specified
357 *	(e.g. 1:), the limit applies to all links connected to both
358 *	the host link and all fan-out ports connected via PMP.  If the
359 *	device part is specified as 0 (e.g. 1.00:), it specifies the
360 *	first fan-out link not the host link.  Device number 15 always
361 *	points to the host link whether PMP is attached or not.  If the
362 *	controller has slave link, device number 16 points to it.
363 *
364 *	LOCKING:
365 *	EH context.
366 */
367static void ata_force_link_limits(struct ata_link *link)
368{
369	bool did_spd = false;
370	int linkno = link->pmp;
371	int i;
372
373	if (ata_is_host_link(link))
374		linkno += 15;
375
376	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
377		const struct ata_force_ent *fe = &ata_force_tbl[i];
378
379		if (fe->port != -1 && fe->port != link->ap->print_id)
380			continue;
381
382		if (fe->device != -1 && fe->device != linkno)
383			continue;
384
385		/* only honor the first spd limit */
386		if (!did_spd && fe->param.spd_limit) {
387			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
388			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
389					fe->param.name);
390			did_spd = true;
391		}
392
393		/* let lflags stack */
394		if (fe->param.lflags) {
395			link->flags |= fe->param.lflags;
396			ata_link_notice(link,
397					"FORCE: link flag 0x%x forced -> 0x%x\n",
398					fe->param.lflags, link->flags);
399		}
400	}
401}
402
403/**
404 *	ata_force_xfermask - force xfermask according to libata.force
405 *	@dev: ATA device of interest
406 *
407 *	Force xfer_mask according to libata.force and whine about it.
408 *	For consistency with link selection, device number 15 selects
409 *	the first device connected to the host link.
410 *
411 *	LOCKING:
412 *	EH context.
413 */
414static void ata_force_xfermask(struct ata_device *dev)
415{
416	int devno = dev->link->pmp + dev->devno;
417	int alt_devno = devno;
418	int i;
419
420	/* allow n.15/16 for devices attached to host port */
421	if (ata_is_host_link(dev->link))
422		alt_devno += 15;
423
424	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
425		const struct ata_force_ent *fe = &ata_force_tbl[i];
426		unsigned long pio_mask, mwdma_mask, udma_mask;
427
428		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
429			continue;
430
431		if (fe->device != -1 && fe->device != devno &&
432		    fe->device != alt_devno)
433			continue;
434
435		if (!fe->param.xfer_mask)
436			continue;
437
438		ata_unpack_xfermask(fe->param.xfer_mask,
439				    &pio_mask, &mwdma_mask, &udma_mask);
440		if (udma_mask)
441			dev->udma_mask = udma_mask;
442		else if (mwdma_mask) {
443			dev->udma_mask = 0;
444			dev->mwdma_mask = mwdma_mask;
445		} else {
446			dev->udma_mask = 0;
447			dev->mwdma_mask = 0;
448			dev->pio_mask = pio_mask;
449		}
450
451		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
452			       fe->param.name);
453		return;
454	}
455}
456
457/**
458 *	ata_force_horkage - force horkage according to libata.force
459 *	@dev: ATA device of interest
460 *
461 *	Force horkage according to libata.force and whine about it.
462 *	For consistency with link selection, device number 15 selects
463 *	the first device connected to the host link.
464 *
465 *	LOCKING:
466 *	EH context.
467 */
468static void ata_force_horkage(struct ata_device *dev)
469{
470	int devno = dev->link->pmp + dev->devno;
471	int alt_devno = devno;
472	int i;
473
474	/* allow n.15/16 for devices attached to host port */
475	if (ata_is_host_link(dev->link))
476		alt_devno += 15;
477
478	for (i = 0; i < ata_force_tbl_size; i++) {
479		const struct ata_force_ent *fe = &ata_force_tbl[i];
480
481		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
482			continue;
483
484		if (fe->device != -1 && fe->device != devno &&
485		    fe->device != alt_devno)
486			continue;
487
488		if (!(~dev->horkage & fe->param.horkage_on) &&
489		    !(dev->horkage & fe->param.horkage_off))
490			continue;
491
492		dev->horkage |= fe->param.horkage_on;
493		dev->horkage &= ~fe->param.horkage_off;
494
495		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
496			       fe->param.name);
497	}
498}
499
500/**
501 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502 *	@opcode: SCSI opcode
503 *
504 *	Determine ATAPI command type from @opcode.
505 *
506 *	LOCKING:
507 *	None.
508 *
509 *	RETURNS:
510 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511 */
512int atapi_cmd_type(u8 opcode)
513{
514	switch (opcode) {
515	case GPCMD_READ_10:
516	case GPCMD_READ_12:
517		return ATAPI_READ;
518
519	case GPCMD_WRITE_10:
520	case GPCMD_WRITE_12:
521	case GPCMD_WRITE_AND_VERIFY_10:
522		return ATAPI_WRITE;
523
524	case GPCMD_READ_CD:
525	case GPCMD_READ_CD_MSF:
526		return ATAPI_READ_CD;
527
528	case ATA_16:
529	case ATA_12:
530		if (atapi_passthru16)
531			return ATAPI_PASS_THRU;
532		/* fall thru */
533	default:
534		return ATAPI_MISC;
535	}
536}
537
538/**
539 *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
540 *	@tf: Taskfile to convert
541 *	@pmp: Port multiplier port
542 *	@is_cmd: This FIS is for command
543 *	@fis: Buffer into which data will output
544 *
545 *	Converts a standard ATA taskfile to a Serial ATA
546 *	FIS structure (Register - Host to Device).
547 *
548 *	LOCKING:
549 *	Inherited from caller.
550 */
551void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
552{
553	fis[0] = 0x27;			/* Register - Host to Device FIS */
554	fis[1] = pmp & 0xf;		/* Port multiplier number*/
555	if (is_cmd)
556		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
557
558	fis[2] = tf->command;
559	fis[3] = tf->feature;
560
561	fis[4] = tf->lbal;
562	fis[5] = tf->lbam;
563	fis[6] = tf->lbah;
564	fis[7] = tf->device;
565
566	fis[8] = tf->hob_lbal;
567	fis[9] = tf->hob_lbam;
568	fis[10] = tf->hob_lbah;
569	fis[11] = tf->hob_feature;
570
571	fis[12] = tf->nsect;
572	fis[13] = tf->hob_nsect;
573	fis[14] = 0;
574	fis[15] = tf->ctl;
575
576	fis[16] = tf->auxiliary & 0xff;
577	fis[17] = (tf->auxiliary >> 8) & 0xff;
578	fis[18] = (tf->auxiliary >> 16) & 0xff;
579	fis[19] = (tf->auxiliary >> 24) & 0xff;
580}
581
582/**
583 *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
584 *	@fis: Buffer from which data will be input
585 *	@tf: Taskfile to output
586 *
587 *	Converts a serial ATA FIS structure to a standard ATA taskfile.
588 *
589 *	LOCKING:
590 *	Inherited from caller.
591 */
592
593void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
594{
595	tf->command	= fis[2];	/* status */
596	tf->feature	= fis[3];	/* error */
597
598	tf->lbal	= fis[4];
599	tf->lbam	= fis[5];
600	tf->lbah	= fis[6];
601	tf->device	= fis[7];
602
603	tf->hob_lbal	= fis[8];
604	tf->hob_lbam	= fis[9];
605	tf->hob_lbah	= fis[10];
606
607	tf->nsect	= fis[12];
608	tf->hob_nsect	= fis[13];
609}
610
611static const u8 ata_rw_cmds[] = {
612	/* pio multi */
613	ATA_CMD_READ_MULTI,
614	ATA_CMD_WRITE_MULTI,
615	ATA_CMD_READ_MULTI_EXT,
616	ATA_CMD_WRITE_MULTI_EXT,
617	0,
618	0,
619	0,
620	ATA_CMD_WRITE_MULTI_FUA_EXT,
621	/* pio */
622	ATA_CMD_PIO_READ,
623	ATA_CMD_PIO_WRITE,
624	ATA_CMD_PIO_READ_EXT,
625	ATA_CMD_PIO_WRITE_EXT,
626	0,
627	0,
628	0,
629	0,
630	/* dma */
631	ATA_CMD_READ,
632	ATA_CMD_WRITE,
633	ATA_CMD_READ_EXT,
634	ATA_CMD_WRITE_EXT,
635	0,
636	0,
637	0,
638	ATA_CMD_WRITE_FUA_EXT
639};
640
641/**
642 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
643 *	@tf: command to examine and configure
644 *	@dev: device tf belongs to
645 *
646 *	Examine the device configuration and tf->flags to calculate
647 *	the proper read/write commands and protocol to use.
648 *
649 *	LOCKING:
650 *	caller.
651 */
652static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
653{
654	u8 cmd;
655
656	int index, fua, lba48, write;
657
658	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
659	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
660	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
661
662	if (dev->flags & ATA_DFLAG_PIO) {
663		tf->protocol = ATA_PROT_PIO;
664		index = dev->multi_count ? 0 : 8;
665	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
666		/* Unable to use DMA due to host limitation */
667		tf->protocol = ATA_PROT_PIO;
668		index = dev->multi_count ? 0 : 8;
669	} else {
670		tf->protocol = ATA_PROT_DMA;
671		index = 16;
672	}
673
674	cmd = ata_rw_cmds[index + fua + lba48 + write];
675	if (cmd) {
676		tf->command = cmd;
677		return 0;
678	}
679	return -1;
680}
681
682/**
683 *	ata_tf_read_block - Read block address from ATA taskfile
684 *	@tf: ATA taskfile of interest
685 *	@dev: ATA device @tf belongs to
686 *
687 *	LOCKING:
688 *	None.
689 *
690 *	Read block address from @tf.  This function can handle all
691 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
692 *	flags select the address format to use.
693 *
694 *	RETURNS:
695 *	Block address read from @tf.
696 */
697u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
698{
699	u64 block = 0;
700
701	if (tf->flags & ATA_TFLAG_LBA) {
702		if (tf->flags & ATA_TFLAG_LBA48) {
703			block |= (u64)tf->hob_lbah << 40;
704			block |= (u64)tf->hob_lbam << 32;
705			block |= (u64)tf->hob_lbal << 24;
706		} else
707			block |= (tf->device & 0xf) << 24;
708
709		block |= tf->lbah << 16;
710		block |= tf->lbam << 8;
711		block |= tf->lbal;
712	} else {
713		u32 cyl, head, sect;
714
715		cyl = tf->lbam | (tf->lbah << 8);
716		head = tf->device & 0xf;
717		sect = tf->lbal;
718
719		if (!sect) {
720			ata_dev_warn(dev,
721				     "device reported invalid CHS sector 0\n");
722			sect = 1; /* oh well */
723		}
724
725		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
726	}
727
728	return block;
729}
730
731/**
732 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
733 *	@tf: Target ATA taskfile
734 *	@dev: ATA device @tf belongs to
735 *	@block: Block address
736 *	@n_block: Number of blocks
737 *	@tf_flags: RW/FUA etc...
738 *	@tag: tag
739 *
740 *	LOCKING:
741 *	None.
742 *
743 *	Build ATA taskfile @tf for read/write request described by
744 *	@block, @n_block, @tf_flags and @tag on @dev.
745 *
746 *	RETURNS:
747 *
748 *	0 on success, -ERANGE if the request is too large for @dev,
749 *	-EINVAL if the request is invalid.
750 */
751int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
752		    u64 block, u32 n_block, unsigned int tf_flags,
753		    unsigned int tag)
754{
755	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
756	tf->flags |= tf_flags;
757
758	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
759		/* yay, NCQ */
760		if (!lba_48_ok(block, n_block))
761			return -ERANGE;
762
763		tf->protocol = ATA_PROT_NCQ;
764		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
765
766		if (tf->flags & ATA_TFLAG_WRITE)
767			tf->command = ATA_CMD_FPDMA_WRITE;
768		else
769			tf->command = ATA_CMD_FPDMA_READ;
770
771		tf->nsect = tag << 3;
772		tf->hob_feature = (n_block >> 8) & 0xff;
773		tf->feature = n_block & 0xff;
774
775		tf->hob_lbah = (block >> 40) & 0xff;
776		tf->hob_lbam = (block >> 32) & 0xff;
777		tf->hob_lbal = (block >> 24) & 0xff;
778		tf->lbah = (block >> 16) & 0xff;
779		tf->lbam = (block >> 8) & 0xff;
780		tf->lbal = block & 0xff;
781
782		tf->device = ATA_LBA;
783		if (tf->flags & ATA_TFLAG_FUA)
784			tf->device |= 1 << 7;
785	} else if (dev->flags & ATA_DFLAG_LBA) {
786		tf->flags |= ATA_TFLAG_LBA;
787
788		if (lba_28_ok(block, n_block)) {
789			/* use LBA28 */
790			tf->device |= (block >> 24) & 0xf;
791		} else if (lba_48_ok(block, n_block)) {
792			if (!(dev->flags & ATA_DFLAG_LBA48))
793				return -ERANGE;
794
795			/* use LBA48 */
796			tf->flags |= ATA_TFLAG_LBA48;
797
798			tf->hob_nsect = (n_block >> 8) & 0xff;
799
800			tf->hob_lbah = (block >> 40) & 0xff;
801			tf->hob_lbam = (block >> 32) & 0xff;
802			tf->hob_lbal = (block >> 24) & 0xff;
803		} else
804			/* request too large even for LBA48 */
805			return -ERANGE;
806
807		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
808			return -EINVAL;
809
810		tf->nsect = n_block & 0xff;
811
812		tf->lbah = (block >> 16) & 0xff;
813		tf->lbam = (block >> 8) & 0xff;
814		tf->lbal = block & 0xff;
815
816		tf->device |= ATA_LBA;
817	} else {
818		/* CHS */
819		u32 sect, head, cyl, track;
820
821		/* The request -may- be too large for CHS addressing. */
822		if (!lba_28_ok(block, n_block))
823			return -ERANGE;
824
825		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
826			return -EINVAL;
827
828		/* Convert LBA to CHS */
829		track = (u32)block / dev->sectors;
830		cyl   = track / dev->heads;
831		head  = track % dev->heads;
832		sect  = (u32)block % dev->sectors + 1;
833
834		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
835			(u32)block, track, cyl, head, sect);
836
837		/* Check whether the converted CHS can fit.
838		   Cylinder: 0-65535
839		   Head: 0-15
840		   Sector: 1-255*/
841		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
842			return -ERANGE;
843
844		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
845		tf->lbal = sect;
846		tf->lbam = cyl;
847		tf->lbah = cyl >> 8;
848		tf->device |= head;
849	}
850
851	return 0;
852}
853
854/**
855 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
856 *	@pio_mask: pio_mask
857 *	@mwdma_mask: mwdma_mask
858 *	@udma_mask: udma_mask
859 *
860 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
861 *	unsigned int xfer_mask.
862 *
863 *	LOCKING:
864 *	None.
865 *
866 *	RETURNS:
867 *	Packed xfer_mask.
868 */
869unsigned long ata_pack_xfermask(unsigned long pio_mask,
870				unsigned long mwdma_mask,
871				unsigned long udma_mask)
872{
873	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
874		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
875		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
876}
877
878/**
879 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
880 *	@xfer_mask: xfer_mask to unpack
881 *	@pio_mask: resulting pio_mask
882 *	@mwdma_mask: resulting mwdma_mask
883 *	@udma_mask: resulting udma_mask
884 *
885 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
886 *	Any NULL distination masks will be ignored.
887 */
888void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
889			 unsigned long *mwdma_mask, unsigned long *udma_mask)
890{
891	if (pio_mask)
892		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
893	if (mwdma_mask)
894		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
895	if (udma_mask)
896		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
897}
898
899static const struct ata_xfer_ent {
900	int shift, bits;
901	u8 base;
902} ata_xfer_tbl[] = {
903	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
904	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
905	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
906	{ -1, },
907};
908
909/**
910 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
911 *	@xfer_mask: xfer_mask of interest
912 *
913 *	Return matching XFER_* value for @xfer_mask.  Only the highest
914 *	bit of @xfer_mask is considered.
915 *
916 *	LOCKING:
917 *	None.
918 *
919 *	RETURNS:
920 *	Matching XFER_* value, 0xff if no match found.
921 */
922u8 ata_xfer_mask2mode(unsigned long xfer_mask)
923{
924	int highbit = fls(xfer_mask) - 1;
925	const struct ata_xfer_ent *ent;
926
927	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
928		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
929			return ent->base + highbit - ent->shift;
930	return 0xff;
931}
932
933/**
934 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
935 *	@xfer_mode: XFER_* of interest
936 *
937 *	Return matching xfer_mask for @xfer_mode.
938 *
939 *	LOCKING:
940 *	None.
941 *
942 *	RETURNS:
943 *	Matching xfer_mask, 0 if no match found.
944 */
945unsigned long ata_xfer_mode2mask(u8 xfer_mode)
946{
947	const struct ata_xfer_ent *ent;
948
949	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
950		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
951			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
952				& ~((1 << ent->shift) - 1);
953	return 0;
954}
955
956/**
957 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
958 *	@xfer_mode: XFER_* of interest
959 *
960 *	Return matching xfer_shift for @xfer_mode.
961 *
962 *	LOCKING:
963 *	None.
964 *
965 *	RETURNS:
966 *	Matching xfer_shift, -1 if no match found.
967 */
968int ata_xfer_mode2shift(unsigned long xfer_mode)
969{
970	const struct ata_xfer_ent *ent;
971
972	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
973		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
974			return ent->shift;
975	return -1;
976}
977
978/**
979 *	ata_mode_string - convert xfer_mask to string
980 *	@xfer_mask: mask of bits supported; only highest bit counts.
981 *
982 *	Determine string which represents the highest speed
983 *	(highest bit in @modemask).
984 *
985 *	LOCKING:
986 *	None.
987 *
988 *	RETURNS:
989 *	Constant C string representing highest speed listed in
990 *	@mode_mask, or the constant C string "<n/a>".
991 */
992const char *ata_mode_string(unsigned long xfer_mask)
993{
994	static const char * const xfer_mode_str[] = {
995		"PIO0",
996		"PIO1",
997		"PIO2",
998		"PIO3",
999		"PIO4",
1000		"PIO5",
1001		"PIO6",
1002		"MWDMA0",
1003		"MWDMA1",
1004		"MWDMA2",
1005		"MWDMA3",
1006		"MWDMA4",
1007		"UDMA/16",
1008		"UDMA/25",
1009		"UDMA/33",
1010		"UDMA/44",
1011		"UDMA/66",
1012		"UDMA/100",
1013		"UDMA/133",
1014		"UDMA7",
1015	};
1016	int highbit;
1017
1018	highbit = fls(xfer_mask) - 1;
1019	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1020		return xfer_mode_str[highbit];
1021	return "<n/a>";
1022}
1023
1024const char *sata_spd_string(unsigned int spd)
1025{
1026	static const char * const spd_str[] = {
1027		"1.5 Gbps",
1028		"3.0 Gbps",
1029		"6.0 Gbps",
1030	};
1031
1032	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1033		return "<unknown>";
1034	return spd_str[spd - 1];
1035}
1036
1037/**
1038 *	ata_dev_classify - determine device type based on ATA-spec signature
1039 *	@tf: ATA taskfile register set for device to be identified
1040 *
1041 *	Determine from taskfile register contents whether a device is
1042 *	ATA or ATAPI, as per "Signature and persistence" section
1043 *	of ATA/PI spec (volume 1, sect 5.14).
1044 *
1045 *	LOCKING:
1046 *	None.
1047 *
1048 *	RETURNS:
1049 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1050 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1051 */
1052unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1053{
1054	/* Apple's open source Darwin code hints that some devices only
1055	 * put a proper signature into the LBA mid/high registers,
1056	 * So, we only check those.  It's sufficient for uniqueness.
1057	 *
1058	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1059	 * signatures for ATA and ATAPI devices attached on SerialATA,
1060	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1061	 * spec has never mentioned about using different signatures
1062	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1063	 * Multiplier specification began to use 0x69/0x96 to identify
1064	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1065	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1066	 * 0x69/0x96 shortly and described them as reserved for
1067	 * SerialATA.
1068	 *
1069	 * We follow the current spec and consider that 0x69/0x96
1070	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1071	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1072	 * SEMB signature.  This is worked around in
1073	 * ata_dev_read_id().
1074	 */
1075	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1076		DPRINTK("found ATA device by sig\n");
1077		return ATA_DEV_ATA;
1078	}
1079
1080	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1081		DPRINTK("found ATAPI device by sig\n");
1082		return ATA_DEV_ATAPI;
1083	}
1084
1085	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1086		DPRINTK("found PMP device by sig\n");
1087		return ATA_DEV_PMP;
1088	}
1089
1090	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1091		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1092		return ATA_DEV_SEMB;
1093	}
1094
1095	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1096		DPRINTK("found ZAC device by sig\n");
1097		return ATA_DEV_ZAC;
1098	}
1099
1100	DPRINTK("unknown device\n");
1101	return ATA_DEV_UNKNOWN;
1102}
1103
1104/**
1105 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1106 *	@id: IDENTIFY DEVICE results we will examine
1107 *	@s: string into which data is output
1108 *	@ofs: offset into identify device page
1109 *	@len: length of string to return. must be an even number.
1110 *
1111 *	The strings in the IDENTIFY DEVICE page are broken up into
1112 *	16-bit chunks.  Run through the string, and output each
1113 *	8-bit chunk linearly, regardless of platform.
1114 *
1115 *	LOCKING:
1116 *	caller.
1117 */
1118
1119void ata_id_string(const u16 *id, unsigned char *s,
1120		   unsigned int ofs, unsigned int len)
1121{
1122	unsigned int c;
1123
1124	BUG_ON(len & 1);
1125
1126	while (len > 0) {
1127		c = id[ofs] >> 8;
1128		*s = c;
1129		s++;
1130
1131		c = id[ofs] & 0xff;
1132		*s = c;
1133		s++;
1134
1135		ofs++;
1136		len -= 2;
1137	}
1138}
1139
1140/**
1141 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1142 *	@id: IDENTIFY DEVICE results we will examine
1143 *	@s: string into which data is output
1144 *	@ofs: offset into identify device page
1145 *	@len: length of string to return. must be an odd number.
1146 *
1147 *	This function is identical to ata_id_string except that it
1148 *	trims trailing spaces and terminates the resulting string with
1149 *	null.  @len must be actual maximum length (even number) + 1.
1150 *
1151 *	LOCKING:
1152 *	caller.
1153 */
1154void ata_id_c_string(const u16 *id, unsigned char *s,
1155		     unsigned int ofs, unsigned int len)
1156{
1157	unsigned char *p;
1158
1159	ata_id_string(id, s, ofs, len - 1);
1160
1161	p = s + strnlen(s, len - 1);
1162	while (p > s && p[-1] == ' ')
1163		p--;
1164	*p = '\0';
1165}
1166
1167static u64 ata_id_n_sectors(const u16 *id)
1168{
1169	if (ata_id_has_lba(id)) {
1170		if (ata_id_has_lba48(id))
1171			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1172		else
1173			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1174	} else {
1175		if (ata_id_current_chs_valid(id))
1176			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1177			       id[ATA_ID_CUR_SECTORS];
1178		else
1179			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1180			       id[ATA_ID_SECTORS];
1181	}
1182}
1183
1184u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1185{
1186	u64 sectors = 0;
1187
1188	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1189	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1190	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1191	sectors |= (tf->lbah & 0xff) << 16;
1192	sectors |= (tf->lbam & 0xff) << 8;
1193	sectors |= (tf->lbal & 0xff);
1194
1195	return sectors;
1196}
1197
1198u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1199{
1200	u64 sectors = 0;
1201
1202	sectors |= (tf->device & 0x0f) << 24;
1203	sectors |= (tf->lbah & 0xff) << 16;
1204	sectors |= (tf->lbam & 0xff) << 8;
1205	sectors |= (tf->lbal & 0xff);
1206
1207	return sectors;
1208}
1209
1210/**
1211 *	ata_read_native_max_address - Read native max address
1212 *	@dev: target device
1213 *	@max_sectors: out parameter for the result native max address
1214 *
1215 *	Perform an LBA48 or LBA28 native size query upon the device in
1216 *	question.
1217 *
1218 *	RETURNS:
1219 *	0 on success, -EACCES if command is aborted by the drive.
1220 *	-EIO on other errors.
