1/*
2 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
3 * Copyright(c) 2009 Intel Corporation
4 *
5 * based on raid6recov.c:
6 *   Copyright 2002 H. Peter Anvin
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 51
20 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 */
23#include <linux/kernel.h>
24#include <linux/interrupt.h>
25#include <linux/module.h>
26#include <linux/dma-mapping.h>
27#include <linux/raid/pq.h>
28#include <linux/async_tx.h>
29#include <linux/dmaengine.h>
30
31static struct dma_async_tx_descriptor *
32async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
33		  size_t len, struct async_submit_ctl *submit)
34{
35	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
36						      &dest, 1, srcs, 2, len);
37	struct dma_device *dma = chan ? chan->device : NULL;
38	struct dmaengine_unmap_data *unmap = NULL;
39	const u8 *amul, *bmul;
40	u8 ax, bx;
41	u8 *a, *b, *c;
42
43	if (dma)
44		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOIO);
45
46	if (unmap) {
47		struct device *dev = dma->dev;
48		dma_addr_t pq[2];
49		struct dma_async_tx_descriptor *tx;
50		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
51
52		if (submit->flags & ASYNC_TX_FENCE)
53			dma_flags |= DMA_PREP_FENCE;
54		unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
55		unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
56		unmap->to_cnt = 2;
57
58		unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
59		unmap->bidi_cnt = 1;
60		/* engine only looks at Q, but expects it to follow P */
61		pq[1] = unmap->addr[2];
62
63		unmap->len = len;
64		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
65					     len, dma_flags);
66		if (tx) {
67			dma_set_unmap(tx, unmap);
68			async_tx_submit(chan, tx, submit);
69			dmaengine_unmap_put(unmap);
70			return tx;
71		}
72
73		/* could not get a descriptor, unmap and fall through to
74		 * the synchronous path
75		 */
76		dmaengine_unmap_put(unmap);
77	}
78
79	/* run the operation synchronously */
80	async_tx_quiesce(&submit->depend_tx);
81	amul = raid6_gfmul[coef[0]];
82	bmul = raid6_gfmul[coef[1]];
83	a = page_address(srcs[0]);
84	b = page_address(srcs[1]);
85	c = page_address(dest);
86
87	while (len--) {
88		ax    = amul[*a++];
89		bx    = bmul[*b++];
90		*c++ = ax ^ bx;
91	}
92
93	return NULL;
94}
95
96static struct dma_async_tx_descriptor *
97async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
98	   struct async_submit_ctl *submit)
99{
100	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
101						      &dest, 1, &src, 1, len);
102	struct dma_device *dma = chan ? chan->device : NULL;
103	struct dmaengine_unmap_data *unmap = NULL;
104	const u8 *qmul; /* Q multiplier table */
105	u8 *d, *s;
106
107	if (dma)
108		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOIO);
109
110	if (unmap) {
111		dma_addr_t dma_dest[2];
112		struct device *dev = dma->dev;
113		struct dma_async_tx_descriptor *tx;
114		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
115
116		if (submit->flags & ASYNC_TX_FENCE)
117			dma_flags |= DMA_PREP_FENCE;
118		unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
119		unmap->to_cnt++;
120		unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
121		dma_dest[1] = unmap->addr[1];
122		unmap->bidi_cnt++;
123		unmap->len = len;
124
125		/* this looks funny, but the engine looks for Q at
126		 * dma_dest[1] and ignores dma_dest[0] as a dest
127		 * due to DMA_PREP_PQ_DISABLE_P
128		 */
129		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
130					     1, &coef, len, dma_flags);
131
132		if (tx) {
133			dma_set_unmap(tx, unmap);
134			dmaengine_unmap_put(unmap);
135			async_tx_submit(chan, tx, submit);
136			return tx;
137		}
138
139		/* could not get a descriptor, unmap and fall through to
140		 * the synchronous path
141		 */
142		dmaengine_unmap_put(unmap);
143	}
144
145	/* no channel available, or failed to allocate a descriptor, so
146	 * perform the operation synchronously
147	 */
148	async_tx_quiesce(&submit->depend_tx);
149	qmul  = raid6_gfmul[coef];
150	d = page_address(dest);
151	s = page_address(src);
152
153	while (len--)
154		*d++ = qmul[*s++];
155
156	return NULL;
157}
158
159static struct dma_async_tx_descriptor *
160__2data_recov_4(int disks, size_t bytes, int faila, int failb,
161		struct page **blocks, struct async_submit_ctl *submit)
162{
163	struct dma_async_tx_descriptor *tx = NULL;
164	struct page *p, *q, *a, *b;
165	struct page *srcs[2];
166	unsigned char coef[2];
167	enum async_tx_flags flags = submit->flags;
168	dma_async_tx_callback cb_fn = submit->cb_fn;
169	void *cb_param = submit->cb_param;
170	void *scribble = submit->scribble;
171
172	p = blocks[disks-2];
173	q = blocks[disks-1];
174
175	a = blocks[faila];
176	b = blocks[failb];
177
178	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
179	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
180	srcs[0] = p;
181	srcs[1] = q;
182	coef[0] = raid6_gfexi[failb-faila];
183	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
184	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
185	tx = async_sum_product(b, srcs, coef, bytes, submit);
186
187	/* Dy = P+Pxy+Dx */
188	srcs[0] = p;
189	srcs[1] = b;
190	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
191			  cb_param, scribble);
192	tx = async_xor(a, srcs, 0, 2, bytes, submit);
193
194	return tx;
195
196}
197
198static struct dma_async_tx_descriptor *
199__2data_recov_5(int disks, size_t bytes, int faila, int failb,
200		struct page **blocks, struct async_submit_ctl *submit)
201{
202	struct dma_async_tx_descriptor *tx = NULL;
203	struct page *p, *q, *g, *dp, *dq;
204	struct page *srcs[2];
205	unsigned char coef