1221 */
1222static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1223{
1224	unsigned int err_mask;
1225	struct ata_taskfile tf;
1226	int lba48 = ata_id_has_lba48(dev->id);
1227
1228	ata_tf_init(dev, &tf);
1229
1230	/* always clear all address registers */
1231	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1232
1233	if (lba48) {
1234		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1235		tf.flags |= ATA_TFLAG_LBA48;
1236	} else
1237		tf.command = ATA_CMD_READ_NATIVE_MAX;
1238
1239	tf.protocol |= ATA_PROT_NODATA;
1240	tf.device |= ATA_LBA;
1241
1242	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243	if (err_mask) {
1244		ata_dev_warn(dev,
1245			     "failed to read native max address (err_mask=0x%x)\n",
1246			     err_mask);
1247		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1248			return -EACCES;
1249		return -EIO;
1250	}
1251
1252	if (lba48)
1253		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1254	else
1255		*max_sectors = ata_tf_to_lba(&tf) + 1;
1256	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1257		(*max_sectors)--;
1258	return 0;
1259}
1260
1261/**
1262 *	ata_set_max_sectors - Set max sectors
1263 *	@dev: target device
1264 *	@new_sectors: new max sectors value to set for the device
1265 *
1266 *	Set max sectors of @dev to @new_sectors.
1267 *
1268 *	RETURNS:
1269 *	0 on success, -EACCES if command is aborted or denied (due to
1270 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1271 *	errors.
1272 */
1273static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1274{
1275	unsigned int err_mask;
1276	struct ata_taskfile tf;
1277	int lba48 = ata_id_has_lba48(dev->id);
1278
1279	new_sectors--;
1280
1281	ata_tf_init(dev, &tf);
1282
1283	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1284
1285	if (lba48) {
1286		tf.command = ATA_CMD_SET_MAX_EXT;
1287		tf.flags |= ATA_TFLAG_LBA48;
1288
1289		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1290		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1291		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1292	} else {
1293		tf.command = ATA_CMD_SET_MAX;
1294
1295		tf.device |= (new_sectors >> 24) & 0xf;
1296	}
1297
1298	tf.protocol |= ATA_PROT_NODATA;
1299	tf.device |= ATA_LBA;
1300
1301	tf.lbal = (new_sectors >> 0) & 0xff;
1302	tf.lbam = (new_sectors >> 8) & 0xff;
1303	tf.lbah = (new_sectors >> 16) & 0xff;
1304
1305	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1306	if (err_mask) {
1307		ata_dev_warn(dev,
1308			     "failed to set max address (err_mask=0x%x)\n",
1309			     err_mask);
1310		if (err_mask == AC_ERR_DEV &&
1311		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1312			return -EACCES;
1313		return -EIO;
1314	}
1315
1316	return 0;
1317}
1318
1319/**
1320 *	ata_hpa_resize		-	Resize a device with an HPA set
1321 *	@dev: Device to resize
1322 *
1323 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1324 *	it if required to the full size of the media. The caller must check
1325 *	the drive has the HPA feature set enabled.
1326 *
1327 *	RETURNS:
1328 *	0 on success, -errno on failure.
1329 */
1330static int ata_hpa_resize(struct ata_device *dev)
1331{
1332	struct ata_eh_context *ehc = &dev->link->eh_context;
1333	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1334	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1335	u64 sectors = ata_id_n_sectors(dev->id);
1336	u64 native_sectors;
1337	int rc;
1338
1339	/* do we need to do it? */
1340	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1341	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1342	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1343		return 0;
1344
1345	/* read native max address */
1346	rc = ata_read_native_max_address(dev, &native_sectors);
1347	if (rc) {
1348		/* If device aborted the command or HPA isn't going to
1349		 * be unlocked, skip HPA resizing.
1350		 */
1351		if (rc == -EACCES || !unlock_hpa) {
1352			ata_dev_warn(dev,
1353				     "HPA support seems broken, skipping HPA handling\n");
1354			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1355
1356			/* we can continue if device aborted the command */
1357			if (rc == -EACCES)
1358				rc = 0;
1359		}
1360
1361		return rc;
1362	}
1363	dev->n_native_sectors = native_sectors;
1364
1365	/* nothing to do? */
1366	if (native_sectors <= sectors || !unlock_hpa) {
1367		if (!print_info || native_sectors == sectors)
1368			return 0;
1369
1370		if (native_sectors > sectors)
1371			ata_dev_info(dev,
1372				"HPA detected: current %llu, native %llu\n",
1373				(unsigned long long)sectors,
1374				(unsigned long long)native_sectors);
1375		else if (native_sectors < sectors)
1376			ata_dev_warn(dev,
1377				"native sectors (%llu) is smaller than sectors (%llu)\n",
1378				(unsigned long long)native_sectors,
1379				(unsigned long long)sectors);
1380		return 0;
1381	}
1382
1383	/* let's unlock HPA */
1384	rc = ata_set_max_sectors(dev, native_sectors);
1385	if (rc == -EACCES) {
1386		/* if device aborted the command, skip HPA resizing */
1387		ata_dev_warn(dev,
1388			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1389			     (unsigned long long)sectors,
1390			     (unsigned long long)native_sectors);
1391		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1392		return 0;
1393	} else if (rc)
1394		return rc;
1395
1396	/* re-read IDENTIFY data */
1397	rc = ata_dev_reread_id(dev, 0);
1398	if (rc) {
1399		ata_dev_err(dev,
1400			    "failed to re-read IDENTIFY data after HPA resizing\n");
1401		return rc;
1402	}
1403
1404	if (print_info) {
1405		u64 new_sectors = ata_id_n_sectors(dev->id);
1406		ata_dev_info(dev,
1407			"HPA unlocked: %llu -> %llu, native %llu\n",
1408			(unsigned long long)sectors,
1409			(unsigned long long)new_sectors,
1410			(unsigned long long)native_sectors);
1411	}
1412
1413	return 0;
1414}
1415
1416/**
1417 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1418 *	@id: IDENTIFY DEVICE page to dump
1419 *
1420 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1421 *	page.
1422 *
1423 *	LOCKING:
1424 *	caller.
1425 */
1426
1427static inline void ata_dump_id(const u16 *id)
1428{
1429	DPRINTK("49==0x%04x  "
1430		"53==0x%04x  "
1431		"63==0x%04x  "
1432		"64==0x%04x  "
1433		"75==0x%04x  \n",
1434		id[49],
1435		id[53],
1436		id[63],
1437		id[64],
1438		id[75]);
1439	DPRINTK("80==0x%04x  "
1440		"81==0x%04x  "
1441		"82==0x%04x  "
1442		"83==0x%04x  "
1443		"84==0x%04x  \n",
1444		id[80],
1445		id[81],
1446		id[82],
1447		id[83],
1448		id[84]);
1449	DPRINTK("88==0x%04x  "
1450		"93==0x%04x\n",
1451		id[88],
1452		id[93]);
1453}
1454
1455/**
1456 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1457 *	@id: IDENTIFY data to compute xfer mask from
1458 *
1459 *	Compute the xfermask for this device. This is not as trivial
1460 *	as it seems if we must consider early devices correctly.
1461 *
1462 *	FIXME: pre IDE drive timing (do we care ?).
1463 *
1464 *	LOCKING:
1465 *	None.
1466 *
1467 *	RETURNS:
1468 *	Computed xfermask
1469 */
1470unsigned long ata_id_xfermask(const u16 *id)
1471{
1472	unsigned long pio_mask, mwdma_mask, udma_mask;
1473
1474	/* Usual case. Word 53 indicates word 64 is valid */
1475	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1476		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1477		pio_mask <<= 3;
1478		pio_mask |= 0x7;
1479	} else {
1480		/* If word 64 isn't valid then Word 51 high byte holds
1481		 * the PIO timing number for the maximum. Turn it into
1482		 * a mask.
1483		 */
1484		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1485		if (mode < 5)	/* Valid PIO range */
1486			pio_mask = (2 << mode) - 1;
1487		else
1488			pio_mask = 1;
1489
1490		/* But wait.. there's more. Design your standards by
1491		 * committee and you too can get a free iordy field to
1492		 * process. However its the speeds not the modes that
1493		 * are supported... Note drivers using the timing API
1494		 * will get this right anyway
1495		 */
1496	}
1497
1498	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1499
1500	if (ata_id_is_cfa(id)) {
1501		/*
1502		 *	Process compact flash extended modes
1503		 */
1504		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1505		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1506
1507		if (pio)
1508			pio_mask |= (1 << 5);
1509		if (pio > 1)
1510			pio_mask |= (1 << 6);
1511		if (dma)
1512			mwdma_mask |= (1 << 3);
1513		if (dma > 1)
1514			mwdma_mask |= (1 << 4);
1515	}
1516
1517	udma_mask = 0;
1518	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1519		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1520
1521	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1522}
1523
1524static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1525{
1526	struct completion *waiting = qc->private_data;
1527
1528	complete(waiting);
1529}
1530
1531/**
1532 *	ata_exec_internal_sg - execute libata internal command
1533 *	@dev: Device to which the command is sent
1534 *	@tf: Taskfile registers for the command and the result
1535 *	@cdb: CDB for packet command
1536 *	@dma_dir: Data transfer direction of the command
1537 *	@sgl: sg list for the data buffer of the command
1538 *	@n_elem: Number of sg entries
1539 *	@timeout: Timeout in msecs (0 for default)
1540 *
1541 *	Executes libata internal command with timeout.  @tf contains
1542 *	command on entry and result on return.  Timeout and error
1543 *	conditions are reported via return value.  No recovery action
1544 *	is taken after a command times out.  It's caller's duty to
1545 *	clean up after timeout.
1546 *
1547 *	LOCKING:
1548 *	None.  Should be called with kernel context, might sleep.
1549 *
1550 *	RETURNS:
1551 *	Zero on success, AC_ERR_* mask on failure
1552 */
1553unsigned ata_exec_internal_sg(struct ata_device *dev,
1554			      struct ata_taskfile *tf, const u8 *cdb,
1555			      int dma_dir, struct scatterlist *sgl,
1556			      unsigned int n_elem, unsigned long timeout)
1557{
1558	struct ata_link *link = dev->link;
1559	struct ata_port *ap = link->ap;
1560	u8 command = tf->command;
1561	int auto_timeout = 0;
1562	struct ata_queued_cmd *qc;
1563	unsigned int tag, preempted_tag;
1564	u32 preempted_sactive, preempted_qc_active;
1565	int preempted_nr_active_links;
1566	DECLARE_COMPLETION_ONSTACK(wait);
1567	unsigned long flags;
1568	unsigned int err_mask;
1569	int rc;
1570
1571	spin_lock_irqsave(ap->lock, flags);
1572
1573	/* no internal command while frozen */
1574	if (ap->pflags & ATA_PFLAG_FROZEN) {
1575		spin_unlock_irqrestore(ap->lock, flags);
1576		return AC_ERR_SYSTEM;
1577	}
1578
1579	/* initialize internal qc */
1580
1581	/* XXX: Tag 0 is used for drivers with legacy EH as some
1582	 * drivers choke if any other tag is given.  This breaks
1583	 * ata_tag_internal() test for those drivers.  Don't use new
1584	 * EH stuff without converting to it.
1585	 */
1586	if (ap->ops->error_handler)
1587		tag = ATA_TAG_INTERNAL;
1588	else
1589		tag = 0;
1590
1591	qc = __ata_qc_from_tag(ap, tag);
1592
1593	qc->tag = tag;
1594	qc->scsicmd = NULL;
1595	qc->ap = ap;
1596	qc->dev = dev;
1597	ata_qc_reinit(qc);
1598
1599	preempted_tag = link->active_tag;
1600	preempted_sactive = link->sactive;
1601	preempted_qc_active = ap->qc_active;
1602	preempted_nr_active_links = ap->nr_active_links;
1603	link->active_tag = ATA_TAG_POISON;
1604	link->sactive = 0;
1605	ap->qc_active = 0;
1606	ap->nr_active_links = 0;
1607
1608	/* prepare & issue qc */
1609	qc->tf = *tf;
1610	if (cdb)
1611		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1612
1613	/* some SATA bridges need us to indicate data xfer direction */
1614	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1615	    dma_dir == DMA_FROM_DEVICE)
1616		qc->tf.feature |= ATAPI_DMADIR;
1617
1618	qc->flags |= ATA_QCFLAG_RESULT_TF;
1619	qc->dma_dir = dma_dir;
1620	if (dma_dir != DMA_NONE) {
1621		unsigned int i, buflen = 0;
1622		struct scatterlist *sg;
1623
1624		for_each_sg(sgl, sg, n_elem, i)
1625			buflen += sg->length;
1626
1627		ata_sg_init(qc, sgl, n_elem);
1628		qc->nbytes = buflen;
1629	}
1630
1631	qc->private_data = &wait;
1632	qc->complete_fn = ata_qc_complete_internal;
1633
1634	ata_qc_issue(qc);
1635
1636	spin_unlock_irqrestore(ap->lock, flags);
1637
1638	if (!timeout) {
1639		if (ata_probe_timeout)
1640			timeout = ata_probe_timeout * 1000;
1641		else {
1642			timeout = ata_internal_cmd_timeout(dev, command);
1643			auto_timeout = 1;
1644		}
1645	}
1646
1647	if (ap->ops->error_handler)
1648		ata_eh_release(ap);
1649
1650	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1651
1652	if (ap->ops->error_handler)
1653		ata_eh_acquire(ap);
1654
1655	ata_sff_flush_pio_task(ap);
1656
1657	if (!rc) {
1658		spin_lock_irqsave(ap->lock, flags);
1659
1660		/* We're racing with irq here.  If we lose, the
1661		 * following test prevents us from completing the qc
1662		 * twice.  If we win, the port is frozen and will be
1663		 * cleaned up by ->post_internal_cmd().
1664		 */
1665		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1666			qc->err_mask |= AC_ERR_TIMEOUT;
1667
1668			if (ap->ops->error_handler)
1669				ata_port_freeze(ap);
1670			else
1671				ata_qc_complete(qc);
1672
1673			if (ata_msg_warn(ap))
1674				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1675					     command);
1676		}
1677
1678		spin_unlock_irqrestore(ap->lock, flags);
1679	}
1680
1681	/* do post_internal_cmd */
1682	if (ap->ops->post_internal_cmd)
1683		ap->ops->post_internal_cmd(qc);
1684
1685	/* perform minimal error analysis */
1686	if (qc->flags & ATA_QCFLAG_FAILED) {
1687		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1688			qc->err_mask |= AC_ERR_DEV;
1689
1690		if (!qc->err_mask)
1691			qc->err_mask |= AC_ERR_OTHER;
1692
1693		if (qc->err_mask & ~AC_ERR_OTHER)
1694			qc->err_mask &= ~AC_ERR_OTHER;
1695	}
1696
1697	/* finish up */
1698	spin_lock_irqsave(ap->lock, flags);
1699
1700	*tf = qc->result_tf;
1701	err_mask = qc->err_mask;
1702
1703	ata_qc_free(qc);
1704	link->active_tag = preempted_tag;
1705	link->sactive = preempted_sactive;
1706	ap->qc_active = preempted_qc_active;
1707	ap->nr_active_links = preempted_nr_active_links;
1708
1709	spin_unlock_irqrestore(ap->lock, flags);
1710
1711	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1712		ata_internal_cmd_timed_out(dev, command);
1713
1714	return err_mask;
1715}
1716
1717/**
1718 *	ata_exec_internal - execute libata internal command
1719 *	@dev: Device to which the command is sent
1720 *	@tf: Taskfile registers for the command and the result
1721 *	@cdb: CDB for packet command
1722 *	@dma_dir: Data transfer direction of the command
1723 *	@buf: Data buffer of the command
1724 *	@buflen: Length of data buffer
1725 *	@timeout: Timeout in msecs (0 for default)
1726 *
1727 *	Wrapper around ata_exec_internal_sg() which takes simple
1728 *	buffer instead of sg list.
1729 *
1730 *	LOCKING:
1731 *	None.  Should be called with kernel context, might sleep.
1732 *
1733 *	RETURNS:
1734 *	Zero on success, AC_ERR_* mask on failure
1735 */
1736unsigned ata_exec_internal(struct ata_device *dev,
1737			   struct ata_taskfile *tf, const u8 *cdb,
1738			   int dma_dir, void *buf, unsigned int buflen,
1739			   unsigned long timeout)
1740{
1741	struct scatterlist *psg = NULL, sg;
1742	unsigned int n_elem = 0;
1743
1744	if (dma_dir != DMA_NONE) {
1745		WARN_ON(!buf);
1746		sg_init_one(&sg, buf, buflen);
1747		psg = &sg;
1748		n_elem++;
1749	}
1750
1751	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1752				    timeout);
1753}
1754
1755/**
1756 *	ata_pio_need_iordy	-	check if iordy needed
1757 *	@adev: ATA device
1758 *
1759 *	Check if the current speed of the device requires IORDY. Used
1760 *	by various controllers for chip configuration.
1761 */
1762unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1763{
1764	/* Don't set IORDY if we're preparing for reset.  IORDY may
1765	 * lead to controller lock up on certain controllers if the
1766	 * port is not occupied.  See bko#11703 for details.
1767	 */
1768	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1769		return 0;
1770	/* Controller doesn't support IORDY.  Probably a pointless
1771	 * check as the caller should know this.
1772	 */
1773	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1774		return 0;
1775	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1776	if (ata_id_is_cfa(adev->id)
1777	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1778		return 0;
1779	/* PIO3 and higher it is mandatory */
1780	if (adev->pio_mode > XFER_PIO_2)
1781		return 1;
1782	/* We turn it on when possible */
1783	if (ata_id_has_iordy(adev->id))
1784		return 1;
1785	return 0;
1786}
1787
1788/**
1789 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1790 *	@adev: ATA device
1791 *
1792 *	Compute the highest mode possible if we are not using iordy. Return
1793 *	-1 if no iordy mode is available.
1794 */
1795static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1796{
1797	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1798	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1799		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1800		/* Is the speed faster than the drive allows non IORDY ? */
1801		if (pio) {
1802			/* This is cycle times not frequency - watch the logic! */
1803			if (pio > 240)	/* PIO2 is 240nS per cycle */
1804				return 3 << ATA_SHIFT_PIO;
1805			return 7 << ATA_SHIFT_PIO;
1806		}
1807	}
1808	return 3 << ATA_SHIFT_PIO;
1809}
1810
1811/**
1812 *	ata_do_dev_read_id		-	default ID read method
1813 *	@dev: device
1814 *	@tf: proposed taskfile
1815 *	@id: data buffer
1816 *
1817 *	Issue the identify taskfile and hand back the buffer containing
1818 *	identify data. For some RAID controllers and for pre ATA devices
1819 *	this function is wrapped or replaced by the driver
1820 */
1821unsigned int ata_do_dev_read_id(struct ata_device *dev,
1822					struct ata_taskfile *tf, u16 *id)
1823{
1824	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1825				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1826}
1827
1828/**
1829 *	ata_dev_read_id - Read ID data from the specified device
1830 *	@dev: target device
1831 *	@p_class: pointer to class of the target device (may be changed)
1832 *	@flags: ATA_READID_* flags
1833 *	@id: buffer to read IDENTIFY data into
1834 *
1835 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1836 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1837 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1838 *	for pre-ATA4 drives.
1839 *
1840 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1841 *	now we abort if we hit that case.
1842 *
1843 *	LOCKING:
1844 *	Kernel thread context (may sleep)
1845 *
1846 *	RETURNS:
1847 *	0 on success, -errno otherwise.
1848 */
1849int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1850		    unsigned int flags, u16 *id)
1851{
1852	struct ata_port *ap = dev->link->ap;
1853	unsigned int class = *p_class;
1854	struct ata_taskfile tf;
1855	unsigned int err_mask = 0;
1856	const char *reason;
1857	bool is_semb = class == ATA_DEV_SEMB;
1858	int may_fallback = 1, tried_spinup = 0;
1859	int rc;
1860
1861	if (ata_msg_ctl(ap))
1862		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1863
1864retry:
1865	ata_tf_init(dev, &tf);
1866
1867	switch (class) {
1868	case ATA_DEV_SEMB:
1869		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1870	case ATA_DEV_ATA:
1871	case ATA_DEV_ZAC:
1872		tf.command = ATA_CMD_ID_ATA;
1873		break;
1874	case ATA_DEV_ATAPI:
1875		tf.command = ATA_CMD_ID_ATAPI;
1876		break;
1877	default:
1878		rc = -ENODEV;
1879		reason = "unsupported class";
1880		goto err_out;
1881	}
1882
1883	tf.protocol = ATA_PROT_PIO;
1884
1885	/* Some devices choke if TF registers contain garbage.  Make
1886	 * sure those are properly initialized.
1887	 */
1888	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1889
1890	/* Device presence detection is unreliable on some
1891	 * controllers.  Always poll IDENTIFY if available.
1892	 */
1893	tf.flags |= ATA_TFLAG_POLLING;
1894
1895	if (ap->ops->read_id)
1896		err_mask = ap->ops->read_id(dev, &tf, id);
1897	else
1898		err_mask = ata_do_dev_read_id(dev, &tf, id);
1899
1900	if (err_mask) {
1901		if (err_mask & AC_ERR_NODEV_HINT) {
1902			ata_dev_dbg(dev, "NODEV after polling detection\n");
1903			return -ENOENT;
1904		}
1905
1906		if (is_semb) {
1907			ata_dev_info(dev,
1908		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1909			/* SEMB is not supported yet */
1910			*p_class = ATA_DEV_SEMB_UNSUP;
1911			return 0;
1912		}
1913
1914		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1915			/* Device or controller might have reported
1916			 * the wrong device class.  Give a shot at the
1917			 * other IDENTIFY if the current one is
1918			 * aborted by the device.
1919			 */
1920			if (may_fallback) {
1921				may_fallback = 0;
1922
1923				if (class == ATA_DEV_ATA)
1924					class = ATA_DEV_ATAPI;
1925				else
1926					class = ATA_DEV_ATA;
1927				goto retry;
1928			}
1929
1930			/* Control reaches here iff the device aborted
1931			 * both flavors of IDENTIFYs which happens
1932			 * sometimes with phantom devices.
1933			 */
1934			ata_dev_dbg(dev,
1935				    "both IDENTIFYs aborted, assuming NODEV\n");
1936			return -ENOENT;
1937		}
1938
1939		rc = -EIO;
1940		reason = "I/O error";
1941		goto err_out;
1942	}
1943
1944	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1945		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1946			    "class=%d may_fallback=%d tried_spinup=%d\n",
1947			    class, may_fallback, tried_spinup);
1948		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1949			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1950	}
1951
1952	/* Falling back doesn't make sense if ID data was read
1953	 * successfully at least once.
1954	 */
1955	may_fallback = 0;
1956
1957	swap_buf_le16(id, ATA_ID_WORDS);
1958
1959	/* sanity check */
1960	rc = -EINVAL;
1961	reason = "device reports invalid type";
1962
1963	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1964		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1965			goto err_out;
1966		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1967							ata_id_is_ata(id)) {
1968			ata_dev_dbg(dev,
1969				"host indicates ignore ATA devices, ignored\n");
1970			return -ENOENT;
1971		}
1972	} else {
1973		if (ata_id_is_ata(id))
1974			goto err_out;
1975	}
1976
1977	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1978		tried_spinup = 1;
1979		/*
1980		 * Drive powered-up in standby mode, and requires a specific
1981		 * SET_FEATURES spin-up subcommand before it will accept
1982		 * anything other than the original IDENTIFY command.
1983		 */
1984		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1985		if (err_mask && id[2] != 0x738c) {
1986			rc = -EIO;
1987			reason = "SPINUP failed";
1988			goto err_out;
1989		}
1990		/*
1991		 * If the drive initially returned incomplete IDENTIFY info,
1992		 * we now must reissue the IDENTIFY command.
1993		 */
1994		if (id[2] == 0x37c8)
1995			goto retry;
1996	}
1997
1998	if ((flags & ATA_READID_POSTRESET) &&
1999	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2000		/*
2001		 * The exact sequence expected by certain pre-ATA4 drives is:
2002		 * SRST RESET
2003		 * IDENTIFY (optional in early ATA)
2004		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2005		 * anything else..
2006		 * Some drives were very specific about that exact sequence.
2007		 *
2008		 * Note that ATA4 says lba is mandatory so the second check
2009		 * should never trigger.
2010		 */
2011		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2012			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2013			if (err_mask) {
2014				rc = -EIO;
2015				reason = "INIT_DEV_PARAMS failed";
2016				goto err_out;
2017			}
2018
2019			/* current CHS translation info (id[53-58]) might be
2020			 * changed. reread the identify device info.
2021			 */
2022			flags &= ~ATA_READID_POSTRESET;
2023			goto retry;
2024		}
2025	}
2026
2027	*p_class = class;
2028
2029	return 0;
2030
2031 err_out:
2032	if (ata_msg_warn(ap))
2033		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2034			     reason, err_mask);
2035	return rc;
2036}
2037
2038static int ata_do_link_spd_horkage(struct ata_device *dev)
2039{
2040	struct ata_link *plink = ata_dev_phys_link(dev);
2041	u32 target, target_limit;
2042
2043	if (!sata_scr_valid(plink))
2044		return 0;
2045
2046	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2047		target = 1;
2048	else
2049		return 0;
2050
2051	target_limit = (1 << target) - 1;
2052
2053	/* if already on stricter limit, no need to push further */
2054	if (plink->sata_spd_limit <= target_limit)
2055		return 0;
2056
2057	plink->sata_spd_limit = target_limit;
2058
2059	/* Request another EH round by returning -EAGAIN if link is
2060	 * going faster than the target speed.  Forward progress is
2061	 * guaranteed by setting sata_spd_limit to target_limit above.
2062	 */
2063	if (plink->sata_spd > target) {
2064		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2065			     sata_spd_string(target));
2066		return -EAGAIN;
2067	}
2068	return 0;
2069}
2070
2071static inline u8 ata_dev_knobble(struct ata_device *dev)
2072{
2073	struct ata_port *ap = dev->link->ap;
2074
2075	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2076		return 0;
2077
2078	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2079}
2080
2081static int ata_dev_config_ncq(struct ata_device *dev,
2082			       char *desc, size_t desc_sz)
2083{
2084	struct ata_port *ap = dev->link->ap;
2085	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2086	unsigned int err_mask;
2087	char *aa_desc = "";
2088
2089	if (!ata_id_has_ncq(dev->id)) {
2090		desc[0] = '\0';
2091		return 0;
2092	}
2093	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2094		snprintf(desc, desc_sz, "NCQ (not used)");
2095		return 0;
2096	}
2097	if (ap->flags & ATA_FLAG_NCQ) {
2098		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2099		dev->flags |= ATA_DFLAG_NCQ;
2100	}
2101
2102	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2103		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2104		ata_id_has_fpdma_aa(dev->id)) {
2105		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2106			SATA_FPDMA_AA);
2107		if (err_mask) {
2108			ata_dev_err(dev,
2109				    "failed to enable AA (error_mask=0x%x)\n",
2110				    err_mask);
2111			if (err_mask != AC_ERR_DEV) {
2112				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2113				return -EIO;
2114			}
2115		} else
2116			aa_desc = ", AA";
2117	}
2118
2119	if (hdepth >= ddepth)
2120		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2121	else
2122		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2123			ddepth, aa_desc);
2124
2125	if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2126	    ata_id_has_ncq_send_and_recv(dev->id)) {
2127		err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2128					     0, ap->sector_buf, 1);
2129		if (err_mask) {
2130			ata_dev_dbg(dev,
2131				    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2132				    err_mask);
2133		} else {
2134			u8 *cmds = dev->ncq_send_recv_cmds;
2135
2136			dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2137			memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2138
2139			if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2140				ata_dev_dbg(dev, "disabling queued TRIM support\n");
2141				cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2142					~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2143			}
2144		}
2145	}
2146
2147	return 0;
2148}
2149
2150/**
2151 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2152 *	@dev: Target device to configure
2153 *
2154 *	Configure @dev according to @dev->id.  Generic and low-level
2155 *	driver specific fixups are also applied.
2156 *
2157 *	LOCKING:
2158 *	Kernel thread context (may sleep)
2159 *
2160 *	RETURNS:
2161 *	0 on success, -errno otherwise
2162 */
2163int ata_dev_configure(struct ata_device *dev)
2164{
2165	struct ata_port *ap = dev->link->ap;
2166	struct ata_eh_context *ehc = &dev->link->eh_context;
2167	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2168	const u16 *id = dev->id;
2169	unsigned long xfer_mask;
2170	unsigned int err_mask;
2171	char revbuf[7];		/* XYZ-99\0 */
2172	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2173	char modelbuf[ATA_ID_PROD_LEN+1];
2174	int rc;
2175
2176	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2177		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2178		return 0;
2179	}
2180
2181	if (ata_msg_probe(ap))
2182		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2183
2184	/* set horkage */
2185	dev->horkage |= ata_dev_blacklisted(dev);
2186	ata_force_horkage(dev);
2187
2188	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2189		ata_dev_info(dev, "unsupported device, disabling\n");
2190		ata_dev_disable(dev);
2191		return 0;
2192	}
2193
2194	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2195	    dev->class == ATA_DEV_ATAPI) {
2196		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2197			     atapi_enabled ? "not supported with this driver"
2198			     : "disabled");
2199		ata_dev_disable(dev);
2200		return 0;
2201	}
2202
2203	rc = ata_do_link_spd_horkage(dev);
2204	if (rc)
2205		return rc;
2206
2207	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2208	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2209	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2210		dev->horkage |= ATA_HORKAGE_NOLPM;
2211
2212	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2213		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2214		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2215	}
2216
2217	/* let ACPI work its magic */
2218	rc = ata_acpi_on_devcfg(dev);
2219	if (rc)
2220		return rc;
2221
2222	/* massage HPA, do it early as it might change IDENTIFY data */
2223	rc = ata_hpa_resize(dev);
2224	if (rc)
2225		return rc;
2226
2227	/* print device capabilities */
2228	if (ata_msg_probe(ap))
2229		ata_dev_dbg(dev,
2230			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2231			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2232			    __func__,
2233			    id[49], id[82], id[83], id[84],
2234			    id[85], id[86], id[87], id[88]);
2235
2236	/* initialize to-be-configured parameters */
2237	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2238	dev->max_sectors = 0;
2239	dev->cdb_len = 0;
2240	dev->n_sectors = 0;
2241	dev->cylinders = 0;
2242	dev->heads = 0;
2243	dev->sectors = 0;
2244	dev->multi_count = 0;
2245
2246	/*
2247	 * common ATA, ATAPI feature tests
2248	 */
2249
2250	/* find max transfer mode; for printk only */
2251	xfer_mask = ata_id_xfermask(id);
2252
2253	if (ata_msg_probe(ap))
2254		ata_dump_id(id);
2255
2256	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2257	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2258			sizeof(fwrevbuf));
2259
2260	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2261			sizeof(modelbuf));
2262
2263	/* ATA-specific feature tests */
2264	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2265		if (ata_id_is_cfa(id)) {
2266			/* CPRM may make this media unusable */
2267			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2268				ata_dev_warn(dev,
2269	"supports DRM functions and may not be fully accessible\n");
2270			snprintf(revbuf, 7, "CFA");
2271		} else {
2272			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2273			/* Warn the user if the device has TPM extensions */
2274			if (ata_id_has_tpm(id))
2275				ata_dev_warn(dev,
2276	"supports DRM functions and may not be fully accessible\n");
2277		}
2278
2279		dev->n_sectors = ata_id_n_sectors(id);
2280
2281		/* get current R/W Multiple count setting */
2282		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2283			unsigned int max = dev->id[47] & 0xff;
2284			unsigned int cnt = dev->id[59] & 0xff;
2285			/* only recognize/allow powers of two here */
2286			if (is_power_of_2(max) && is_power_of_2(cnt))
2287				if (cnt <= max)
2288					dev->multi_count = cnt;
2289		}
2290
2291		if (ata_id_has_lba(id)) {
2292			const char *lba_desc;
2293			char ncq_desc[24];
2294
2295			lba_desc = "LBA";
2296			dev->flags |= ATA_DFLAG_LBA;
2297			if (ata_id_has_lba48(id)) {
2298				dev->flags |= ATA_DFLAG_LBA48;
2299				lba_desc = "LBA48";
2300
2301				if (dev->n_sectors >= (1UL << 28) &&
2302				    ata_id_has_flush_ext(id))
2303					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2304			}
2305
2306			/* config NCQ */
2307			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2308			if (rc)
2309				return rc;
2310
2311			/* print device info to dmesg */
2312			if (ata_msg_drv(ap) && print_info) {
2313				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2314					     revbuf, modelbuf, fwrevbuf,
2315					     ata_mode_string(xfer_mask));
2316				ata_dev_info(dev,
2317					     "%llu sectors, multi %u: %s %s\n",
2318					(unsigned long long)dev->n_sectors,
2319					dev->multi_count, lba_desc, ncq_desc);
2320			}
2321		} else {
2322			/* CHS */
2323
2324			/* Default translation */
2325			dev->cylinders	= id[1];
2326			dev->heads	= id[3];
2327			dev->sectors	= id[6];
2328
2329			if (ata_id_current_chs_valid(id)) {
2330				/* Current CHS translation is valid. */
2331				dev->cylinders = id[54];
2332				dev->heads     = id[55];
2333				dev->sectors   = id[56];
2334			}
2335
2336			/* print device info to dmesg */
2337			if (ata_msg_drv(ap) && print_info) {
2338				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2339					     revbuf,	modelbuf, fwrevbuf,
2340					     ata_mode_string(xfer_mask));
2341				ata_dev_info(dev,
2342					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2343					     (unsigned long long)dev->n_sectors,
2344					     dev->multi_count, dev->cylinders,
2345					     dev->heads, dev->sectors);
2346			}
2347		}
2348
2349		/* Check and mark DevSlp capability. Get DevSlp timing variables
2350		 * from SATA Settings page of Identify Device Data Log.
2351		 */
2352		if (ata_id_has_devslp(dev->id)) {
2353			u8 *sata_setting = ap->sector_buf;
2354			int i, j;
2355
2356			dev->flags |= ATA_DFLAG_DEVSLP;
2357			err_mask = ata_read_log_page(dev,
2358						     ATA_LOG_SATA_ID_DEV_DATA,
2359						     ATA_LOG_SATA_SETTINGS,
2360						     sata_setting,
2361						     1);
2362			if (err_mask)
2363				ata_dev_dbg(dev,
2364					    "failed to get Identify Device Data, Emask 0x%x\n",
2365					    err_mask);
2366			else
2367				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2368					j = ATA_LOG_DEVSLP_OFFSET + i;
2369					dev->devslp_timing[i] = sata_setting[j];
2370				}
2371		}
2372
2373		dev->cdb_len = 16;
2374	}
2375
2376	/* ATAPI-specific feature tests */
2377	else if (dev->class == ATA_DEV_ATAPI) {
2378		const char *cdb_intr_string = "";
2379		const char *atapi_an_string = "";
2380		const char *dma_dir_string = "";
2381		u32 sntf;
2382
2383		rc = atapi_cdb_len(id);
2384		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2385			if (ata_msg_warn(ap))
2386				ata_dev_warn(dev, "unsupported CDB len\n");
2387			rc = -EINVAL;
2388			goto err_out_nosup;
2389		}
2390		dev->cdb_len = (unsigned int) rc;
2391
2392		/* Enable ATAPI AN if both the host and device have
2393		 * the support.  If PMP is attached, SNTF is required
2394		 * to enable ATAPI AN to discern between PHY status
2395		 * changed notifications and ATAPI ANs.
2396		 */
2397		if (atapi_an &&
2398		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2399		    (!sata_pmp_attached(ap) ||
2400		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2401			/* issue SET feature command to turn this on */
2402			err_mask = ata_dev_set_feature(dev,
2403					SETFEATURES_SATA_ENABLE, SATA_AN);
2404			if (err_mask)
2405				ata_dev_err(dev,
2406					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2407					    err_mask);
2408			else {
2409				dev->flags |= ATA_DFLAG_AN;
2410				atapi_an_string = ", ATAPI AN";
2411			}
2412		}
2413
2414		if (ata_id_cdb_intr(dev->id)) {
2415			dev->flags |= ATA_DFLAG_CDB_INTR;
2416			cdb_intr_string = ", CDB intr";
2417		}
2418
2419		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2420			dev->flags |= ATA_DFLAG_DMADIR;
2421			dma_dir_string = ", DMADIR";
2422		}
2423
2424		if (ata_id_has_da(dev->id)) {
2425			dev->flags |= ATA_DFLAG_DA;
2426			zpodd_init(dev);
2427		}
2428
2429		/* print device info to dmesg */
2430		if (ata_msg_drv(ap) && print_info)
2431			ata_dev_info(dev,
2432				     "ATAPI: %s, %s, max %s%s%s%s\n",
2433				     modelbuf, fwrevbuf,
2434				     ata_mode_string(xfer_mask),
2435				     cdb_intr_string, atapi_an_string,
2436				     dma_dir_string);
2437	}
2438
2439	/* determine max_sectors */
2440	dev->max_sectors = ATA_MAX_SECTORS;
2441	if (dev->flags & ATA_DFLAG_LBA48)
2442		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2443
2444	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2445	   200 sectors */
2446	if (ata_dev_knobble(dev)) {
2447		if (ata_msg_drv(ap) && print_info)
2448			ata_dev_info(dev, "applying bridge limits\n");
2449		dev->udma_mask &= ATA_UDMA5;
2450		dev->max_sectors = ATA_MAX_SECTORS;
2451	}
2452
2453	if ((dev->class == ATA_DEV_ATAPI) &&
2454	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2455		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2456		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2457	}
2458
2459	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2460		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2461					 dev->max_sectors);
2462
2463	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2464		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2465					 dev->max_sectors);
2466
2467	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2468		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2469
2470	if (ap->ops->dev_config)
2471		ap->ops->dev_config(dev);
2472
2473	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2474		/* Let the user know. We don't want to disallow opens for
2475		   rescue purposes, or in case the vendor is just a blithering
2476		   idiot. Do this after the dev_config call as some controllers
2477		   with buggy firmware may want to avoid reporting false device
2478		   bugs */
2479
2480		if (print_info) {
2481			ata_dev_warn(dev,
2482"Drive reports diagnostics failure. This may indicate a drive\n");
2483			ata_dev_warn(dev,
2484"fault or invalid emulation. Contact drive vendor for information.\n");
2485		}
2486	}
2487
2488	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2489		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2490		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2491	}
2492
2493	return 0;
2494
2495err_out_nosup:
2496	if (ata_msg_probe(ap))
2497		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2498	return rc;
2499}
2500
2501/**
2502 *	ata_cable_40wire	-	return 40 wire cable type
2503 *	@ap: port
2504 *
2505 *	Helper method for drivers which want to hardwire 40 wire cable
2506 *	detection.
2507 */
2508
2509int ata_cable_40wire(struct ata_port *ap)
2510{
2511	return ATA_CBL_PATA40;
2512}
2513
2514/**
2515 *	ata_cable_80wire	-	return 80 wire cable type
2516 *	@ap: port
2517 *
2518 *	Helper method for drivers which want to hardwire 80 wire cable
2519 *	detection.
2520 */
2521
2522int ata_cable_80wire(struct ata_port *ap)
2523{
2524	return ATA_CBL_PATA80;
2525}
2526
2527/**
2528 *	ata_cable_unknown	-	return unknown PATA cable.
2529 *	@ap: port
2530 *
2531 *	Helper method for drivers which have no PATA cable detection.
2532 */
2533
2534int ata_cable_unknown(struct ata_port *ap)
2535{
2536	return ATA_CBL_PATA_UNK;
2537}
2538
2539/**
2540 *	ata_cable_ignore	-	return ignored PATA cable.
2541 *	@ap: port
2542 *
2543 *	Helper method for drivers which don't use cable type to limit
2544 *	transfer mode.
2545 */
2546int ata_cable_ignore(struct ata_port *ap)
2547{
2548	return ATA_CBL_PATA_IGN;
2549}
2550
2551/**
2552 *	ata_cable_sata	-	return SATA cable type
2553 *	@ap: port
2554 *
2555 *	Helper method for drivers which have SATA cables
2556 */
2557
2558int ata_cable_sata(struct ata_port *ap)
2559{
2560	return ATA_CBL_SATA;
2561}
2562
2563/**
2564 *	ata_bus_probe - Reset and probe ATA bus
2565 *	@ap: Bus to probe
2566 *
2567 *	Master ATA bus probing function.  Initiates a hardware-dependent
2568 *	bus reset, then attempts to identify any devices found on
2569 *	the bus.
2570 *
2571 *	LOCKING:
2572 *	PCI/etc. bus probe sem.
2573 *
2574 *	RETURNS:
2575 *	Zero on success, negative errno otherwise.
2576 */
2577
2578int ata_bus_probe(struct ata_port *ap)
2579{
2580	unsigned int classes[ATA_MAX_DEVICES];
2581	int tries[ATA_MAX_DEVICES];
2582	int rc;
2583	struct ata_device *dev;
2584
2585	ata_for_each_dev(dev, &ap->link, ALL)
2586		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2587
2588 retry:
2589	ata_for_each_dev(dev, &ap->link, ALL) {
2590		/* If we issue an SRST then an ATA drive (not ATAPI)
2591		 * may change configuration and be in PIO0 timing. If
2592		 * we do a hard reset (or are coming from power on)
2593		 * this is true for ATA or ATAPI. Until we've set a
2594		 * suitable controller mode we should not touch the
2595		 * bus as we may be talking too fast.
2596		 */
2597		dev->pio_mode = XFER_PIO_0;
2598		dev->dma_mode = 0xff;
2599
2600		/* If the controller has a pio mode setup function
2601		 * then use it to set the chipset to rights. Don't
2602		 * touch the DMA setup as that will be dealt with when
2603		 * configuring devices.
2604		 */
2605		if (ap->ops->set_piomode)
2606			ap->ops->set_piomode(ap, dev);
2607	}
2608
2609	/* reset and determine device classes */
2610	ap->ops->phy_reset(ap);
2611
2612	ata_for_each_dev(dev, &ap->link, ALL) {
2613		if (dev->class != ATA_DEV_UNKNOWN)
2614			classes[dev->devno] = dev->class;
2615		else
2616			classes[dev->devno] = ATA_DEV_NONE;
2617
2618		dev->class = ATA_DEV_UNKNOWN;
2619	}
2620
2621	/* read IDENTIFY page and configure devices. We have to do the identify
2622	   specific sequence bass-ackwards so that PDIAG- is released by
2623	   the slave device */
2624
2625	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2626		if (tries[dev->devno])
2627			dev->class = classes[dev->devno];
2628
2629		if (!ata_dev_enabled(dev))
2630			continue;
2631
2632		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2633				     dev->id);
2634		if (rc)
2635			goto fail;
2636	}
2637
2638	/* Now ask for the cable type as PDIAG- should have been released */
2639	if (ap->ops->cable_detect)
2640		ap->cbl = ap->ops->cable_detect(ap);
2641
2642	/* We may have SATA bridge glue hiding here irrespective of
2643	 * the reported cable types and sensed types.  When SATA
2644	 * drives indicate we have a bridge, we don't know which end
2645	 * of the link the bridge is which is a problem.
2646	 */
2647	ata_for_each_dev(dev, &ap->link, ENABLED)
2648		if (ata_id_is_sata(dev->id))
2649			ap->cbl = ATA_CBL_SATA;
2650
2651	/* After the identify sequence we can now set up the devices. We do
2652	   this in the normal order so that the user doesn't get confused */
2653
2654	ata_for_each_dev(dev, &ap->link, ENABLED) {
2655		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2656		rc = ata_dev_configure(dev);
2657		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2658		if (rc)
2659			goto fail;
2660	}
2661
2662	/* configure transfer mode */
2663	rc = ata_set_mode(&ap->link, &dev);
2664	if (rc)
2665		goto fail;
2666
2667	ata_for_each_dev(dev, &ap->link, ENABLED)
2668		return 0;
2669
2670	return -ENODEV;
2671
2672 fail:
2673	tries[dev->devno]--;
2674
2675	switch (rc) {
2676	case -EINVAL:
2677		/* eeek, something went very wrong, give up */
2678		tries[dev->devno] = 0;
2679		break;
2680
2681	case -ENODEV:
2682		/* give it just one more chance */
2683		tries[dev->devno] = min(tries[dev->devno], 1);
2684	case -EIO:
2685		if (tries[dev->devno] == 1) {
2686			/* This is the last chance, better to slow
2687			 * down than lose it.
2688			 */
2689			sata_down_spd_limit(&ap->link, 0);
2690			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2691		}
2692	}
2693
2694	if (!tries[dev->devno])
2695		ata_dev_disable(dev);
2696
2697	goto retry;
2698}
2699
2700/**
2701 *	sata_print_link_status - Print SATA link status
2702 *	@link: SATA link to printk link status about
2703 *
2704 *	This function prints link speed and status of a SATA link.
2705 *
2706 *	LOCKING:
2707 *	None.
2708 */
2709static void sata_print_link_status(struct ata_link *link)
2710{
2711	u32 sstatus, scontrol, tmp;
2712
2713	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2714		return;
2715	sata_scr_read(link, SCR_CONTROL, &scontrol);
2716
2717	if (ata_phys_link_online(link)) {
2718		tmp = (sstatus >> 4) & 0xf;
2719		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2720			      sata_spd_string(tmp), sstatus, scontrol);
2721	} else {
2722		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2723			      sstatus, scontrol);
2724	}
2725}
2726
2727/**
2728 *	ata_dev_pair		-	return other device on cable
2729 *	@adev: device
2730 *
2731 *	Obtain the other device on the same cable, or if none is
2732 *	present NULL is returned
2733 */
2734
2735struct ata_device *ata_dev_pair(struct ata_device *adev)
2736{
2737	struct ata_link *link = adev->link;
2738	struct ata_device *pair = &link->device[1 - adev->devno];
2739	if (!ata_dev_enabled(pair))
2740		return NULL;
2741	return pair;
2742}
2743
2744/**
2745 *	sata_down_spd_limit - adjust SATA spd limit downward
2746 *	@link: Link to adjust SATA spd limit for
2747 *	@spd_limit: Additional limit
2748 *
2749 *	Adjust SATA spd limit of @link downward.  Note that this
2750 *	function only adjusts the limit.  The change must be applied
2751 *	using sata_set_spd().
2752 *
2753 *	If @spd_limit is non-zero, the speed is limited to equal to or
2754 *	lower than @spd_limit if such speed is supported.  If
2755 *	@spd_limit is slower than any supported speed, only the lowest
2756 *	supported speed is allowed.
2757 *
2758 *	LOCKING:
2759 *	Inherited from caller.
2760 *
2761 *	RETURNS:
2762 *	0 on success, negative errno on failure
2763 */
2764int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2765{
2766	u32 sstatus, spd, mask;
2767	int rc, bit;
2768
2769	if (!sata_scr_valid(link))
2770		return -EOPNOTSUPP;
2771
2772	/* If SCR can be read, use it to determine the current SPD.
2773	 * If not, use cached value in link->sata_spd.
2774	 */
2775	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2776	if (rc == 0 && ata_sstatus_online(sstatus))
2777		spd = (sstatus >> 4) & 0xf;
2778	else
2779		spd = link->sata_spd;
2780
2781	mask = link->sata_spd_limit;
2782	if (mask <= 1)
2783		return -EINVAL;
2784
2785	/* unconditionally mask off the highest bit */
2786	bit = fls(mask) - 1;
2787	mask &= ~(1 << bit);
2788
2789	/* Mask off all speeds higher than or equal to the current
2790	 * one.  Force 1.5Gbps if current SPD is not available.
2791	 */
2792	if (spd > 1)
2793		mask &= (1 << (spd - 1)) - 1;
2794	else
2795		mask &= 1;
2796
2797	/* were we already at the bottom? */
2798	if (!mask)
2799		return -EINVAL;
2800
2801	if (spd_limit) {
2802		if (mask & ((1 << spd_limit) - 1))
2803			mask &= (1 << spd_limit) - 1;
2804		else {
2805			bit = ffs(mask) - 1;
2806			mask = 1 << bit;
2807		}
2808	}
2809
2810	link->sata_spd_limit = mask;
2811
2812	ata_link_warn(link, "limiting SATA link speed to %s\n",
2813		      sata_spd_string(fls(mask)));
2814
2815	return 0;
2816}
2817
2818static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2819{
2820	struct ata_link *host_link = &link->ap->link;
2821	u32 limit, target, spd;
2822
2823	limit = link->sata_spd_limit;
2824
2825	/* Don't configure downstream link faster than upstream link.
2826	 * It doesn't speed up anything and some PMPs choke on such
2827	 * configuration.
2828	 */
2829	if (!ata_is_host_link(link) && host_link->sata_spd)
2830		limit &= (1 << host_link->sata_spd) - 1;
2831
2832	if (limit == UINT_MAX)
2833		target = 0;
2834	else
2835		target = fls(limit);
2836
2837	spd = (*scontrol >> 4) & 0xf;
2838	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2839
2840	return spd != target;
2841}
2842
2843/**
2844 *	sata_set_spd_needed - is SATA spd configuration needed
2845 *	@link: Link in question
2846 *
2847 *	Test whether the spd limit in SControl matches
2848 *	@link->sata_spd_limit.  This function is used to determine
2849 *	whether hardreset is necessary to apply SATA spd
2850 *	configuration.
2851 *
2852 *	LOCKING:
2853 *	Inherited from caller.
2854 *
2855 *	RETURNS:
2856 *	1 if SATA spd configuration is needed, 0 otherwise.
2857 */
2858static int sata_set_spd_needed(struct ata_link *link)
2859{
2860	u32 scontrol;
2861
2862	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2863		return 1;
2864
2865	return __sata_set_spd_needed(link, &scontrol);
2866}
2867
2868/**
2869 *	sata_set_spd - set SATA spd according to spd limit
2870 *	@link: Link to set SATA spd for
2871 *
2872 *	Set SATA spd of @link according to sata_spd_limit.
2873 *
2874 *	LOCKING:
2875 *	Inherited from caller.
2876 *
2877 *	RETURNS:
2878 *	0 if spd doesn't need to be changed, 1 if spd has been
2879 *	changed.  Negative errno if SCR registers are inaccessible.
2880 */
2881int sata_set_spd(struct ata_link *link)
2882{
2883	u32 scontrol;
2884	int rc;
2885
2886	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2887		return rc;
2888
2889	if (!__sata_set_spd_needed(link, &scontrol))
2890		return 0;
2891
2892	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2893		return rc;
2894
2895	return 1;
2896}
2897
2898/*
2899 * This mode timing computation functionality is ported over from
2900 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2901 */
2902/*
2903 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2904 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2905 * for UDMA6, which is currently supported only by Maxtor drives.
2906 *
2907 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2908 */
2909
2910static const struct ata_timing ata_timing[] = {
2911/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2912	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2913	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2914	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2915	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2916	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2917	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2918	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2919
2920	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2921	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2922	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2923
2924	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2925	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2926	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2927	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2928	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2929
2930/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2931	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2932	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2933	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2934	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2935	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2936	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2937	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2938
2939	{ 0xFF }
2940};
2941
2942#define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2943#define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2944
2945static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2946{
2947	q->setup	= EZ(t->setup      * 1000,  T);
2948	q->act8b	= EZ(t->act8b      * 1000,  T);
2949	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2950	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2951	q->active	= EZ(t->active     * 1000,  T);
2952	q->recover	= EZ(t->recover    * 1000,  T);
2953	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2954	q->cycle	= EZ(t->cycle      * 1000,  T);
2955	q->udma		= EZ(t->udma       * 1000, UT);
2956}
2957
2958void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2959		      struct ata_timing *m, unsigned int what)
2960{
2961	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2962	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2963	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2964	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2965	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2966	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2967	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2968	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2969	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2970}
2971
2972const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2973{
2974	const struct ata_timing *t = ata_timing;
2975
2976	while (xfer_mode > t->mode)
2977		t++;
2978
2979	if (xfer_mode == t->mode)
2980		return t;
2981
2982	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2983			__func__, xfer_mode);
2984
2985	return NULL;
2986}
2987
2988int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2989		       struct ata_timing *t, int T, int UT)
2990{
2991	const u16 *id = adev->id;
2992	const struct ata_timing *s;
2993	struct ata_timing p;
2994
2995	/*
2996	 * Find the mode.
2997	 */
2998
2999	if (!(s = ata_timing_find_mode(speed)))
3000		return -EINVAL;
3001
3002	memcpy(t, s, sizeof(*s));
3003
3004	/*
3005	 * If the drive is an EIDE drive, it can tell us it needs extended
3006	 * PIO/MW_DMA cycle timing.
3007	 */
3008
3009	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3010		memset(&p, 0, sizeof(p));
3011
3012		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3013			if (speed <= XFER_PIO_2)
3014				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3015			else if ((speed <= XFER_PIO_4) ||
3016				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3017				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3018		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3019			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3020
3021		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3022	}
3023
3024	/*
3025	 * Convert the timing to bus clock counts.
3026	 */
3027
3028	ata_timing_quantize(t, t, T, UT);
3029
3030	/*
3031	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3032	 * S.M.A.R.T * and some other commands. We have to ensure that the
3033	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3034	 */
3035
3036	if (speed > XFER_PIO_6) {
3037		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3038		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3039	}
3040
3041	/*
3042	 * Lengthen active & recovery time so that cycle time is correct.
3043	 */
3044
3045	if (t->act8b + t->rec8b < t->cyc8b) {
3046		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3047		t->rec8b = t->cyc8b - t->act8b;
3048	}
3049
3050	if (t->active + t->recover < t->cycle) {
3051		t->active += (t->cycle - (t->active + t->recover)) / 2;
3052		t->recover = t->cycle - t->active;
3053	}
3054
3055	/* In a few cases quantisation may produce enough errors to
3056	   leave t->cycle too low for the sum of active and recovery
3057	   if so we must correct this */
3058	if (t->active + t->recover > t->cycle)
3059		t->cycle = t->active + t->recover;
3060
3061	return 0;
3062}
3063
3064/**
3065 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3066 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3067 *	@cycle: cycle duration in ns
3068 *
3069 *	Return matching xfer mode for @cycle.  The returned mode is of
3070 *	the transfer type specified by @xfer_shift.  If @cycle is too
3071 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3072 *	than the fastest known mode, the fasted mode is returned.
3073 *
3074 *	LOCKING:
3075 *	None.
3076 *
3077 *	RETURNS:
3078 *	Matching xfer_mode, 0xff if no match found.
3079 */
3080u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3081{
3082	u8 base_mode = 0xff, last_mode = 0xff;
3083	const struct ata_xfer_ent *ent;
3084	const struct ata_timing *t;
3085
3086	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3087		if (ent->shift == xfer_shift)
3088			base_mode = ent->base;
3089
3090	for (t = ata_timing_find_mode(base_mode);
3091	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3092		unsigned short this_cycle;
3093
3094		switch (xfer_shift) {
3095		case ATA_SHIFT_PIO:
3096		case ATA_SHIFT_MWDMA:
3097			this_cycle = t->cycle;
3098			break;
3099		case ATA_SHIFT_UDMA:
3100			this_cycle = t->udma;
3101			break;
3102		default:
3103			return 0xff;
3104		}
3105
3106		if (cycle > this_cycle)
3107			break;
3108
3109		last_mode = t->mode;
3110	}
3111
3112	return last_mode;
3113}
3114
3115/**
3116 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3117 *	@dev: Device to adjust xfer masks
3118 *	@sel: ATA_DNXFER_* selector
3119 *
3120 *	Adjust xfer masks of @dev downward.  Note that this function
3121 *	does not apply the change.  Invoking ata_set_mode() afterwards
3122 *	will apply the limit.
3123 *
3124 *	LOCKING:
3125 *	Inherited from caller.
3126 *
3127 *	RETURNS:
3128 *	0 on success, negative errno on failure
3129 */
3130int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3131{
3132	char buf[32];
3133	unsigned long orig_mask, xfer_mask;
3134	unsigned long pio_mask, mwdma_mask, udma_mask;
3135	int quiet, highbit;
3136
3137	quiet = !!(sel & ATA_DNXFER_QUIET);
3138	sel &= ~ATA_DNXFER_QUIET;
3139
3140	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3141						  dev->mwdma_mask,
3142						  dev->udma_mask);
3143	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3144
3145	switch (sel) {
3146	case ATA_DNXFER_PIO:
3147		highbit = fls(pio_mask) - 1;
3148		pio_mask &= ~(1 << highbit);
3149		break;
3150
3151	case ATA_DNXFER_DMA:
3152		if (udma_mask) {
3153			highbit = fls(udma_mask) - 1;
3154			udma_mask &= ~(1 << highbit);
3155			if (!udma_mask)
3156				return -ENOENT;
3157		} else if (mwdma_mask) {
3158			highbit = fls(mwdma_mask) - 1;
3159			mwdma_mask &= ~(1 << highbit);
3160			if (!mwdma_mask)
3161				return -ENOENT;
3162		}
3163		break;
3164
3165	case ATA_DNXFER_40C:
3166		udma_mask &= ATA_UDMA_MASK_40C;
3167		break;
3168
3169	case ATA_DNXFER_FORCE_PIO0:
3170		pio_mask &= 1;
3171	case ATA_DNXFER_FORCE_PIO:
3172		mwdma_mask = 0;
3173		udma_mask = 0;
3174		break;
3175
3176	default:
3177		BUG();
3178	}
3179
3180	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3181
3182	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3183		return -ENOENT;
3184
3185	if (!quiet) {
3186		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3187			snprintf(buf, sizeof(buf), "%s:%s",
3188				 ata_mode_string(xfer_mask),
3189				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3190		else
3191			snprintf(buf, sizeof(buf), "%s",
3192				 ata_mode_string(xfer_mask));
3193
3194		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3195	}
3196
3197	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3198			    &dev->udma_mask);
3199
3200	return 0;
3201}
3202
3203static int ata_dev_set_mode(struct ata_device *dev)
3204{
3205	struct ata_port *ap = dev->link->ap;
3206	struct ata_eh_context *ehc = &dev->link->eh_context;
3207	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3208	const char *dev_err_whine = "";
3209	int ign_dev_err = 0;
3210	unsigned int err_mask = 0;
3211	int rc;
3212
3213	dev->flags &= ~ATA_DFLAG_PIO;
3214	if (dev->xfer_shift == ATA_SHIFT_PIO)
3215		dev->flags |= ATA_DFLAG_PIO;
3216
3217	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3218		dev_err_whine = " (SET_XFERMODE skipped)";
3219	else {
3220		if (nosetxfer)
3221			ata_dev_warn(dev,
3222				     "NOSETXFER but PATA detected - can't "
3223				     "skip SETXFER, might malfunction\n");
3224		err_mask = ata_dev_set_xfermode(dev);
3225	}
3226
3227	if (err_mask & ~AC_ERR_DEV)
3228		goto fail;
3229
3230	/* revalidate */
3231	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3232	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3233	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3234	if (rc)
3235		return rc;
3236
3237	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3238		/* Old CFA may refuse this command, which is just fine */
3239		if (ata_id_is_cfa(dev->id))
3240			ign_dev_err = 1;
3241		/* Catch several broken garbage emulations plus some pre
3242		   ATA devices */
3243		if (ata_id_major_version(dev->id) == 0 &&
3244					dev->pio_mode <= XFER_PIO_2)
3245			ign_dev_err = 1;
3246		/* Some very old devices and some bad newer ones fail
3247		   any kind of SET_XFERMODE request but support PIO0-2
3248		   timings and no IORDY */
3249		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3250			ign_dev_err = 1;
3251	}
3252	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3253	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3254	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3255	    dev->dma_mode == XFER_MW_DMA_0 &&
3256	    (dev->id[63] >> 8) & 1)
3257		ign_dev_err = 1;
3258
3259	/* if the device is actually configured correctly, ignore dev err */
3260	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3261		ign_dev_err = 1;
3262
3263	if (err_mask & AC_ERR_DEV) {
3264		if (!ign_dev_err)
3265			goto fail;
3266		else
3267			dev_err_whine = " (device error ignored)";
3268	}
3269
3270	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3271		dev->xfer_shift, (int)dev->xfer_mode);
3272
3273	ata_dev_info(dev, "configured for %s%s\n",
3274		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3275		     dev_err_whine);
3276
3277	return 0;
3278
3279 fail:
3280	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3281	return -EIO;
3282}
3283
3284/**
3285 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3286 *	@link: link on which timings will be programmed
3287 *	@r_failed_dev: out parameter for failed device
3288 *
3289 *	Standard implementation of the function used to tune and set
3290 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3291 *	ata_dev_set_mode() fails, pointer to the failing device is
3292 *	returned in @r_failed_dev.
3293 *
3294 *	LOCKING:
3295 *	PCI/etc. bus probe sem.
3296 *
3297 *	RETURNS:
3298 *	0 on success, negative errno otherwise
3299 */
3300
3301int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3302{
3303	struct ata_port *ap = link->ap;
3304	struct ata_device *dev;
3305	int rc = 0, used_dma = 0, found = 0;
3306
3307	/* step 1: calculate xfer_mask */
3308	ata_for_each_dev(dev, link, ENABLED) {
3309		unsigned long pio_mask, dma_mask;
3310		unsigned int mode_mask;
3311
3312		mode_mask = ATA_DMA_MASK_ATA;
3313		if (dev->class == ATA_DEV_ATAPI)
3314			mode_mask = ATA_DMA_MASK_ATAPI;
3315		else if (ata_id_is_cfa(dev->id))
3316			mode_mask = ATA_DMA_MASK_CFA;
3317
3318		ata_dev_xfermask(dev);
3319		ata_force_xfermask(dev);
3320
3321		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3322
3323		if (libata_dma_mask & mode_mask)
3324			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3325						     dev->udma_mask);
3326		else
3327			dma_mask = 0;
3328
3329		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3330		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3331
3332		found = 1;
3333		if (ata_dma_enabled(dev))
3334			used_dma = 1;
3335	}
3336	if (!found)
3337		goto out;
3338
3339	/* step 2: always set host PIO timings */
3340	ata_for_each_dev(dev, link, ENABLED) {
3341		if (dev->pio_mode == 0xff) {
3342			ata_dev_warn(dev, "no PIO support\n");
3343			rc = -EINVAL;
3344			goto out;
3345		}
3346
3347		dev->xfer_mode = dev->pio_mode;
3348		dev->xfer_shift = ATA_SHIFT_PIO;
3349		if (ap->ops->set_piomode)
3350			ap->ops->set_piomode(ap, dev);
3351	}
3352
3353	/* step 3: set host DMA timings */
3354	ata_for_each_dev(dev, link, ENABLED) {
3355		if (!ata_dma_enabled(dev))
3356			continue;
3357
3358		dev->xfer_mode = dev->dma_mode;
3359		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3360		if (ap->ops->set_dmamode)
3361			ap->ops->set_dmamode(ap, dev);
3362	}
3363
3364	/* step 4: update devices' xfer mode */
3365	ata_for_each_dev(dev, link, ENABLED) {
3366		rc = ata_dev_set_mode(dev);
3367		if (rc)
3368			goto out;
3369	}
3370
3371	/* Record simplex status. If we selected DMA then the other
3372	 * host channels are not permitted to do so.
3373	 */
3374	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3375		ap->host->simplex_claimed = ap;
3376
3377 out:
3378	if (rc)
3379		*r_failed_dev = dev;
3380	return rc;
3381}
3382
3383/**
3384 *	ata_wait_ready - wait for link to become ready
3385 *	@link: link to be waited on
3386 *	@deadline: deadline jiffies for the operation
3387 *	@check_ready: callback to check link readiness
3388 *
3389 *	Wait for @link to become ready.  @check_ready should return
3390 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3391 *	link doesn't seem to be occupied, other errno for other error
3392 *	conditions.
3393 *
3394 *	Transient -ENODEV conditions are allowed for
3395 *	ATA_TMOUT_FF_WAIT.
3396 *
3397 *	LOCKING:
3398 *	EH context.
3399 *
3400 *	RETURNS:
3401 *	0 if @linke is ready before @deadline; otherwise, -errno.
3402 */
3403int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3404		   int (*check_ready)(struct ata_link *link))
3405{
3406	unsigned long start = jiffies;
3407	unsigned long nodev_deadline;
3408	int warned = 0;
3409
3410	/* choose which 0xff timeout to use, read comment in libata.h */
3411	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3412		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3413	else
3414		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3415
3416	/* Slave readiness can't be tested separately from master.  On
3417	 * M/S emulation configuration, this function should be called
3418	 * only on the master and it will handle both master and slave.
3419	 */
3420	WARN_ON(link == link->ap->slave_link);
3421
3422	if (time_after(nodev_deadline, deadline))
3423		nodev_deadline = deadline;
3424
3425	while (1) {
3426		unsigned long now = jiffies;
3427		int ready, tmp;
3428
3429		ready = tmp = check_ready(link);
3430		if (ready > 0)
3431			return 0;
3432
3433		/*
3434		 * -ENODEV could be transient.  Ignore -ENODEV if link
3435		 * is online.  Also, some SATA devices take a long
3436		 * time to clear 0xff after reset.  Wait for
3437		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3438		 * offline.
3439		 *
3440		 * Note that some PATA controllers (pata_ali) explode
3441		 * if status register is read more than once when
3442		 * there's no device attached.
3443		 */
3444		if (ready == -ENODEV) {
3445			if (ata_link_online(link))
3446				ready = 0;
3447			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3448				 !ata_link_offline(link) &&
3449				 time_before(now, nodev_deadline))
3450				ready = 0;
3451		}
3452
3453		if (ready)
3454			return ready;
3455		if (time_after(now, deadline))
3456			return -EBUSY;
3457
3458		if (!warned && time_after(now, start + 5 * HZ) &&
3459		    (deadline - now > 3 * HZ)) {
3460			ata_link_warn(link,
3461				"link is slow to respond, please be patient "
3462				"(ready=%d)\n", tmp);
3463			warned = 1;
3464		}
3465
3466		ata_msleep(link->ap, 50);
3467	}
3468}
3469
3470/**
3471 *	ata_wait_after_reset - wait for link to become ready after reset
3472 *	@link: link to be waited on
3473 *	@deadline: deadline jiffies for the operation
3474 *	@check_ready: callback to check link readiness
3475 *
3476 *	Wait for @link to become ready after reset.
3477 *
3478 *	LOCKING:
3479 *	EH context.
3480 *
3481 *	RETURNS:
3482 *	0 if @linke is ready before @deadline; otherwise, -errno.
3483 */
3484int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3485				int (*check_ready)(struct ata_link *link))
3486{
3487	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3488
3489	return ata_wait_ready(link, deadline, check_ready);
3490}
3491
3492/**
3493 *	sata_link_debounce - debounce SATA phy status
3494 *	@link: ATA link to debounce SATA phy status for
3495 *	@params: timing parameters { interval, duratinon, timeout } in msec
3496 *	@deadline: deadline jiffies for the operation
3497 *
3498 *	Make sure SStatus of @link reaches stable state, determined by
3499 *	holding the same value where DET is not 1 for @duration polled
3500 *	every @interval, before @timeout.  Timeout constraints the
3501 *	beginning of the stable state.  Because DET gets stuck at 1 on
3502 *	some controllers after hot unplugging, this functions waits
3503 *	until timeout then returns 0 if DET is stable at 1.
3504 *
3505 *	@timeout is further limited by @deadline.  The sooner of the
3506 *	two is used.
3507 *
3508 *	LOCKING:
3509 *	Kernel thread context (may sleep)
3510 *
3511 *	RETURNS:
3512 *	0 on success, -errno on failure.
3513 */
3514int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3515		       unsigned long deadline)
3516{
3517	unsigned long interval = params[0];
3518	unsigned long duration = params[1];
3519	unsigned long last_jiffies, t;
3520	u32 last, cur;
3521	int rc;
3522
3523	t = ata_deadline(jiffies, params[2]);
3524	if (time_before(t, deadline))
3525		deadline = t;
3526
3527	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3528		return rc;
3529	cur &= 0xf;
3530
3531	last = cur;
3532	last_jiffies = jiffies;
3533
3534	while (1) {
3535		ata_msleep(link->ap, interval);
3536		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3537			return rc;
3538		cur &= 0xf;
3539
3540		/* DET stable? */
3541		if (cur == last) {
3542			if (cur == 1 && time_before(jiffies, deadline))
3543				continue;
3544			if (time_after(jiffies,
3545				       ata_deadline(last_jiffies, duration)))
3546				return 0;
3547			continue;
3548		}
3549
3550		/* unstable, start over */
3551		last = cur;
3552		last_jiffies = jiffies;
3553
3554		/* Check deadline.  If debouncing failed, return
3555		 * -EPIPE to tell upper layer to lower link speed.
3556		 */
3557		if (time_after(jiffies, deadline))
3558			return -EPIPE;
3559	}
3560}
3561
3562/**
3563 *	sata_link_resume - resume SATA link
3564 *	@link: ATA link to resume SATA
3565 *	@params: timing parameters { interval, duratinon, timeout } in msec
3566 *	@deadline: deadline jiffies for the operation
3567 *
3568 *	Resume SATA phy @link and debounce it.
3569 *
3570 *	LOCKING:
3571 *	Kernel thread context (may sleep)
3572 *
3573 *	RETURNS:
3574 *	0 on success, -errno on failure.
3575 */
3576int sata_link_resume(struct ata_link *link, const unsigned long *params,
3577		     unsigned long deadline)
3578{
3579	int tries = ATA_LINK_RESUME_TRIES;
3580	u32 scontrol, serror;
3581	int rc;
3582
3583	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3584		return rc;
3585
3586	/*
3587	 * Writes to SControl sometimes get ignored under certain
3588	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3589	 * cleared.
3590	 */
3591	do {
3592		scontrol = (scontrol & 0x0f0) | 0x300;
3593		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3594			return rc;
3595		/*
3596		 * Some PHYs react badly if SStatus is pounded
3597		 * immediately after resuming.  Delay 200ms before
3598		 * debouncing.
3599		 */
3600		ata_msleep(link->ap, 200);
3601
3602		/* is SControl restored correctly? */
3603		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3604			return rc;
3605	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3606
3607	if ((scontrol & 0xf0f) != 0x300) {
3608		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3609			     scontrol);
3610		return 0;
3611	}
3612
3613	if (tries < ATA_LINK_RESUME_TRIES)
3614		ata_link_warn(link, "link resume succeeded after %d retries\n",
3615			      ATA_LINK_RESUME_TRIES - tries);
3616
3617	if ((rc = sata_link_debounce(link, params, deadline)))
3618		return rc;
3619
3620	/* clear SError, some PHYs require this even for SRST to work */
3621	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3622		rc = sata_scr_write(link, SCR_ERROR, serror);
3623
3624	return rc != -EINVAL ? rc : 0;
3625}
3626
3627/**
3628 *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3629 *	@link: ATA link to manipulate SControl for
3630 *	@policy: LPM policy to configure
3631 *	@spm_wakeup: initiate LPM transition to active state
3632 *
3633 *	Manipulate the IPM field of the SControl register of @link
3634 *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3635 *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3636 *	the link.  This function also clears PHYRDY_CHG before
3637 *	returning.
3638 *
3639 *	LOCKING:
3640 *	EH context.
3641 *
3642 *	RETURNS:
3643 *	0 on succes, -errno otherwise.
3644 */
3645int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3646		      bool spm_wakeup)
3647{
3648	struct ata_eh_context *ehc = &link->eh_context;
3649	bool woken_up = false;
3650	u32 scontrol;
3651	int rc;
3652
3653	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3654	if (rc)
3655		return rc;
3656
3657	switch (policy) {
3658	case ATA_LPM_MAX_POWER:
3659		/* disable all LPM transitions */
3660		scontrol |= (0x7 << 8);
3661		/* initiate transition to active state */
3662		if (spm_wakeup) {
3663			scontrol |= (0x4 << 12);
3664			woken_up = true;
3665		}
3666		break;
3667	case ATA_LPM_MED_POWER:
3668		/* allow LPM to PARTIAL */
3669		scontrol &= ~(0x1 << 8);
3670		scontrol |= (0x6 << 8);
3671		break;
3672	case ATA_LPM_MIN_POWER:
3673		if (ata_link_nr_enabled(link) > 0)
3674			/* no restrictions on LPM transitions */
3675			scontrol &= ~(0x7 << 8);
3676		else {
3677			/* empty port, power off */
3678			scontrol &= ~0xf;
3679			scontrol |= (0x1 << 2);
3680		}
3681		break;
3682	default:
3683		WARN_ON(1);
3684	}
3685
3686	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3687	if (rc)
3688		return rc;
3689
3690	/* give the link time to transit out of LPM state */
3691	if (woken_up)
3692		msleep(10);
3693
3694	/* clear PHYRDY_CHG from SError */
3695	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3696	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3697}
3698
3699/**
3700 *	ata_std_prereset - prepare for reset
3701 *	@link: ATA link to be reset
3702 *	@deadline: deadline jiffies for the operation
3703 *
3704 *	@link is about to be reset.  Initialize it.  Failure from
3705 *	prereset makes libata abort whole reset sequence and give up
3706 *	that port, so prereset should be best-effort.  It does its
3707 *	best to prepare for reset sequence but if things go wrong, it
3708 *	should just whine, not fail.
3709 *
3710 *	LOCKING:
3711 *	Kernel thread context (may sleep)
3712 *
3713 *	RETURNS:
3714 *	0 on success, -errno otherwise.
3715 */
3716int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3717{
3718	struct ata_port *ap = link->ap;
3719	struct ata_eh_context *ehc = &link->eh_context;
3720	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3721	int rc;
3722
3723	/* if we're about to do hardreset, nothing more to do */
3724	if (ehc->i.action & ATA_EH_HARDRESET)
3725		return 0;
3726
3727	/* if SATA, resume link */
3728	if (ap->flags & ATA_FLAG_SATA) {
3729		rc = sata_link_resume(link, timing, deadline);
3730		/* whine about phy resume failure but proceed */
3731		if (rc && rc != -EOPNOTSUPP)
3732			ata_link_warn(link,
3733				      "failed to resume link for reset (errno=%d)\n",
3734				      rc);
3735	}
3736
3737	/* no point in trying softreset on offline link */
3738	if (ata_phys_link_offline(link))
3739		ehc->i.action &= ~ATA_EH_SOFTRESET;
3740
3741	return 0;
3742}
3743
3744/**
3745 *	sata_link_hardreset - reset link via SATA phy reset
3746 *	@link: link to reset
3747 *	@timing: timing parameters { interval, duratinon, timeout } in msec
3748 *	@deadline: deadline jiffies for the operation
3749 *	@online: optional out parameter indicating link onlineness
3750 *	@check_ready: optional callback to check link readiness
3751 *
3752 *	SATA phy-reset @link using DET bits of SControl register.
3753 *	After hardreset, link readiness is waited upon using
3754 *	ata_wait_ready() if @check_ready is specified.  LLDs are
3755 *	allowed to not specify @check_ready and wait itself after this
3756 *	function returns.  Device classification is LLD's
3757 *	responsibility.
3758 *
3759 *	*@online is set to one iff reset succeeded and @link is online
3760 *	after reset.
3761 *
3762 *	LOCKING:
3763 *	Kernel thread context (may sleep)
3764 *
3765 *	RETURNS:
3766 *	0 on success, -errno otherwise.
3767 */
3768int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3769			unsigned long deadline,
3770			bool *online, int (*check_ready)(struct ata_link *))
3771{
3772	u32 scontrol;
3773	int rc;
3774
3775	DPRINTK("ENTER\n");
3776
3777	if (online)
3778		*online = false;
3779
3780	if (sata_set_spd_needed(link)) {
3781		/* SATA spec says nothing about how to reconfigure
3782		 * spd.  To be on the safe side, turn off phy during
3783		 * reconfiguration.  This works for at least ICH7 AHCI
3784		 * and Sil3124.
3785		 */
3786		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3787			goto out;
3788
3789		scontrol = (scontrol & 0x0f0) | 0x304;
3790
3791		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3792			goto out;
3793
3794		sata_set_spd(link);
3795	}
3796
3797	/* issue phy wake/reset */
3798	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3799		goto out;
3800
3801	scontrol = (scontrol & 0x0f0) | 0x301;
3802
3803	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3804		goto out;
3805
3806	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3807	 * 10.4.2 says at least 1 ms.
3808	 */
3809	ata_msleep(link->ap, 1);
3810
3811	/* bring link back */
3812	rc = sata_link_resume(link, timing, deadline);
3813	if (rc)
3814		goto out;
3815	/* if link is offline nothing more to do */
3816	if (ata_phys_link_offline(link))
3817		goto out;
3818
3819	/* Link is online.  From this point, -ENODEV too is an error. */
3820	if (online)
3821		*online = true;
3822
3823	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3824		/* If PMP is supported, we have to do follow-up SRST.
3825		 * Some PMPs don't send D2H Reg FIS after hardreset if
3826		 * the first port is empty.  Wait only for
3827		 * ATA_TMOUT_PMP_SRST_WAIT.
3828		 */
3829		if (check_ready) {
3830			unsigned long pmp_deadline;
3831
3832			pmp_deadline = ata_deadline(jiffies,
3833						    ATA_TMOUT_PMP_SRST_WAIT);
3834			if (time_after(pmp_deadline, deadline))
3835				pmp_deadline = deadline;
3836			ata_wait_ready(link, pmp_deadline, check_ready);
3837		}
3838		rc = -EAGAIN;
3839		goto out;
3840	}
3841
3842	rc = 0;
3843	if (check_ready)
3844		rc = ata_wait_ready(link, deadline, check_ready);
3845 out:
3846	if (rc && rc != -EAGAIN) {
3847		/* online is set iff link is online && reset succeeded */
3848		if (online)
3849			*online = false;
3850		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3851	}
3852	DPRINTK("EXIT, rc=%d\n", rc);
3853	return rc;
3854}
3855
3856/**
3857 *	sata_std_hardreset - COMRESET w/o waiting or classification
3858 *	@link: link to reset
3859 *	@class: resulting class of attached device
3860 *	@deadline: deadline jiffies for the operation
3861 *
3862 *	Standard SATA COMRESET w/o waiting or classification.
3863 *
3864 *	LOCKING:
3865 *	Kernel thread context (may sleep)
3866 *
3867 *	RETURNS:
3868 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3869 */
3870int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3871		       unsigned long deadline)
3872{
3873	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3874	bool online;
3875	int rc;
3876
3877	/* do hardreset */
3878	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3879	return online ? -EAGAIN : rc;
3880}
3881
3882/**
3883 *	ata_std_postreset - standard postreset callback
3884 *	@link: the target ata_link
3885 *	@classes: classes of attached devices
3886 *
3887 *	This function is invoked after a successful reset.  Note that
3888 *	the device might have been reset more than once using
3889 *	different reset methods before postreset is invoked.
3890 *
3891 *	LOCKING:
3892 *	Kernel thread context (may sleep)
3893 */
3894void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3895{
3896	u32 serror;
3897
3898	DPRINTK("ENTER\n");
3899
3900	/* reset complete, clear SError */
3901	if (!sata_scr_read(link, SCR_ERROR, &serror))
3902		sata_scr_write(link, SCR_ERROR, serror);
3903
3904	/* print link status */
3905	sata_print_link_status(link);
3906
3907	DPRINTK("EXIT\n");
3908}
3909
3910/**
3911 *	ata_dev_same_device - Determine whether new ID matches configured device
3912 *	@dev: device to compare against
3913 *	@new_class: class of the new device
3914 *	@new_id: IDENTIFY page of the new device
3915 *
3916 *	Compare @new_class and @new_id against @dev and determine
3917 *	whether @dev is the device indicated by @new_class and
3918 *	@new_id.
3919 *
3920 *	LOCKING:
3921 *	None.
3922 *
3923 *	RETURNS:
3924 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3925 */
3926static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3927			       const u16 *new_id)
3928{
3929	const u16 *old_id = dev->id;
3930	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3931	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3932
3933	if (dev->class != new_class) {
3934		ata_dev_info(dev, "class mismatch %d != %d\n",
3935			     dev->class, new_class);
3936		return 0;
3937	}
3938
3939	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3940	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3941	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3942	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3943
3944	if (strcmp(model[0], model[1])) {
3945		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3946			     model[0], model[1]);
3947		return 0;
3948	}
3949
3950	if (strcmp(serial[0], serial[1])) {
3951		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3952			     serial[0], serial[1]);
3953		return 0;
3954	}
3955
3956	return 1;
3957}
3958
3959/**
3960 *	ata_dev_reread_id - Re-read IDENTIFY data
3961 *	@dev: target ATA device
3962 *	@readid_flags: read ID flags
3963 *
3964 *	Re-read IDENTIFY page and make sure @dev is still attached to
3965 *	the port.
3966 *
3967 *	LOCKING:
3968 *	Kernel thread context (may sleep)
3969 *
3970 *	RETURNS:
3971 *	0 on success, negative errno otherwise
3972 */
3973int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3974{
3975	unsigned int class = dev->class;
3976	u16 *id = (void *)dev->link->ap->sector_buf;
3977	int rc;
3978
3979	/* read ID data */
3980	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3981	if (rc)
3982		return rc;
3983
3984	/* is the device still there? */
3985	if (!ata_dev_same_device(dev, class, id))
3986		return -ENODEV;
3987
3988	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3989	return 0;
3990}
3991
3992/**
3993 *	ata_dev_revalidate - Revalidate ATA device
3994 *	@dev: device to revalidate
3995 *	@new_class: new class code
3996 *	@readid_flags: read ID flags
3997 *
3998 *	Re-read IDENTIFY page, make sure @dev is still attached to the
3999 *	port and reconfigure it according to the new IDENTIFY page.
4000 *
4001 *	LOCKING:
4002 *	Kernel thread context (may sleep)
4003 *
4004 *	RETURNS:
4005 *	0 on success, negative errno otherwise
4006 */
4007int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4008		       unsigned int readid_flags)
4009{
4010	u64 n_sectors = dev->n_sectors;
4011	u64 n_native_sectors = dev->n_native_sectors;
4012	int rc;
4013
4014	if (!ata_dev_enabled(dev))
4015		return -ENODEV;
4016
4017	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4018	if (ata_class_enabled(new_class) &&
4019	    new_class != ATA_DEV_ATA &&
4020	    new_class != ATA_DEV_ATAPI &&
4021	    new_class != ATA_DEV_ZAC &&
4022	    new_class != ATA_DEV_SEMB) {
4023		ata_dev_info(dev, "class mismatch %u != %u\n",
4024			     dev->class, new_class);
4025		rc = -ENODEV;
4026		goto fail;
4027	}
4028
4029	/* re-read ID */
4030	rc = ata_dev_reread_id(dev, readid_flags);
4031	if (rc)
4032		goto fail;
4033
4034	/* configure device according to the new ID */
4035	rc = ata_dev_configure(dev);
4036	if (rc)
4037		goto fail;
4038
4039	/* verify n_sectors hasn't changed */
4040	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4041	    dev->n_sectors == n_sectors)
4042		return 0;
4043
4044	/* n_sectors has changed */
4045	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4046		     (unsigned long long)n_sectors,
4047		     (unsigned long long)dev->n_sectors);
4048
4049	/*
4050	 * Something could have caused HPA to be unlocked
4051	 * involuntarily.  If n_native_sectors hasn't changed and the
4052	 * new size matches it, keep the device.
4053	 */
4054	if (dev->n_native_sectors == n_native_sectors &&
4055	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4056		ata_dev_warn(dev,
4057			     "new n_sectors matches native, probably "
4058			     "late HPA unlock, n_sectors updated\n");
4059		/* use the larger n_sectors */
4060		return 0;
4061	}
4062
4063	/*
4064	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4065	 * unlocking HPA in those cases.
4066	 *
4067	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4068	 */
4069	if (dev->n_native_sectors == n_native_sectors &&
4070	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4071	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4072		ata_dev_warn(dev,
4073			     "old n_sectors matches native, probably "
4074			     "late HPA lock, will try to unlock HPA\n");
4075		/* try unlocking HPA */
4076		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4077		rc = -EIO;
4078	} else
4079		rc = -ENODEV;
4080
4081	/* restore original n_[native_]sectors and fail */
4082	dev->n_native_sectors = n_native_sectors;
4083	dev->n_sectors = n_sectors;
4084 fail:
4085	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4086	return rc;
4087}
4088
4089struct ata_blacklist_entry {
4090	const char *model_num;
4091	const char *model_rev;
4092	unsigned long horkage;
4093};
4094
4095static const struct ata_blacklist_entry ata_device_blacklist [] = {
4096	/* Devices with DMA related problems under Linux */
4097	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4098	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4099	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4100	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4101	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4102	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4103	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4104	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4105	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4106	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4107	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4108	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4109	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4110	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4111	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4112	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4113	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4114	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4115	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4116	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4117	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4118	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4119	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4120	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4121	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4122	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4123	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4124	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4125	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4126	/* Odd clown on sil3726/4726 PMPs */
4127	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4128
4129	/* Weird ATAPI devices */
4130	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4131	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4132	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4133	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4134
4135	/*
4136	 * Causes silent data corruption with higher max sects.
4137	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4138	 */
4139	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4140
4141	/* Devices we expect to fail diagnostics */
4142
4143	/* Devices where NCQ should be avoided */
4144	/* NCQ is slow */
4145	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4146	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4147	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4148	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4149	/* NCQ is broken */
4150	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4151	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4152	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4153	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4154	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4155
4156	/* Seagate NCQ + FLUSH CACHE firmware bug */
4157	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4158						ATA_HORKAGE_FIRMWARE_WARN },
4159
4160	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4161						ATA_HORKAGE_FIRMWARE_WARN },
4162
4163	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4164						ATA_HORKAGE_FIRMWARE_WARN },
4165
4166	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4167						ATA_HORKAGE_FIRMWARE_WARN },
4168
4169	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4170	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4171	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4172	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4173
4174	/* Blacklist entries taken from Silicon Image 3124/3132
4175	   Windows driver .inf file - also several Linux problem reports */
4176	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4177	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4178	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4179
4180	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4181	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4182
4183	/* devices which puke on READ_NATIVE_MAX */
4184	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4185	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4186	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4187	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4188
4189	/* this one allows HPA unlocking but fails IOs on the area */
4190	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4191
4192	/* Devices which report 1 sector over size HPA */
4193	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4194	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4195	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4196
4197	/* Devices which get the IVB wrong */
4198	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4199	/* Maybe we should just blacklist TSSTcorp... */
4200	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4201
4202	/* Devices that do not need bridging limits applied */
4203	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4204	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4205
4206	/* Devices which aren't very happy with higher link speeds */
4207	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4208	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4209
4210	/*
4211	 * Devices which choke on SETXFER.  Applies only if both the
4212	 * device and controller are SATA.
4213	 */
4214	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4215	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4216	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4217	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4218	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4219
4220	/* devices that don't properly handle queued TRIM commands */
4221	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4222						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4223	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4224						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4225	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4226						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4227	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4228						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4229	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4230						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4231	{ "Samsung SSD 8*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4232						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4233	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4234						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4235
4236	/* devices that don't properly handle TRIM commands */
4237	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4238
4239	/*
4240	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4241	 * (Return Zero After Trim) flags in the ATA Command Set are
4242	 * unreliable in the sense that they only define what happens if
4243	 * the device successfully executed the DSM TRIM command. TRIM
4244	 * is only advisory, however, and the device is free to silently
4245	 * ignore all or parts of the request.
4246	 *
4247	 * Whitelist drives that are known to reliably return zeroes
4248	 * after TRIM.
4249	 */
4250
4251	/*
4252	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4253	 * that model before whitelisting all other intel SSDs.
4254	 */
4255	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4256
4257	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4258	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4259	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4260	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4261	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4262	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4263	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4264
4265	/*
4266	 * Some WD SATA-I drives spin up and down erratically when the link
4267	 * is put into the slumber mode.  We don't have full list of the
4268	 * affected devices.  Disable LPM if the device matches one of the
4269	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4270	 * lost too.
4271	 *
4272	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4273	 */
4274	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4275	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4276	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4277	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4278	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4279	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4280	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4281
4282	/* End Marker */
4283	{ }
4284};
4285
4286static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4287{
4288	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4289	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4290	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4291
4292	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4293	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4294
4295	while (ad->model_num) {
4296		if (glob_match(ad->model_num, model_num)) {
4297			if (ad->model_rev == NULL)
4298				return ad->horkage;
4299			if (glob_match(ad->model_rev, model_rev))
4300				return ad->horkage;
4301		}
4302		ad++;
4303	}
4304	return 0;
4305}
4306
4307static int ata_dma_blacklisted(const struct ata_device *dev)
4308{
4309	/* We don't support polling DMA.
4310	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4311	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4312	 */
4313	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4314	    (dev->flags & ATA_DFLAG_CDB_INTR))
4315		return 1;
4316	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4317}
4318
4319/**
4320 *	ata_is_40wire		-	check drive side detection
4321 *	@dev: device
4322 *
4323 *	Perform drive side detection decoding, allowing for device vendors
4324 *	who can't follow the documentation.
4325 */
4326
4327static int ata_is_40wire(struct ata_device *dev)
4328{
4329	if (dev->horkage & ATA_HORKAGE_IVB)
4330		return ata_drive_40wire_relaxed(dev->id);
4331	return ata_drive_40wire(dev->id);
4332}
4333
4334/**
4335 *	cable_is_40wire		-	40/80/SATA decider
4336 *	@ap: port to consider
4337 *
4338 *	This function encapsulates the policy for speed management
4339 *	in one place. At the moment we don't cache the result but
4340 *	there is a good case for setting ap->cbl to the result when
4341 *	we are called with unknown cables (and figuring out if it
4342 *	impacts hotplug at all).
4343 *
4344 *	Return 1 if the cable appears to be 40 wire.
4345 */
4346
4347static int cable_is_40wire(struct ata_port *ap)
4348{
4349	struct ata_link *link;
4350	struct ata_device *dev;
4351
4352	/* If the controller thinks we are 40 wire, we are. */
4353	if (ap->cbl == ATA_CBL_PATA40)
4354		return 1;
4355
4356	/* If the controller thinks we are 80 wire, we are. */
4357	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4358		return 0;
4359
4360	/* If the system is known to be 40 wire short cable (eg
4361	 * laptop), then we allow 80 wire modes even if the drive
4362	 * isn't sure.
4363	 */
4364	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4365		return 0;
4366
4367	/* If the controller doesn't know, we scan.
4368	 *
4369	 * Note: We look for all 40 wire detects at this point.  Any
4370	 *       80 wire detect is taken to be 80 wire cable because
4371	 * - in many setups only the one drive (slave if present) will
4372	 *   give a valid detect
4373	 * - if you have a non detect capable drive you don't want it
4374	 *   to colour the choice
4375	 */
4376	ata_for_each_link(link, ap, EDGE) {
4377		ata_for_each_dev(dev, link, ENABLED) {
4378			if (!ata_is_40wire(dev))
4379				return 0;
4380		}
4381	}
4382	return 1;
4383}
4384
4385/**
4386 *	ata_dev_xfermask - Compute supported xfermask of the given device
4387 *	@dev: Device to compute xfermask for
4388 *
4389 *	Compute supported xfermask of @dev and store it in
4390 *	dev->*_mask.  This function is responsible for applying all
4391 *	known limits including host controller limits, device
4392 *	blacklist, etc...
4393 *
4394 *	LOCKING:
4395 *	None.
4396 */
4397static void ata_dev_xfermask(struct ata_device *dev)
4398{
4399	struct ata_link *link = dev->link;
4400	struct ata_port *ap = link->ap;
4401	struct ata_host *host = ap->host;
4402	unsigned long xfer_mask;
4403
4404	/* controller modes available */
4405	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4406				      ap->mwdma_mask, ap->udma_mask);
4407
4408	/* drive modes available */
4409	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4410				       dev->mwdma_mask, dev->udma_mask);
4411	xfer_mask &= ata_id_xfermask(dev->id);
4412
4413	/*
4414	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4415	 *	cable
4416	 */
4417	if (ata_dev_pair(dev)) {
4418		/* No PIO5 or PIO6 */
4419		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4420		/* No MWDMA3 or MWDMA 4 */
4421		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4422	}
4423
4424	if (ata_dma_blacklisted(dev)) {
4425		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4426		ata_dev_warn(dev,
4427			     "device is on DMA blacklist, disabling DMA\n");
4428	}
4429
4430	if ((host->flags & ATA_HOST_SIMPLEX) &&
4431	    host->simplex_claimed && host->simplex_claimed != ap) {
4432		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4433		ata_dev_warn(dev,
4434			     "simplex DMA is claimed by other device, disabling DMA\n");
4435	}
4436
4437	if (ap->flags & ATA_FLAG_NO_IORDY)
4438		xfer_mask &= ata_pio_mask_no_iordy(dev);
4439
4440	if (ap->ops->mode_filter)
4441		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4442
4443	/* Apply cable rule here.  Don't apply it early because when
4444	 * we handle hot plug the cable type can itself change.
4445	 * Check this last so that we know if the transfer rate was
4446	 * solely limited by the cable.
4447	 * Unknown or 80 wire cables reported host side are checked
4448	 * drive side as well. Cases where we know a 40wire cable
4449	 * is used safely for 80 are not checked here.
4450	 */
4451	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4452		/* UDMA/44 or higher would be available */
4453		if (cable_is_40wire(ap)) {
4454			ata_dev_warn(dev,
4455				     "limited to UDMA/33 due to 40-wire cable\n");
4456			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4457		}
4458
4459	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4460			    &dev->mwdma_mask, &dev->udma_mask);
4461}
4462
4463/**
4464 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4465 *	@dev: Device to which command will be sent
4466 *
4467 *	Issue SET FEATURES - XFER MODE command to device @dev
4468 *	on port @ap.
4469 *
4470 *	LOCKING:
4471 *	PCI/etc. bus probe sem.
4472 *
4473 *	RETURNS:
4474 *	0 on success, AC_ERR_* mask otherwise.
4475 */
4476
4477static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4478{
4479	struct ata_taskfile tf;
4480	unsigned int err_mask;
4481
4482	/* set up set-features taskfile */
4483	DPRINTK("set features - xfer mode\n");
4484
4485	/* Some controllers and ATAPI devices show flaky interrupt
4486	 * behavior after setting xfer mode.  Use polling instead.
4487	 */
4488	ata_tf_init(dev, &tf);
4489	tf.command = ATA_CMD_SET_FEATURES;
4490	tf.feature = SETFEATURES_XFER;
4491	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4492	tf.protocol = ATA_PROT_NODATA;
4493	/* If we are using IORDY we must send the mode setting command */
4494	if (ata_pio_need_iordy(dev))
4495		tf.nsect = dev->xfer_mode;
4496	/* If the device has IORDY and the controller does not - turn it off */
4497 	else if (ata_id_has_iordy(dev->id))
4498		tf.nsect = 0x01;
4499	else /* In the ancient relic department - skip all of this */
4500		return 0;
4501
4502	/* On some disks, this command causes spin-up, so we need longer timeout */
4503	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4504
4505	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4506	return err_mask;
4507}
4508
4509/**
4510 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4511 *	@dev: Device to which command will be sent
4512 *	@enable: Whether to enable or disable the feature
4513 *	@feature: The sector count represents the feature to set
4514 *
4515 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4516 *	on port @ap with sector count
4517 *
4518 *	LOCKING:
4519 *	PCI/etc. bus probe sem.
4520 *
4521 *	RETURNS:
4522 *	0 on success, AC_ERR_* mask otherwise.
4523 */
4524unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4525{
4526	struct ata_taskfile tf;
4527	unsigned int err_mask;
4528
4529	/* set up set-features taskfile */
4530	DPRINTK("set features - SATA features\n");
4531
4532	ata_tf_init(dev, &tf);
4533	tf.command = ATA_CMD_SET_FEATURES;
4534	tf.feature = enable;
4535	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4536	tf.protocol = ATA_PROT_NODATA;
4537	tf.nsect = feature;
4538
4539	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4540
4541	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4542	return err_mask;
4543}
4544EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4545
4546/**
4547 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4548 *	@dev: Device to which command will be sent
4549 *	@heads: Number of heads (taskfile parameter)
4550 *	@sectors: Number of sectors (taskfile parameter)
4551 *
4552 *	LOCKING:
4553 *	Kernel thread context (may sleep)
4554 *
4555 *	RETURNS:
4556 *	0 on success, AC_ERR_* mask otherwise.
4557 */
4558static unsigned int ata_dev_init_params(struct ata_device *dev,
4559					u16 heads, u16 sectors)
4560{
4561	struct ata_taskfile tf;
4562	unsigned int err_mask;
4563
4564	/* Number of sectors per track 1-255. Number of heads 1-16 */
4565	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4566		return AC_ERR_INVALID;
4567
4568	/* set up init dev params taskfile */
4569	DPRINTK("init dev params \n");
4570
4571	ata_tf_init(dev, &tf);
4572	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4573	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4574	tf.protocol = ATA_PROT_NODATA;
4575	tf.nsect = sectors;
4576	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4577
4578	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4579	/* A clean abort indicates an original or just out of spec drive
4580	   and we should continue as we issue the setup based on the
4581	   drive reported working geometry */
4582	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4583		err_mask = 0;
4584
4585	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4586	return err_mask;
4587}
4588
4589/**
4590 *	ata_sg_clean - Unmap DMA memory associated with command
4591 *	@qc: Command containing DMA memory to be released
4592 *
4593 *	Unmap all mapped DMA memory associated with this command.
4594 *
4595 *	LOCKING:
4596 *	spin_lock_irqsave(host lock)
4597 */
4598void ata_sg_clean(struct ata_queued_cmd *qc)
4599{
4600	struct ata_port *ap = qc->ap;
4601	struct scatterlist *sg = qc->sg;
4602	int dir = qc->dma_dir;
4603
4604	WARN_ON_ONCE(sg == NULL);
4605
4606	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4607
4608	if (qc->n_elem)
4609		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4610
4611	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4612	qc->sg = NULL;
4613}
4614
4615/**
4616 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4617 *	@qc: Metadata associated with taskfile to check
4618 *
4619 *	Allow low-level driver to filter ATA PACKET commands, returning
4620 *	a status indicating whether or not it is OK to use DMA for the
4621 *	supplied PACKET command.
4622 *
4623 *	LOCKING:
4624 *	spin_lock_irqsave(host lock)
4625 *
4626 *	RETURNS: 0 when ATAPI DMA can be used
4627 *               nonzero otherwise
4628 */
4629int atapi_check_dma(struct ata_queued_cmd *qc)
4630{
4631	struct ata_port *ap = qc->ap;
4632
4633	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4634	 * few ATAPI devices choke on such DMA requests.
4635	 */
4636	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4637	    unlikely(qc->nbytes & 15))
4638		return 1;
4639
4640	if (ap->ops->check_atapi_dma)
4641		return ap->ops->check_atapi_dma(qc);
4642
4643	return 0;
4644}
4645
4646/**
4647 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4648 *	@qc: ATA command in question
4649 *
4650 *	Non-NCQ commands cannot run with any other command, NCQ or
4651 *	not.  As upper layer only knows the queue depth, we are
4652 *	responsible for maintaining exclusion.  This function checks
4653 *	whether a new command @qc can be issued.
4654 *
4655 *	LOCKING:
4656 *	spin_lock_irqsave(host lock)
4657 *
4658 *	RETURNS:
4659 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4660 */
4661int ata_std_qc_defer(struct ata_queued_cmd *qc)
4662{
4663	struct ata_link *link = qc->dev->link;
4664
4665	if (qc->tf.protocol == ATA_PROT_NCQ) {
4666		if (!ata_tag_valid(link->active_tag))
4667			return 0;
4668	} else {
4669		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4670			return 0;
4671	}
4672
4673	return ATA_DEFER_LINK;
4674}
4675
4676void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4677
4678/**
4679 *	ata_sg_init - Associate command with scatter-gather table.
4680 *	@qc: Command to be associated
4681 *	@sg: Scatter-gather table.
4682 *	@n_elem: Number of elements in s/g table.
4683 *
4684 *	Initialize the data-related elements of queued_cmd @qc
4685 *	to point to a scatter-gather table @sg, containing @n_elem
4686 *	elements.
4687 *
4688 *	LOCKING:
4689 *	spin_lock_irqsave(host lock)
4690 */
4691void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4692		 unsigned int n_elem)
4693{
4694	qc->sg = sg;
4695	qc->n_elem = n_elem;
4696	qc->cursg = qc->sg;
4697}
4698
4699/**
4700 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4701 *	@qc: Command with scatter-gather table to be mapped.
4702 *
4703 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4704 *
4705 *	LOCKING:
4706 *	spin_lock_irqsave(host lock)
4707 *
4708 *	RETURNS:
4709 *	Zero on success, negative on error.
4710 *
4711 */
4712static int ata_sg_setup(struct ata_queued_cmd *qc)
4713{
4714	struct ata_port *ap = qc->ap;
4715	unsigned int n_elem;
4716
4717	VPRINTK("ENTER, ata%u\n", ap->print_id);
4718
4719	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4720	if (n_elem < 1)
4721		return -1;
4722
4723	DPRINTK("%d sg elements mapped\n", n_elem);
4724	qc->orig_n_elem = qc->n_elem;
4725	qc->n_elem = n_elem;
4726	qc->flags |= ATA_QCFLAG_DMAMAP;
4727
4728	return 0;
4729}
4730
4731/**
4732 *	swap_buf_le16 - swap halves of 16-bit words in place
4733 *	@buf:  Buffer to swap
4734 *	@buf_words:  Number of 16-bit words in buffer.
4735 *
4736 *	Swap halves of 16-bit words if needed to convert from
4737 *	little-endian byte order to native cpu byte order, or
4738 *	vice-versa.
4739 *
4740 *	LOCKING:
4741 *	Inherited from caller.
4742 */
4743void swap_buf_le16(u16 *buf, unsigned int buf_words)
4744{
4745#ifdef __BIG_ENDIAN
4746	unsigned int i;
4747
4748	for (i = 0; i < buf_words; i++)
4749		buf[i] = le16_to_cpu(buf[i]);
4750#endif /* __BIG_ENDIAN */
4751}
4752
4753/**
4754 *	ata_qc_new_init - Request an available ATA command, and initialize it
4755 *	@dev: Device from whom we request an available command structure
4756 *
4757 *	LOCKING:
4758 *	None.
4759 */
4760
4761struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4762{
4763	struct ata_port *ap = dev->link->ap;
4764	struct ata_queued_cmd *qc;
4765
4766	/* no command while frozen */
4767	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4768		return NULL;
4769
4770	/* libsas case */
4771	if (ap->flags & ATA_FLAG_SAS_HOST) {
4772		tag = ata_sas_allocate_tag(ap);
4773		if (tag < 0)
4774			return NULL;
4775	}
4776
4777	qc = __ata_qc_from_tag(ap, tag);
4778	qc->tag = tag;
4779	qc->scsicmd = NULL;
4780	qc->ap = ap;
4781	qc->dev = dev;
4782
4783	ata_qc_reinit(qc);
4784
4785	return qc;
4786}
4787
4788/**
4789 *	ata_qc_free - free unused ata_queued_cmd
4790 *	@qc: Command to complete
4791 *
4792 *	Designed to free unused ata_queued_cmd object
4793 *	in case something prevents using it.
4794 *
4795 *	LOCKING:
4796 *	spin_lock_irqsave(host lock)
4797 */
4798void ata_qc_free(struct ata_queued_cmd *qc)
4799{
4800	struct ata_port *ap;
4801	unsigned int tag;
4802
4803	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4804	ap = qc->ap;
4805
4806	qc->flags = 0;
4807	tag = qc->tag;
4808	if (likely(ata_tag_valid(tag))) {
4809		qc->tag = ATA_TAG_POISON;
4810		if (ap->flags & ATA_FLAG_SAS_HOST)
4811			ata_sas_free_tag(tag, ap);
4812	}
4813}
4814
4815void __ata_qc_complete(struct ata_queued_cmd *qc)
4816{
4817	struct ata_port *ap;
4818	struct ata_link *link;
4819
4820	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4821	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4822	ap = qc->ap;
4823	link = qc->dev->link;
4824
4825	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4826		ata_sg_clean(qc);
4827
4828	/* command should be marked inactive atomically with qc completion */
4829	if (qc->tf.protocol == ATA_PROT_NCQ) {
4830		link->sactive &= ~(1 << qc->tag);
4831		if (!link->sactive)
4832			ap->nr_active_links--;
4833	} else {
4834		link->active_tag = ATA_TAG_POISON;
4835		ap->nr_active_links--;
4836	}
4837
4838	/* clear exclusive status */
4839	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4840		     ap->excl_link == link))
4841		ap->excl_link = NULL;
4842
4843	/* atapi: mark qc as inactive to prevent the interrupt handler
4844	 * from completing the command twice later, before the error handler
4845	 * is called. (when rc != 0 and atapi request sense is needed)
4846	 */
4847	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4848	ap->qc_active &= ~(1 << qc->tag);
4849
4850	/* call completion callback */
4851	qc->complete_fn(qc);
4852}
4853
4854static void fill_result_tf(struct ata_queued_cmd *qc)
4855{
4856	struct ata_port *ap = qc->ap;
4857
4858	qc->result_tf.flags = qc->tf.flags;
4859	ap->ops->qc_fill_rtf(qc);
4860}
4861
4862static void ata_verify_xfer(struct ata_queued_cmd *qc)
4863{
4864	struct ata_device *dev = qc->dev;
4865
4866	if (ata_is_nodata(qc->tf.protocol))
4867		return;
4868
4869	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4870		return;
4871
4872	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4873}
4874
4875/**
4876 *	ata_qc_complete - Complete an active ATA command
4877 *	@qc: Command to complete
4878 *
4879 *	Indicate to the mid and upper layers that an ATA command has
4880 *	completed, with either an ok or not-ok status.
4881 *
4882 *	Refrain from calling this function multiple times when
4883 *	successfully completing multiple NCQ commands.
4884 *	ata_qc_complete_multiple() should be used instead, which will
4885 *	properly update IRQ expect state.
4886 *
4887 *	LOCKING:
4888 *	spin_lock_irqsave(host lock)
4889 */
4890void ata_qc_complete(struct ata_queued_cmd *qc)
4891{
4892	struct ata_port *ap = qc->ap;
4893
4894	/* XXX: New EH and old EH use different mechanisms to
4895	 * synchronize EH with regular execution path.
4896	 *
4897	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4898	 * Normal execution path is responsible for not accessing a
4899	 * failed qc.  libata core enforces the rule by returning NULL
4900	 * from ata_qc_from_tag() for failed qcs.
4901	 *
4902	 * Old EH depends on ata_qc_complete() nullifying completion
4903	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4904	 * not synchronize with interrupt handler.  Only PIO task is
4905	 * taken care of.
4906	 */
4907	if (ap->ops->error_handler) {
4908		struct ata_device *dev = qc->dev;
4909		struct ata_eh_info *ehi = &dev->link->eh_info;
4910
4911		if (unlikely(qc->err_mask))
4912			qc->flags |= ATA_QCFLAG_FAILED;
4913
4914		/*
4915		 * Finish internal commands without any further processing
4916		 * and always with the result TF filled.
4917		 */
4918		if (unlikely(ata_tag_internal(qc->tag))) {
4919			fill_result_tf(qc);
4920			trace_ata_qc_complete_internal(qc);
4921			__ata_qc_complete(qc);
4922			return;
4923		}
4924
4925		/*
4926		 * Non-internal qc has failed.  Fill the result TF and
4927		 * summon EH.
4928		 */
4929		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4930			fill_result_tf(qc);
4931			trace_ata_qc_complete_failed(qc);
4932			ata_qc_schedule_eh(qc);
4933			return;
4934		}
4935
4936		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4937
4938		/* read result TF if requested */
4939		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4940			fill_result_tf(qc);
4941
4942		trace_ata_qc_complete_done(qc);
4943		/* Some commands need post-processing after successful
4944		 * completion.
4945		 */
4946		switch (qc->tf.command) {
4947		case ATA_CMD_SET_FEATURES:
4948			if (qc->tf.feature != SETFEATURES_WC_ON &&
4949			    qc->tf.feature != SETFEATURES_WC_OFF)
4950				break;
4951			/* fall through */
4952		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4953		case ATA_CMD_SET_MULTI: /* multi_count changed */
4954			/* revalidate device */
4955			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4956			ata_port_schedule_eh(ap);
4957			break;
4958
4959		case ATA_CMD_SLEEP:
4960			dev->flags |= ATA_DFLAG_SLEEPING;
4961			break;
4962		}
4963
4964		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4965			ata_verify_xfer(qc);
4966
4967		__ata_qc_complete(qc);
4968	} else {
4969		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4970			return;
4971
4972		/* read result TF if failed or requested */
4973		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4974			fill_result_tf(qc);
4975
4976		__ata_qc_complete(qc);
4977	}
4978}
4979
4980/**
4981 *	ata_qc_complete_multiple - Complete multiple qcs successfully
4982 *	@ap: port in question
4983 *	@qc_active: new qc_active mask
4984 *
4985 *	Complete in-flight commands.  This functions is meant to be
4986 *	called from low-level driver's interrupt routine to complete
4987 *	requests normally.  ap->qc_active and @qc_active is compared
4988 *	and commands are completed accordingly.
4989 *
4990 *	Always use this function when completing multiple NCQ commands
4991 *	from IRQ handlers instead of calling ata_qc_complete()
4992 *	multiple times to keep IRQ expect status properly in sync.
4993 *
4994 *	LOCKING:
4995 *	spin_lock_irqsave(host lock)
4996 *
4997 *	RETURNS:
4998 *	Number of completed commands on success, -errno otherwise.
4999 */
5000int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5001{
5002	int nr_done = 0;
5003	u32 done_mask;
5004
5005	done_mask = ap->qc_active ^ qc_active;
5006
5007	if (unlikely(done_mask & qc_active)) {
5008		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5009			     ap->qc_active, qc_active);
5010		return -EINVAL;
5011	}
5012
5013	while (done_mask) {
5014		struct ata_queued_cmd *qc;
5015		unsigned int tag = __ffs(done_mask);
5016
5017		qc = ata_qc_from_tag(ap, tag);
5018		if (qc) {
5019			ata_qc_complete(qc);
5020			nr_done++;
5021		}
5022		done_mask &= ~(1 << tag);
5023	}
5024
5025	return nr_done;
5026}
5027
5028/**
5029 *	ata_qc_issue - issue taskfile to device
5030 *	@qc: command to issue to device
5031 *
5032 *	Prepare an ATA command to submission to device.
5033 *	This includes mapping the data into a DMA-able
5034 *	area, filling in the S/G table, and finally
5035 *	writing the taskfile to hardware, starting the command.
5036 *
5037 *	LOCKING:
5038 *	spin_lock_irqsave(host lock)
5039 */
5040void ata_qc_issue(struct ata_queued_cmd *qc)
5041{
5042	struct ata_port *ap = qc->ap;
5043	struct ata_link *link = qc->dev->link;
5044	u8 prot = qc->tf.protocol;
5045
5046	/* Make sure only one non-NCQ command is outstanding.  The
5047	 * check is skipped for old EH because it reuses active qc to
5048	 * request ATAPI sense.
5049	 */
5050	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5051
5052	if (ata_is_ncq(prot)) {
5053		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5054
5055		if (!link->sactive)
5056			ap->nr_active_links++;
5057		link->sactive |= 1 << qc->tag;
5058	} else {
5059		WARN_ON_ONCE(link->sactive);
5060
5061		ap->nr_active_links++;
5062		link->active_tag = qc->tag;
5063	}
5064
5065	qc->flags |= ATA_QCFLAG_ACTIVE;
5066	ap->qc_active |= 1 << qc->tag;
5067
5068	/*
5069	 * We guarantee to LLDs that they will have at least one
5070	 * non-zero sg if the command is a data command.
5071	 */
5072	if (WARN_ON_ONCE(ata_is_data(prot) &&
5073			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5074		goto sys_err;
5075
5076	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5077				 (ap->flags & ATA_FLAG_PIO_DMA)))
5078		if (ata_sg_setup(qc))
5079			goto sys_err;
5080
5081	/* if device is sleeping, schedule reset and abort the link */
5082	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5083		link->eh_info.action |= ATA_EH_RESET;
5084		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5085		ata_link_abort(link);
5086		return;
5087	}
5088
5089	ap->ops->qc_prep(qc);
5090	trace_ata_qc_issue(qc);
5091	qc->err_mask |= ap->ops->qc_issue(qc);
5092	if (unlikely(qc->err_mask))
5093		goto err;
5094	return;
5095
5096sys_err:
5097	qc->err_mask |= AC_ERR_SYSTEM;
5098err:
5099	ata_qc_complete(qc);
5100}
5101
5102/**
5103 *	sata_scr_valid - test whether SCRs are accessible
5104 *	@link: ATA link to test SCR accessibility for
5105 *
5106 *	Test whether SCRs are accessible for @link.
5107 *
5108 *	LOCKING:
5109 *	None.
5110 *
5111 *	RETURNS:
5112 *	1 if SCRs are accessible, 0 otherwise.
5113 */
5114int sata_scr_valid(struct ata_link *link)
5115{
5116	struct ata_port *ap = link->ap;
5117
5118	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5119}
5120
5121/**
5122 *	sata_scr_read - read SCR register of the specified port
5123 *	@link: ATA link to read SCR for
5124 *	@reg: SCR to read
5125 *	@val: Place to store read value
5126 *
5127 *	Read SCR register @reg of @link into *@val.  This function is
5128 *	guaranteed to succeed if @link is ap->link, the cable type of
5129 *	the port is SATA and the port implements ->scr_read.
5130 *
5131 *	LOCKING:
5132 *	None if @link is ap->link.  Kernel thread context otherwise.
5133 *
5134 *	RETURNS:
5135 *	0 on success, negative errno on failure.
5136 */
5137int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5138{
5139	if (ata_is_host_link(link)) {
5140		if (sata_scr_valid(link))
5141			return link->ap->ops->scr_read(link, reg, val);
5142		return -EOPNOTSUPP;
5143	}
5144
5145	return sata_pmp_scr_read(link, reg, val);
5146}
5147
5148/**
5149 *	sata_scr_write - write SCR register of the specified port
5150 *	@link: ATA link to write SCR for
5151 *	@reg: SCR to write
5152 *	@val: value to write
5153 *
5154 *	Write @val to SCR register @reg of @link.  This function is
5155 *	guaranteed to succeed if @link is ap->link, the cable type of
5156 *	the port is SATA and the port implements ->scr_read.
5157 *
5158 *	LOCKING:
5159 *	None if @link is ap->link.  Kernel thread context otherwise.
5160 *
5161 *	RETURNS:
5162 *	0 on success, negative errno on failure.
5163 */
5164int sata_scr_write(struct ata_link *link, int reg, u32 val)
5165{
5166	if (ata_is_host_link(link)) {
5167		if (sata_scr_valid(link))
5168			return link->ap->ops->scr_write(link, reg, val);
5169		return -EOPNOTSUPP;
5170	}
5171
5172	return sata_pmp_scr_write(link, reg, val);
5173}
5174
5175/**
5176 *	sata_scr_write_flush - write SCR register of the specified port and flush
5177 *	@link: ATA link to write SCR for
5178 *	@reg: SCR to write
5179 *	@val: value to write
5180 *
5181 *	This function is identical to sata_scr_write() except that this
5182 *	function performs flush after writing to the register.
5183 *
5184 *	LOCKING:
5185 *	None if @link is ap->link.  Kernel thread context otherwise.
5186 *
5187 *	RETURNS:
5188 *	0 on success, negative errno on failure.
5189 */
5190int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5191{
5192	if (ata_is_host_link(link)) {
5193		int rc;
5194
5195		if (sata_scr_valid(link)) {
5196			rc = link->ap->ops->scr_write(link, reg, val);
5197			if (rc == 0)
5198				rc = link->ap->ops->scr_read(link, reg, &val);
5199			return rc;
5200		}
5201		return -EOPNOTSUPP;
5202	}
5203
5204	return sata_pmp_scr_write(link, reg, val);
5205}
5206
5207/**
5208 *	ata_phys_link_online - test whether the given link is online
5209 *	@link: ATA link to test
5210 *
5211 *	Test whether @link is online.  Note that this function returns
5212 *	0 if online status of @link cannot be obtained, so
5213 *	ata_link_online(link) != !ata_link_offline(link).
5214 *
5215 *	LOCKING:
5216 *	None.
5217 *
5218 *	RETURNS:
5219 *	True if the port online status is available and online.
5220 */
5221bool ata_phys_link_online(struct ata_link *link)
5222{
5223	u32 sstatus;
5224
5225	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5226	    ata_sstatus_online(sstatus))
5227		return true;
5228	return false;
5229}
5230
5231/**
5232 *	ata_phys_link_offline - test whether the given link is offline
5233 *	@link: ATA link to test
5234 *
5235 *	Test whether @link is offline.  Note that this function
5236 *	returns 0 if offline status of @link cannot be obtained, so
5237 *	ata_link_online(link) != !ata_link_offline(link).
5238 *
5239 *	LOCKING:
5240 *	None.
5241 *
5242 *	RETURNS:
5243 *	True if the port offline status is available and offline.
5244 */
5245bool ata_phys_link_offline(struct ata_link *link)
5246{
5247	u32 sstatus;
5248
5249	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5250	    !ata_sstatus_online(sstatus))
5251		return true;
5252	return false;
5253}
5254
5255/**
5256 *	ata_link_online - test whether the given link is online
5257 *	@link: ATA link to test
5258 *
5259 *	Test whether @link is online.  This is identical to
5260 *	ata_phys_link_online() when there's no slave link.  When
5261 *	there's a slave link, this function should only be called on
5262 *	the master link and will return true if any of M/S links is
5263 *	online.
5264 *
5265 *	LOCKING:
5266 *	None.
5267 *
5268 *	RETURNS:
5269 *	True if the port online status is available and online.
5270 */
5271bool ata_link_online(struct ata_link *link)
5272{
5273	struct ata_link *slave = link->ap->slave_link;
5274
5275	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5276
5277	return ata_phys_link_online(link) ||
5278		(slave && ata_phys_link_online(slave));
5279}
5280
5281/**
5282 *	ata_link_offline - test whether the given link is offline
5283 *	@link: ATA link to test
5284 *
5285 *	Test whether @link is offline.  This is identical to
5286 *	ata_phys_link_offline() when there's no slave link.  When
5287 *	there's a slave link, this function should only be called on
5288 *	the master link and will return true if both M/S links are
5289 *	offline.
5290 *
5291 *	LOCKING:
5292 *	None.
5293 *
5294 *	RETURNS:
5295 *	True if the port offline status is available and offline.
5296 */
5297bool ata_link_offline(struct ata_link *link)
5298{
5299	struct ata_link *slave = link->ap->slave_link;
5300
5301	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5302
5303	return ata_phys_link_offline(link) &&
5304		(!slave || ata_phys_link_offline(slave));
5305}
5306
5307#ifdef CONFIG_PM
5308static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5309				unsigned int action, unsigned int ehi_flags,
5310				bool async)
5311{
5312	struct ata_link *link;
5313	unsigned long flags;
5314
5315	/* Previous resume operation might still be in
5316	 * progress.  Wait for PM_PENDING to clear.
5317	 */
5318	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5319		ata_port_wait_eh(ap);
5320		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5321	}
5322
5323	/* request PM ops to EH */
5324	spin_lock_irqsave(ap->lock, flags);
5325
5326	ap->pm_mesg = mesg;
5327	ap->pflags |= ATA_PFLAG_PM_PENDING;
5328	ata_for_each_link(link, ap, HOST_FIRST) {
5329		link->eh_info.action |= action;
5330		link->eh_info.flags |= ehi_flags;
5331	}
5332
5333	ata_port_schedule_eh(ap);
5334
5335	spin_unlock_irqrestore(ap->lock, flags);
5336
5337	if (!async) {
5338		ata_port_wait_eh(ap);
5339		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5340	}
5341}
5342
5343/*
5344 * On some hardware, device fails to respond after spun down for suspend.  As
5345 * the device won't be used before being resumed, we don't need to touch the
5346 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5347 *
5348 * http://thread.gmane.org/gmane.linux.ide/46764
5349 */
5350static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5351						 | ATA_EHI_NO_AUTOPSY
5352						 | ATA_EHI_NO_RECOVERY;
5353
5354static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5355{
5356	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5357}
5358
5359static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5360{
5361	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5362}
5363
5364static int ata_port_pm_suspend(struct device *dev)
5365{
5366	struct ata_port *ap = to_ata_port(dev);
5367
5368	if (pm_runtime_suspended(dev))
5369		return 0;
5370
5371	ata_port_suspend(ap, PMSG_SUSPEND);
5372	return 0;
5373}
5374
5375static int ata_port_pm_freeze(struct device *dev)
5376{
5377	struct ata_port *ap = to_ata_port(dev);
5378
5379	if (pm_runtime_suspended(dev))
5380		return 0;
5381
5382	ata_port_suspend(ap, PMSG_FREEZE);
5383	return 0;
5384}
5385
5386static int ata_port_pm_poweroff(struct device *dev)
5387{
5388	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5389	return 0;
5390}
5391
5392static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5393						| ATA_EHI_QUIET;
5394
5395static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5396{
5397	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5398}
5399
5400static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5401{
5402	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5403}
5404
5405static int ata_port_pm_resume(struct device *dev)
5406{
5407	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5408	pm_runtime_disable(dev);
5409	pm_runtime_set_active(dev);
5410	pm_runtime_enable(dev);
5411	return 0;
5412}
5413
5414/*
5415 * For ODDs, the upper layer will poll for media change every few seconds,
5416 * which will make it enter and leave suspend state every few seconds. And
5417 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5418 * is very little and the ODD may malfunction after constantly being reset.
5419 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5420 * ODD is attached to the port.
5421 */
5422static int ata_port_runtime_idle(struct device *dev)
5423{
5424	struct ata_port *ap = to_ata_port(dev);
5425	struct ata_link *link;
5426	struct ata_device *adev;
5427
5428	ata_for_each_link(link, ap, HOST_FIRST) {
5429		ata_for_each_dev(adev, link, ENABLED)
5430			if (adev->class == ATA_DEV_ATAPI &&
5431			    !zpodd_dev_enabled(adev))
5432				return -EBUSY;
5433	}
5434
5435	return 0;
5436}
5437
5438static int ata_port_runtime_suspend(struct device *dev)
5439{
5440	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5441	return 0;
5442}
5443
5444static int ata_port_runtime_resume(struct device *dev)
5445{
5446	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5447	return 0;
5448}
5449
5450static const struct dev_pm_ops ata_port_pm_ops = {
5451	.suspend = ata_port_pm_suspend,
5452	.resume = ata_port_pm_resume,
5453	.freeze = ata_port_pm_freeze,
5454	.thaw = ata_port_pm_resume,
5455	.poweroff = ata_port_pm_poweroff,
5456	.restore = ata_port_pm_resume,
5457
5458	.runtime_suspend = ata_port_runtime_suspend,
5459	.runtime_resume = ata_port_runtime_resume,
5460	.runtime_idle = ata_port_runtime_idle,
5461};
5462
5463/* sas ports don't participate in pm runtime management of ata_ports,
5464 * and need to resume ata devices at the domain level, not the per-port
5465 * level. sas suspend/resume is async to allow parallel port recovery
5466 * since sas has multiple ata_port instances per Scsi_Host.
5467 */
5468void ata_sas_port_suspend(struct ata_port *ap)
5469{
5470	ata_port_suspend_async(ap, PMSG_SUSPEND);
5471}
5472EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5473
5474void ata_sas_port_resume(struct ata_port *ap)
5475{
5476	ata_port_resume_async(ap, PMSG_RESUME);
5477}
5478EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5479
5480/**
5481 *	ata_host_suspend - suspend host
5482 *	@host: host to suspend
5483 *	@mesg: PM message
5484 *
5485 *	Suspend @host.  Actual operation is performed by port suspend.
5486 */
5487int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5488{
5489	host->dev->power.power_state = mesg;
5490	return 0;
5491}
5492
5493/**
5494 *	ata_host_resume - resume host
5495 *	@host: host to resume
5496 *
5497 *	Resume @host.  Actual operation is performed by port resume.
5498 */
5499void ata_host_resume(struct ata_host *host)
5500{
5501	host->dev->power.power_state = PMSG_ON;
5502}
5503#endif
5504
5505struct device_type ata_port_type = {
5506	.name = "ata_port",
5507#ifdef CONFIG_PM
5508	.pm = &ata_port_pm_ops,
5509#endif
5510};
5511
5512/**
5513 *	ata_dev_init - Initialize an ata_device structure
5514 *	@dev: Device structure to initialize
5515 *
5516 *	Initialize @dev in preparation for probing.
5517 *
5518 *	LOCKING:
5519 *	Inherited from caller.
5520 */
5521void ata_dev_init(struct ata_device *dev)
5522{
5523	struct ata_link *link = ata_dev_phys_link(dev);
5524	struct ata_port *ap = link->ap;
5525	unsigned long flags;
5526
5527	/* SATA spd limit is bound to the attached device, reset together */
5528	link->sata_spd_limit = link->hw_sata_spd_limit;
5529	link->sata_spd = 0;
5530
5531	/* High bits of dev->flags are used to record warm plug
5532	 * requests which occur asynchronously.  Synchronize using
5533	 * host lock.
5534	 */
5535	spin_lock_irqsave(ap->lock, flags);
5536	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5537	dev->horkage = 0;
5538	spin_unlock_irqrestore(ap->lock, flags);
5539
5540	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5541	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5542	dev->pio_mask = UINT_MAX;
5543	dev->mwdma_mask = UINT_MAX;
5544	dev->udma_mask = UINT_MAX;
5545}
5546
5547/**
5548 *	ata_link_init - Initialize an ata_link structure
5549 *	@ap: ATA port link is attached to
5550 *	@link: Link structure to initialize
5551 *	@pmp: Port multiplier port number
5552 *
5553 *	Initialize @link.
5554 *
5555 *	LOCKING:
5556 *	Kernel thread context (may sleep)
5557 */
5558void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5559{
5560	int i;
5561
5562	/* clear everything except for devices */
5563	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5564	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5565
5566	link->ap = ap;
5567	link->pmp = pmp;
5568	link->active_tag = ATA_TAG_POISON;
5569	link->hw_sata_spd_limit = UINT_MAX;
5570
5571	/* can't use iterator, ap isn't initialized yet */
5572	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5573		struct ata_device *dev = &link->device[i];
5574
5575		dev->link = link;
5576		dev->devno = dev - link->device;
5577#ifdef CONFIG_ATA_ACPI
5578		dev->gtf_filter = ata_acpi_gtf_filter;
5579#endif
5580		ata_dev_init(dev);
5581	}
5582}
5583
5584/**
5585 *	sata_link_init_spd - Initialize link->sata_spd_limit
5586 *	@link: Link to configure sata_spd_limit for
5587 *
5588 *	Initialize @link->[hw_]sata_spd_limit to the currently
5589 *	configured value.
5590 *
5591 *	LOCKING:
5592 *	Kernel thread context (may sleep).
5593 *
5594 *	RETURNS:
5595 *	0 on success, -errno on failure.
5596 */
5597int sata_link_init_spd(struct ata_link *link)
5598{
5599	u8 spd;
5600	int rc;
5601
5602	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5603	if (rc)
5604		return rc;
5605
5606	spd = (link->saved_scontrol >> 4) & 0xf;
5607	if (spd)
5608		link->hw_sata_spd_limit &= (1 << spd) - 1;
5609
5610	ata_force_link_limits(link);
5611
5612	link->sata_spd_limit = link->hw_sata_spd_limit;
5613
5614	return 0;
5615}
5616
5617/**
5618 *	ata_port_alloc - allocate and initialize basic ATA port resources
5619 *	@host: ATA host this allocated port belongs to
5620 *
5621 *	Allocate and initialize basic ATA port resources.
5622 *
5623 *	RETURNS:
5624 *	Allocate ATA port on success, NULL on failure.
5625 *
5626 *	LOCKING:
5627 *	Inherited from calling layer (may sleep).
5628 */
5629struct ata_port *ata_port_alloc(struct ata_host *host)
5630{
5631	struct ata_port *ap;
5632
5633	DPRINTK("ENTER\n");
5634
5635	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5636	if (!ap)
5637		return NULL;
5638
5639	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5640	ap->lock = &host->lock;
5641	ap->print_id = -1;
5642	ap->local_port_no = -1;
5643	ap->host = host;
5644	ap->dev = host->dev;
5645
5646#if defined(ATA_VERBOSE_DEBUG)
5647	/* turn on all debugging levels */
5648	ap->msg_enable = 0x00FF;
5649#elif defined(ATA_DEBUG)
5650	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5651#else
5652	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5653#endif
5654
5655	mutex_init(&ap->scsi_scan_mutex);
5656	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5657	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5658	INIT_LIST_HEAD(&ap->eh_done_q);
5659	init_waitqueue_head(&ap->eh_wait_q);
5660	init_completion(&ap->park_req_pending);
5661	init_timer_deferrable(&ap->fastdrain_timer);
5662	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5663	ap->fastdrain_timer.data = (unsigned long)ap;
5664
5665	ap->cbl = ATA_CBL_NONE;
5666
5667	ata_link_init(ap, &ap->link, 0);
5668
5669#ifdef ATA_IRQ_TRAP
5670	ap->stats.unhandled_irq = 1;
5671	ap->stats.idle_irq = 1;
5672#endif
5673	ata_sff_port_init(ap);
5674
5675	return ap;
5676}
5677
5678static void ata_host_release(struct device *gendev, void *res)
5679{
5680	struct ata_host *host = dev_get_drvdata(gendev);
5681	int i;
5682
5683	for (i = 0; i < host->n_ports; i++) {
5684		struct ata_port *ap = host->ports[i];
5685
5686		if (!ap)
5687			continue;
5688
5689		if (ap->scsi_host)
5690			scsi_host_put(ap->scsi_host);
5691
5692		kfree(ap->pmp_link);
5693		kfree(ap->slave_link);
5694		kfree(ap);
5695		host->ports[i] = NULL;
5696	}
5697
5698	dev_set_drvdata(gendev, NULL);
5699}
5700
5701/**
5702 *	ata_host_alloc - allocate and init basic ATA host resources
5703 *	@dev: generic device this host is associated with
5704 *	@max_ports: maximum number of ATA ports associated with this host
5705 *
5706 *	Allocate and initialize basic ATA host resources.  LLD calls
5707 *	this function to allocate a host, initializes it fully and
5708 *	attaches it using ata_host_register().
5709 *
5710 *	@max_ports ports are allocated and host->n_ports is
5711 *	initialized to @max_ports.  The caller is allowed to decrease
5712 *	host->n_ports before calling ata_host_register().  The unused
5713 *	ports will be automatically freed on registration.
5714 *
5715 *	RETURNS:
5716 *	Allocate ATA host on success, NULL on failure.
5717 *
5718 *	LOCKING:
5719 *	Inherited from calling layer (may sleep).
5720 */
5721struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5722{
5723	struct ata_host *host;
5724	size_t sz;
5725	int i;
5726
5727	DPRINTK("ENTER\n");
5728
5729	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5730		return NULL;
5731
5732	/* alloc a container for our list of ATA ports (buses) */
5733	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5734	/* alloc a container for our list of ATA ports (buses) */
5735	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5736	if (!host)
5737		goto err_out;
5738
5739	devres_add(dev, host);
5740	dev_set_drvdata(dev, host);
5741
5742	spin_lock_init(&host->lock);
5743	mutex_init(&host->eh_mutex);
5744	host->dev = dev;
5745	host->n_ports = max_ports;
5746
5747	/* allocate ports bound to this host */
5748	for (i = 0; i < max_ports; i++) {
5749		struct ata_port *ap;
5750
5751		ap = ata_port_alloc(host);
5752		if (!ap)
5753			goto err_out;
5754
5755		ap->port_no = i;
5756		host->ports[i] = ap;
5757	}
5758
5759	devres_remove_group(dev, NULL);
5760	return host;
5761
5762 err_out:
5763	devres_release_group(dev, NULL);
5764	return NULL;
5765}
5766
5767/**
5768 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5769 *	@dev: generic device this host is associated with
5770 *	@ppi: array of ATA port_info to initialize host with
5771 *	@n_ports: number of ATA ports attached to this host
5772 *
5773 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5774 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5775 *	last entry will be used for the remaining ports.
5776 *
5777 *	RETURNS:
5778 *	Allocate ATA host on success, NULL on failure.
5779 *
5780 *	LOCKING:
5781 *	Inherited from calling layer (may sleep).
5782 */
5783struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5784				      const struct ata_port_info * const * ppi,
5785				      int n_ports)
5786{
5787	const struct ata_port_info *pi;
5788	struct ata_host *host;
5789	int i, j;
5790
5791	host = ata_host_alloc(dev, n_ports);
5792	if (!host)
5793		return NULL;
5794
5795	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5796		struct ata_port *ap = host->ports[i];
5797
5798		if (ppi[j])
5799			pi = ppi[j++];
5800
5801		ap->pio_mask = pi->pio_mask;
5802		ap->mwdma_mask = pi->mwdma_mask;
5803		ap->udma_mask = pi->udma_mask;
5804		ap->flags |= pi->flags;
5805		ap->link.flags |= pi->link_flags;
5806		ap->ops = pi->port_ops;
5807
5808		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5809			host->ops = pi->port_ops;
5810	}
5811
5812	return host;
5813}
5814
5815/**
5816 *	ata_slave_link_init - initialize slave link
5817 *	@ap: port to initialize slave link for
5818 *
5819 *	Create and initialize slave link for @ap.  This enables slave
5820 *	link handling on the port.
5821 *
5822 *	In libata, a port contains links and a link contains devices.
5823 *	There is single host link but if a PMP is attached to it,
5824 *	there can be multiple fan-out links.  On SATA, there's usually
5825 *	a single device connected to a link but PATA and SATA
5826 *	controllers emulating TF based interface can have two - master
5827 *	and slave.
5828 *
5829 *	However, there are a few controllers which don't fit into this
5830 *	abstraction too well - SATA controllers which emulate TF
5831 *	interface with both master and slave devices but also have
5832 *	separate SCR register sets for each device.  These controllers
5833 *	need separate links for physical link handling
5834 *	(e.g. onlineness, link speed) but should be treated like a
5835 *	traditional M/S controller for everything else (e.g. command
5836 *	issue, softreset).
5837 *
5838 *	slave_link is libata's way of handling this class of
5839 *	controllers without impacting core layer too much.  For
5840 *	anything other than physical link handling, the default host
5841 *	link is used for both master and slave.  For physical link
5842 *	handling, separate @ap->slave_link is used.  All dirty details
5843 *	are implemented inside libata core layer.  From LLD's POV, the
5844 *	only difference is that prereset, hardreset and postreset are
5845 *	called once more for the slave link, so the reset sequence
5846 *	looks like the following.
5847 *
5848 *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5849 *	softreset(M) -> postreset(M) -> postreset(S)
5850 *
5851 *	Note that softreset is called only for the master.  Softreset
5852 *	resets both M/S by definition, so SRST on master should handle
5853 *	both (the standard method will work just fine).
5854 *
5855 *	LOCKING:
5856 *	Should be called before host is registered.
5857 *
5858 *	RETURNS:
5859 *	0 on success, -errno on failure.
5860 */
5861int ata_slave_link_init(struct ata_port *ap)
5862{
5863	struct ata_link *link;
5864
5865	WARN_ON(ap->slave_link);
5866	WARN_ON(ap->flags & ATA_FLAG_PMP);
5867
5868	link = kzalloc(sizeof(*link), GFP_KERNEL);
5869	if (!link)
5870		return -ENOMEM;
5871
5872	ata_link_init(ap, link, 1);
5873	ap->slave_link = link;
5874	return 0;
5875}
5876
5877static void ata_host_stop(struct device *gendev, void *res)
5878{
5879	struct ata_host *host = dev_get_drvdata(gendev);
5880	int i;
5881
5882	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5883
5884	for (i = 0; i < host->n_ports; i++) {
5885		struct ata_port *ap = host->ports[i];
5886
5887		if (ap->ops->port_stop)
5888			ap->ops->port_stop(ap);
5889	}
5890
5891	if (host->ops->host_stop)
5892		host->ops->host_stop(host);
5893}
5894
5895/**
5896 *	ata_finalize_port_ops - finalize ata_port_operations
5897 *	@ops: ata_port_operations to finalize
5898 *
5899 *	An ata_port_operations can inherit from another ops and that
5900 *	ops can again inherit from another.  This can go on as many
5901 *	times as necessary as long as there is no loop in the
5902 *	inheritance chain.
5903 *
5904 *	Ops tables are finalized when the host is started.  NULL or
5905 *	unspecified entries are inherited from the closet ancestor
5906 *	which has the method and the entry is populated with it.
5907 *	After finalization, the ops table directly points to all the
5908 *	methods and ->inherits is no longer necessary and cleared.
5909 *
5910 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5911 *
5912 *	LOCKING:
5913 *	None.
5914 */
5915static void ata_finalize_port_ops(struct ata_port_operations *ops)
5916{
5917	static DEFINE_SPINLOCK(lock);
5918	const struct ata_port_operations *cur;
5919	void **begin = (void **)ops;
5920	void **end = (void **)&ops->inherits;
5921	void **pp;
5922
5923	if (!ops || !ops->inherits)
5924		return;
5925
5926	spin_lock(&lock);
5927
5928	for (cur = ops->inherits; cur; cur = cur->inherits) {
5929		void **inherit = (void **)cur;
5930
5931		for (pp = begin; pp < end; pp++, inherit++)
5932			if (!*pp)
5933				*pp = *inherit;
5934	}
5935
5936	for (pp = begin; pp < end; pp++)
5937		if (IS_ERR(*pp))
5938			*pp = NULL;
5939
5940	ops->inherits = NULL;
5941
5942	spin_unlock(&lock);
5943}
5944
5945/**
5946 *	ata_host_start - start and freeze ports of an ATA host
5947 *	@host: ATA host to start ports for
5948 *
5949 *	Start and then freeze ports of @host.  Started status is
5950 *	recorded in host->flags, so this function can be called
5951 *	multiple times.  Ports are guaranteed to get started only
5952 *	once.  If host->ops isn't initialized yet, its set to the
5953 *	first non-dummy port ops.
5954 *
5955 *	LOCKING:
5956 *	Inherited from calling layer (may sleep).
5957 *
5958 *	RETURNS:
5959 *	0 if all ports are started successfully, -errno otherwise.
5960 */
5961int ata_host_start(struct ata_host *host)
5962{
5963	int have_stop = 0;
5964	void *start_dr = NULL;
5965	int i, rc;
5966
5967	if (host->flags & ATA_HOST_STARTED)
5968		return 0;
5969
5970	ata_finalize_port_ops(host->ops);
5971
5972	for (i = 0; i < host->n_ports; i++) {
5973		struct ata_port *ap = host->ports[i];
5974
5975		ata_finalize_port_ops(ap->ops);
5976
5977		if (!host->ops && !ata_port_is_dummy(ap))
5978			host->ops = ap->ops;
5979
5980		if (ap->ops->port_stop)
5981			have_stop = 1;
5982	}
5983
5984	if (host->ops->host_stop)
5985		have_stop = 1;
5986
5987	if (have_stop) {
5988		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5989		if (!start_dr)
5990			return -ENOMEM;
5991	}
5992
5993	for (i = 0; i < host->n_ports; i++) {
5994		struct ata_port *ap = host->ports[i];
5995
5996		if (ap->ops->port_start) {
5997			rc = ap->ops->port_start(ap);
5998			if (rc) {
5999				if (rc != -ENODEV)
6000					dev_err(host->dev,
6001						"failed to start port %d (errno=%d)\n",
6002						i, rc);
6003				goto err_out;
6004			}
6005		}
6006		ata_eh_freeze_port(ap);
6007	}
6008
6009	if (start_dr)
6010		devres_add(host->dev, start_dr);
6011	host->flags |= ATA_HOST_STARTED;
6012	return 0;
6013
6014 err_out:
6015	while (--i >= 0) {
6016		struct ata_port *ap = host->ports[i];
6017
6018		if (ap->ops->port_stop)
6019			ap->ops->port_stop(ap);
6020	}
6021	devres_free(start_dr);
6022	return rc;
6023}
6024
6025/**
6026 *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6027 *	@host:	host to initialize
6028 *	@dev:	device host is attached to
6029 *	@ops:	port_ops
6030 *
6031 */
6032void ata_host_init(struct ata_host *host, struct device *dev,
6033		   struct ata_port_operations *ops)
6034{
6035	spin_lock_init(&host->lock);
6036	mutex_init(&host->eh_mutex);
6037	host->n_tags = ATA_MAX_QUEUE - 1;
6038	host->dev = dev;
6039	host->ops = ops;
6040}
6041
6042void __ata_port_probe(struct ata_port *ap)
6043{
6044	struct ata_eh_info *ehi = &ap->link.eh_info;
6045	unsigned long flags;
6046
6047	/* kick EH for boot probing */
6048	spin_lock_irqsave(ap->lock, flags);
6049
6050	ehi->probe_mask |= ATA_ALL_DEVICES;
6051	ehi->action |= ATA_EH_RESET;
6052	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6053
6054	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6055	ap->pflags |= ATA_PFLAG_LOADING;
6056	ata_port_schedule_eh(ap);
6057
6058	spin_unlock_irqrestore(ap->lock, flags);
6059}
6060
6061int ata_port_probe(struct ata_port *ap)
6062{
6063	int rc = 0;
6064
6065	if (ap->ops->error_handler) {
6066		__ata_port_probe(ap);
6067		ata_port_wait_eh(ap);
6068	} else {
6069		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6070		rc = ata_bus_probe(ap);
6071		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6072	}
6073	return rc;
6074}
6075
6076
6077static void async_port_probe(void *data, async_cookie_t cookie)
6078{
6079	struct ata_port *ap = data;
6080
6081	/*
6082	 * If we're not allowed to scan this host in parallel,
6083	 * we need to wait until all previous scans have completed
6084	 * before going further.
6085	 * Jeff Garzik says this is only within a controller, so we
6086	 * don't need to wait for port 0, only for later ports.
6087	 */
6088	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6089		async_synchronize_cookie(cookie);
6090
6091	(void)ata_port_probe(ap);
6092
6093	/* in order to keep device order, we need to synchronize at this point */
6094	async_synchronize_cookie(cookie);
6095
6096	ata_scsi_scan_host(ap, 1);
6097}
6098
6099/**
6100 *	ata_host_register - register initialized ATA host
6101 *	@host: ATA host to register
6102 *	@sht: template for SCSI host
6103 *
6104 *	Register initialized ATA host.  @host is allocated using
6105 *	ata_host_alloc() and fully initialized by LLD.  This function
6106 *	starts ports, registers @host with ATA and SCSI layers and
6107 *	probe registered devices.
6108 *
6109 *	LOCKING:
6110 *	Inherited from calling layer (may sleep).
6111 *
6112 *	RETURNS:
6113 *	0 on success, -errno otherwise.
6114 */
6115int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6116{
6117	int i, rc;
6118
6119	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6120
6121	/* host must have been started */
6122	if (!(host->flags & ATA_HOST_STARTED)) {
6123		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6124		WARN_ON(1);
6125		return -EINVAL;
6126	}
6127
6128	/* Blow away unused ports.  This happens when LLD can't
6129	 * determine the exact number of ports to allocate at
6130	 * allocation time.
6131	 */
6132	for (i = host->n_ports; host->ports[i]; i++)
6133		kfree(host->ports[i]);
6134
6135	/* give ports names and add SCSI hosts */
6136	for (i = 0; i < host->n_ports; i++) {
6137		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6138		host->ports[i]->local_port_no = i + 1;
6139	}
6140
6141	/* Create associated sysfs transport objects  */
6142	for (i = 0; i < host->n_ports; i++) {
6143		rc = ata_tport_add(host->dev,host->ports[i]);
6144		if (rc) {
6145			goto err_tadd;
6146		}
6147	}
6148
6149	rc = ata_scsi_add_hosts(host, sht);
6150	if (rc)
6151		goto err_tadd;
6152
6153	/* set cable, sata_spd_limit and report */
6154	for (i = 0; i < host->n_ports; i++) {
6155		struct ata_port *ap = host->ports[i];
6156		unsigned long xfer_mask;
6157
6158		/* set SATA cable type if still unset */
6159		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6160			ap->cbl = ATA_CBL_SATA;
6161
6162		/* init sata_spd_limit to the current value */
6163		sata_link_init_spd(&ap->link);
6164		if (ap->slave_link)
6165			sata_link_init_spd(ap->slave_link);
6166
6167		/* print per-port info to dmesg */
6168		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6169					      ap->udma_mask);
6170
6171		if (!ata_port_is_dummy(ap)) {
6172			ata_port_info(ap, "%cATA max %s %s\n",
6173				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6174				      ata_mode_string(xfer_mask),
6175				      ap->link.eh_info.desc);
6176			ata_ehi_clear_desc(&ap->link.eh_info);
6177		} else
6178			ata_port_info(ap, "DUMMY\n");
6179	}
6180
6181	/* perform each probe asynchronously */
6182	for (i = 0; i < host->n_ports; i++) {
6183		struct ata_port *ap = host->ports[i];
6184		async_schedule(async_port_probe, ap);
6185	}
6186
6187	return 0;
6188
6189 err_tadd:
6190	while (--i >= 0) {
6191		ata_tport_delete(host->ports[i]);
6192	}
6193	return rc;
6194
6195}
6196
6197/**
6198 *	ata_host_activate - start host, request IRQ and register it
6199 *	@host: target ATA host
6200 *	@irq: IRQ to request
6201 *	@irq_handler: irq_handler used when requesting IRQ
6202 *	@irq_flags: irq_flags used when requesting IRQ
6203 *	@sht: scsi_host_template to use when registering the host
6204 *
6205 *	After allocating an ATA host and initializing it, most libata
6206 *	LLDs perform three steps to activate the host - start host,
6207 *	request IRQ and register it.  This helper takes necessasry
6208 *	arguments and performs the three steps in one go.
6209 *
6210 *	An invalid IRQ skips the IRQ registration and expects the host to
6211 *	have set polling mode on the port. In this case, @irq_handler
6212 *	should be NULL.
6213 *
6214 *	LOCKING:
6215 *	Inherited from calling layer (may sleep).
6216 *
6217 *	RETURNS:
6218 *	0 on success, -errno otherwise.
6219 */
6220int ata_host_activate(struct ata_host *host, int irq,
6221		      irq_handler_t irq_handler, unsigned long irq_flags,
6222		      struct scsi_host_template *sht)
6223{
6224	int i, rc;
6225
6226	rc = ata_host_start(host);
6227	if (rc)
6228		return rc;
6229
6230	/* Special case for polling mode */
6231	if (!irq) {
6232		WARN_ON(irq_handler);
6233		return ata_host_register(host, sht);
6234	}
6235
6236	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6237			      dev_name(host->dev), host);
6238	if (rc)
6239		return rc;
6240
6241	for (i = 0; i < host->n_ports; i++)
6242		ata_port_desc(host->ports[i], "irq %d", irq);
6243
6244	rc = ata_host_register(host, sht);
6245	/* if failed, just free the IRQ and leave ports alone */
6246	if (rc)
6247		devm_free_irq(host->dev, irq, host);
6248
6249	return rc;
6250}
6251
6252/**
6253 *	ata_port_detach - Detach ATA port in prepration of device removal
6254 *	@ap: ATA port to be detached
6255 *
6256 *	Detach all ATA devices and the associated SCSI devices of @ap;
6257 *	then, remove the associated SCSI host.  @ap is guaranteed to
6258 *	be quiescent on return from this function.
6259 *
6260 *	LOCKING:
6261 *	Kernel thread context (may sleep).
6262 */
6263static void ata_port_detach(struct ata_port *ap)
6264{
6265	unsigned long flags;
6266	struct ata_link *link;
6267	struct ata_device *dev;
6268
6269	if (!ap->ops->error_handler)
6270		goto skip_eh;
6271
6272	/* tell EH we're leaving & flush EH */
6273	spin_lock_irqsave(ap->lock, flags);
6274	ap->pflags |= ATA_PFLAG_UNLOADING;
6275	ata_port_schedule_eh(ap);
6276	spin_unlock_irqrestore(ap->lock, flags);
6277
6278	/* wait till EH commits suicide */
6279	ata_port_wait_eh(ap);
6280
6281	/* it better be dead now */
6282	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6283
6284	cancel_delayed_work_sync(&ap->hotplug_task);
6285
6286 skip_eh:
6287	/* clean up zpodd on port removal */
6288	ata_for_each_link(link, ap, HOST_FIRST) {
6289		ata_for_each_dev(dev, link, ALL) {
6290			if (zpodd_dev_enabled(dev))
6291				zpodd_exit(dev);
6292		}
6293	}
6294	if (ap->pmp_link) {
6295		int i;
6296		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6297			ata_tlink_delete(&ap->pmp_link[i]);
6298	}
6299	/* remove the associated SCSI host */
6300	scsi_remove_host(ap->scsi_host);
6301	ata_tport_delete(ap);
6302}
6303
6304/**
6305 *	ata_host_detach - Detach all ports of an ATA host
6306 *	@host: Host to detach
6307 *
6308 *	Detach all ports of @host.
6309 *
6310 *	LOCKING:
6311 *	Kernel thread context (may sleep).
6312 */
6313void ata_host_detach(struct ata_host *host)
6314{
6315	int i;
6316
6317	for (i = 0; i < host->n_ports; i++)
6318		ata_port_detach(host->ports[i]);
6319
6320	/* the host is dead now, dissociate ACPI */
6321	ata_acpi_dissociate(host);
6322}
6323
6324#ifdef CONFIG_PCI
6325
6326/**
6327 *	ata_pci_remove_one - PCI layer callback for device removal
6328 *	@pdev: PCI device that was removed
6329 *
6330 *	PCI layer indicates to libata via this hook that hot-unplug or
6331 *	module unload event has occurred.  Detach all ports.  Resource
6332 *	release is handled via devres.
6333 *
6334 *	LOCKING:
6335 *	Inherited from PCI layer (may sleep).
6336 */
6337void ata_pci_remove_one(struct pci_dev *pdev)
6338{
6339	struct ata_host *host = pci_get_drvdata(pdev);
6340
6341	ata_host_detach(host);
6342}
6343
6344/* move to PCI subsystem */
6345int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6346{
6347	unsigned long tmp = 0;
6348
6349	switch (bits->width) {
6350	case 1: {
6351		u8 tmp8 = 0;
6352		pci_read_config_byte(pdev, bits->reg, &tmp8);
6353		tmp = tmp8;
6354		break;
6355	}
6356	case 2: {
6357		u16 tmp16 = 0;
6358		pci_read_config_word(pdev, bits->reg, &tmp16);
6359		tmp = tmp16;
6360		break;
6361	}
6362	case 4: {
6363		u32 tmp32 = 0;
6364		pci_read_config_dword(pdev, bits->reg, &tmp32);
6365		tmp = tmp32;
6366		break;
6367	}
6368
6369	default:
6370		return -EINVAL;
6371	}
6372
6373	tmp &= bits->mask;
6374
6375	return (tmp == bits->val) ? 1 : 0;
6376}
6377
6378#ifdef CONFIG_PM
6379void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6380{
6381	pci_save_state(pdev);
6382	pci_disable_device(pdev);
6383
6384	if (mesg.event & PM_EVENT_SLEEP)
6385		pci_set_power_state(pdev, PCI_D3hot);
6386}
6387
6388int ata_pci_device_do_resume(struct pci_dev *pdev)
6389{
6390	int rc;
6391
6392	pci_set_power_state(pdev, PCI_D0);
6393	pci_restore_state(pdev);
6394
6395	rc = pcim_enable_device(pdev);
6396	if (rc) {
6397		dev_err(&pdev->dev,
6398			"failed to enable device after resume (%d)\n", rc);
6399		return rc;
6400	}
6401
6402	pci_set_master(pdev);
6403	return 0;
6404}
6405
6406int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6407{
6408	struct ata_host *host = pci_get_drvdata(pdev);
6409	int rc = 0;
6410
6411	rc = ata_host_suspend(host, mesg);
6412	if (rc)
6413		return rc;
6414
6415	ata_pci_device_do_suspend(pdev, mesg);
6416
6417	return 0;
6418}
6419
6420int ata_pci_device_resume(struct pci_dev *pdev)
6421{
6422	struct ata_host *host = pci_get_drvdata(pdev);
6423	int rc;
6424
6425	rc = ata_pci_device_do_resume(pdev);
6426	if (rc == 0)
6427		ata_host_resume(host);
6428	return rc;
6429}
6430#endif /* CONFIG_PM */
6431
6432#endif /* CONFIG_PCI */
6433
6434/**
6435 *	ata_platform_remove_one - Platform layer callback for device removal
6436 *	@pdev: Platform device that was removed
6437 *
6438 *	Platform layer indicates to libata via this hook that hot-unplug or
6439 *	module unload event has occurred.  Detach all ports.  Resource
6440 *	release is handled via devres.
6441 *
6442 *	LOCKING:
6443 *	Inherited from platform layer (may sleep).
6444 */
6445int ata_platform_remove_one(struct platform_device *pdev)
6446{
6447	struct ata_host *host = platform_get_drvdata(pdev);
6448
6449	ata_host_detach(host);
6450
6451	return 0;
6452}
6453
6454static int __init ata_parse_force_one(char **cur,
6455				      struct ata_force_ent *force_ent,
6456				      const char **reason)
6457{
6458	/* FIXME: Currently, there's no way to tag init const data and
6459	 * using __initdata causes build failure on some versions of
6460	 * gcc.  Once __initdataconst is implemented, add const to the
6461	 * following structure.
6462	 */
6463	static struct ata_force_param force_tbl[] __initdata = {
6464		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6465		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6466		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6467		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6468		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6469		{ "sata",	.cbl		= ATA_CBL_SATA },
6470		{ "1.5Gbps",	.spd_limit	= 1 },
6471		{ "3.0Gbps",	.spd_limit	= 2 },
6472		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6473		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6474		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6475		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6476		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6477		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6478		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6479		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6480		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6481		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6482		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6483		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6484		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6485		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6486		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6487		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6488		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6489		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6490		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6491		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6492		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6493		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6494		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6495		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6496		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6497		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6498		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6499		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6500		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6501		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6502		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6503		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6504		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6505		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6506		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6507		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6508		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6509		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6510		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6511		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6512		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6513		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6514		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6515	};
6516	char *start = *cur, *p = *cur;
6517	char *id, *val, *endp;
6518	const struct ata_force_param *match_fp = NULL;
6519	int nr_matches = 0, i;
6520
6521	/* find where this param ends and update *cur */
6522	while (*p != '\0' && *p != ',')
6523		p++;
6524
6525	if (*p == '\0')
6526		*cur = p;
6527	else
6528		*cur = p + 1;
6529
6530	*p = '\0';
6531
6532	/* parse */
6533	p = strchr(start, ':');
6534	if (!p) {
6535		val = strstrip(start);
6536		goto parse_val;
6537	}
6538	*p = '\0';
6539
6540	id = strstrip(start);
6541	val = strstrip(p + 1);
6542
6543	/* parse id */
6544	p = strchr(id, '.');
6545	if (p) {
6546		*p++ = '\0';
6547		force_ent->device = simple_strtoul(p, &endp, 10);
6548		if (p == endp || *endp != '\0') {
6549			*reason = "invalid device";
6550			return -EINVAL;
6551		}
6552	}
6553
6554	force_ent->port = simple_strtoul(id, &endp, 10);
6555	if (p == endp || *endp != '\0') {
6556		*reason = "invalid port/link";
6557		return -EINVAL;
6558	}
6559
6560 parse_val:
6561	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6562	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6563		const struct ata_force_param *fp = &force_tbl[i];
6564
6565		if (strncasecmp(val, fp->name, strlen(val)))
6566			continue;
6567
6568		nr_matches++;
6569		match_fp = fp;
6570
6571		if (strcasecmp(val, fp->name) == 0) {
6572			nr_matches = 1;
6573			break;
6574		}
6575	}
6576
6577	if (!nr_matches) {
6578		*reason = "unknown value";
6579		return -EINVAL;
6580	}
6581	if (nr_matches > 1) {
6582		*reason = "ambigious value";
6583		return -EINVAL;
6584	}
6585
6586	force_ent->param = *match_fp;
6587
6588	return 0;
6589}
6590
6591static void __init ata_parse_force_param(void)
6592{
6593	int idx = 0, size = 1;
6594	int last_port = -1, last_device = -1;
6595	char *p, *cur, *next;
6596
6597	/* calculate maximum number of params and allocate force_tbl */
6598	for (p = ata_force_param_buf; *p; p++)
6599		if (*p == ',')
6600			size++;
6601
6602	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6603	if (!ata_force_tbl) {
6604		printk(KERN_WARNING "ata: failed to extend force table, "
6605		       "libata.force ignored\n");
6606		return;
6607	}
6608
6609	/* parse and populate the table */
6610	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6611		const char *reason = "";
6612		struct ata_force_ent te = { .port = -1, .device = -1 };
6613
6614		next = cur;
6615		if (ata_parse_force_one(&next, &te, &reason)) {
6616			printk(KERN_WARNING "ata: failed to parse force "
6617			       "parameter \"%s\" (%s)\n",
6618			       cur, reason);
6619			continue;
6620		}
6621
6622		if (te.port == -1) {
6623			te.port = last_port;
6624			te.device = last_device;
6625		}
6626
6627		ata_force_tbl[idx++] = te;
6628
6629		last_port = te.port;
6630		last_device = te.device;
6631	}
6632
6633	ata_force_tbl_size = idx;
6634}
6635
6636static int __init ata_init(void)
6637{
6638	int rc;
6639
6640	ata_parse_force_param();
6641
6642	rc = ata_sff_init();
6643	if (rc) {
6644		kfree(ata_force_tbl);
6645		return rc;
6646	}
6647
6648	libata_transport_init();
6649	ata_scsi_transport_template = ata_attach_transport();
6650	if (!ata_scsi_transport_template) {
6651		ata_sff_exit();
6652		rc = -ENOMEM;
6653		goto err_out;
6654	}
6655
6656	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6657	return 0;
6658
6659err_out:
6660	return rc;
6661}
6662
6663static void __exit ata_exit(void)
6664{
6665	ata_release_transport(ata_scsi_transport_template);
6666	libata_transport_exit();
6667	ata_sff_exit();
6668	kfree(ata_force_tbl);
6669}
6670
6671subsys_initcall(ata_init);
6672module_exit(ata_exit);
6673
6674static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6675
6676int ata_ratelimit(void)
6677{
6678	return __ratelimit(&ratelimit);
6679}
6680
6681/**
6682 *	ata_msleep - ATA EH owner aware msleep
6683 *	@ap: ATA port to attribute the sleep to
6684 *	@msecs: duration to sleep in milliseconds
6685 *
6686 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6687 *	ownership is released before going to sleep and reacquired
6688 *	after the sleep is complete.  IOW, other ports sharing the
6689 *	@ap->host will be allowed to own the EH while this task is
6690 *	sleeping.
6691 *
6692 *	LOCKING:
6693 *	Might sleep.
6694 */
6695void ata_msleep(struct ata_port *ap, unsigned int msecs)
6696{
6697	bool owns_eh = ap && ap->host->eh_owner == current;
6698
6699	if (owns_eh)
6700		ata_eh_release(ap);
6701
6702	msleep(msecs);
6703
6704	if (owns_eh)
6705		ata_eh_acquire(ap);
6706}
6707
6708/**
6709 *	ata_wait_register - wait until register value changes
6710 *	@ap: ATA port to wait register for, can be NULL
6711 *	@reg: IO-mapped register
6712 *	@mask: Mask to apply to read register value
6713 *	@val: Wait condition
6714 *	@interval: polling interval in milliseconds
6715 *	@timeout: timeout in milliseconds
6716 *
6717 *	Waiting for some bits of register to change is a common
6718 *	operation for ATA controllers.  This function reads 32bit LE
6719 *	IO-mapped register @reg and tests for the following condition.
6720 *
6721 *	(*@reg & mask) != val
6722 *
6723 *	If the condition is met, it returns; otherwise, the process is
6724 *	repeated after @interval_msec until timeout.
6725 *
6726 *	LOCKING:
6727 *	Kernel thread context (may sleep)
6728 *
6729 *	RETURNS:
6730 *	The final register value.
6731 */
6732u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6733		      unsigned long interval, unsigned long timeout)
6734{
6735	unsigned long deadline;
6736	u32 tmp;
6737
6738	tmp = ioread32(reg);
6739
6740	/* Calculate timeout _after_ the first read to make sure
6741	 * preceding writes reach the controller before starting to
6742	 * eat away the timeout.
6743	 */
6744	deadline = ata_deadline(jiffies, timeout);
6745
6746	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6747		ata_msleep(ap, interval);
6748		tmp = ioread32(reg);
6749	}
6750
6751	return tmp;
6752}
6753
6754/**
6755 *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
6756 *	@link: Link receiving the event
6757 *
6758 *	Test whether the received PHY event has to be ignored or not.
6759 *
6760 *	LOCKING:
6761 *	None:
6762 *
6763 *	RETURNS:
6764 *	True if the event has to be ignored.
6765 */
6766bool sata_lpm_ignore_phy_events(struct ata_link *link)
6767{
6768	unsigned long lpm_timeout = link->last_lpm_change +
6769				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6770
6771	/* if LPM is enabled, PHYRDY doesn't mean anything */
6772	if (link->lpm_policy > ATA_LPM_MAX_POWER)
6773		return true;
6774
6775	/* ignore the first PHY event after the LPM policy changed
6776	 * as it is might be spurious
6777	 */
6778	if ((link->flags & ATA_LFLAG_CHANGED) &&
6779	    time_before(jiffies, lpm_timeout))
6780		return true;
6781
6782	return false;
6783}
6784EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6785
6786/*
6787 * Dummy port_ops
6788 */
6789static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6790{
6791	return AC_ERR_SYSTEM;
6792}
6793
6794static void ata_dummy_error_handler(struct ata_port *ap)
6795{
6796	/* truly dummy */
6797}
6798
6799struct ata_port_operations ata_dummy_port_ops = {
6800	.qc_prep		= ata_noop_qc_prep,
6801	.qc_issue		= ata_dummy_qc_issue,
6802	.error_handler		= ata_dummy_error_handler,
6803	.sched_eh		= ata_std_sched_eh,
6804	.end_eh			= ata_std_end_eh,
6805};
6806
6807const struct ata_port_info ata_dummy_port_info = {
6808	.port_ops		= &ata_dummy_port_ops,
6809};
6810
6811/*
6812 * Utility print functions
6813 */
6814void ata_port_printk(const struct ata_port *ap, const char *level,
6815		     const char *fmt, ...)
6816{
6817	struct va_format vaf;
6818	va_list args;
6819
6820	va_start(args, fmt);
6821
6822	vaf.fmt = fmt;
6823	vaf.va = &args;
6824
6825	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6826
6827	va_end(args);
6828}
6829EXPORT_SYMBOL(ata_port_printk);
6830
6831void ata_link_printk(const struct ata_link *link, const char *level,
6832		     const char *fmt, ...)
6833{
6834	struct va_format vaf;
6835	va_list args;
6836
6837	va_start(args, fmt);
6838
6839	vaf.fmt = fmt;
6840	vaf.va = &args;
6841
6842	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6843		printk("%sata%u.%02u: %pV",
6844		       level, link->ap->print_id, link->pmp, &vaf);
6845	else
6846		printk("%sata%u: %pV",
6847		       level, link->ap->print_id, &vaf);
6848
6849	va_end(args);
6850}
6851EXPORT_SYMBOL(ata_link_printk);
6852
6853void ata_dev_printk(const struct ata_device *dev, const char *level,
6854		    const char *fmt, ...)
6855{
6856	struct va_format vaf;
6857	va_list args;
6858
6859	va_start(args, fmt);
6860
6861	vaf.fmt = fmt;
6862	vaf.va = &args;
6863
6864	printk("%sata%u.%02u: %pV",
6865	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6866	       &vaf);
6867
6868	va_end(args);
6869}
6870EXPORT_SYMBOL(ata_dev_printk);
6871
6872void ata_print_version(const struct device *dev, const char *version)
6873{
6874	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6875}
6876EXPORT_SYMBOL(ata_print_version);
6877
6878/*
6879 * libata is essentially a library of internal helper functions for
6880 * low-level ATA host controller drivers.  As such, the API/ABI is
6881 * likely to change as new drivers are added and updated.
6882 * Do not depend on ABI/API stability.
6883 */
6884EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6885EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6886EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6887EXPORT_SYMBOL_GPL(ata_base_port_ops);
6888EXPORT_SYMBOL_GPL(sata_port_ops);
6889EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6890EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6891EXPORT_SYMBOL_GPL(ata_link_next);
6892EXPORT_SYMBOL_GPL(ata_dev_next);
6893EXPORT_SYMBOL_GPL(ata_std_bios_param);
6894EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6895EXPORT_SYMBOL_GPL(ata_host_init);
6896EXPORT_SYMBOL_GPL(ata_host_alloc);
6897EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6898EXPORT_SYMBOL_GPL(ata_slave_link_init);
6899EXPORT_SYMBOL_GPL(ata_host_start);
6900EXPORT_SYMBOL_GPL(ata_host_register);
6901EXPORT_SYMBOL_GPL(ata_host_activate);
6902EXPORT_SYMBOL_GPL(ata_host_detach);
6903EXPORT_SYMBOL_GPL(ata_sg_init);
6904EXPORT_SYMBOL_GPL(ata_qc_complete);
6905EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6906EXPORT_SYMBOL_GPL(atapi_cmd_type);
6907EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6908EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6909EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6910EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6911EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6912EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6913EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6914EXPORT_SYMBOL_GPL(ata_mode_string);
6915EXPORT_SYMBOL_GPL(ata_id_xfermask);
6916EXPORT_SYMBOL_GPL(ata_do_set_mode);
6917EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6918EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6919EXPORT_SYMBOL_GPL(ata_dev_disable);
6920EXPORT_SYMBOL_GPL(sata_set_spd);
6921EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6922EXPORT_SYMBOL_GPL(sata_link_debounce);
6923EXPORT_SYMBOL_GPL(sata_link_resume);
6924EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6925EXPORT_SYMBOL_GPL(ata_std_prereset);
6926EXPORT_SYMBOL_GPL(sata_link_hardreset);
6927EXPORT_SYMBOL_GPL(sata_std_hardreset);
6928EXPORT_SYMBOL_GPL(ata_std_postreset);
6929EXPORT_SYMBOL_GPL(ata_dev_classify);
6930EXPORT_SYMBOL_GPL(ata_dev_pair);
6931EXPORT_SYMBOL_GPL(ata_ratelimit);
6932EXPORT_SYMBOL_GPL(ata_msleep);
6933EXPORT_SYMBOL_GPL(ata_wait_register);
6934EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6935EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6936EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6937EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6938EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6939EXPORT_SYMBOL_GPL(sata_scr_valid);
6940EXPORT_SYMBOL_GPL(sata_scr_read);
6941EXPORT_SYMBOL_GPL(sata_scr_write);
6942EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6943EXPORT_SYMBOL_GPL(ata_link_online);
6944EXPORT_SYMBOL_GPL(ata_link_offline);
6945#ifdef CONFIG_PM
6946EXPORT_SYMBOL_GPL(ata_host_suspend);
6947EXPORT_SYMBOL_GPL(ata_host_resume);
6948#endif /* CONFIG_PM */
6949EXPORT_SYMBOL_GPL(ata_id_string);
6950EXPORT_SYMBOL_GPL(ata_id_c_string);
6951EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6952EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6953
6954EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6955EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6956EXPORT_SYMBOL_GPL(ata_timing_compute);
6957EXPORT_SYMBOL_GPL(ata_timing_merge);
6958EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6959
6960#ifdef CONFIG_PCI
6961EXPORT_SYMBOL_GPL(pci_test_config_bits);
6962EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6963#ifdef CONFIG_PM
6964EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6965EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6966EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6967EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6968#endif /* CONFIG_PM */
6969#endif /* CONFIG_PCI */
6970
6971EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6972
6973EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6974EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6975EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6976EXPORT_SYMBOL_GPL(ata_port_desc);
6977#ifdef CONFIG_PCI
6978EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6979#endif /* CONFIG_PCI */
6980EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6981EXPORT_SYMBOL_GPL(ata_link_abort);
6982EXPORT_SYMBOL_GPL(ata_port_abort);
6983EXPORT_SYMBOL_GPL(ata_port_freeze);
6984EXPORT_SYMBOL_GPL(sata_async_notification);
6985EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6986EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6987EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6988EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6989EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6990EXPORT_SYMBOL_GPL(ata_do_eh);
6991EXPORT_SYMBOL_GPL(ata_std_error_handler);
6992
6993EXPORT_SYMBOL_GPL(ata_cable_40wire);
6994EXPORT_SYMBOL_GPL(ata_cable_80wire);
6995EXPORT_SYMBOL_GPL(ata_cable_unknown);
6996EXPORT_SYMBOL_GPL(ata_cable_ignore);
6997EXPORT_SYMBOL_GPL(ata_cable_sata);
6998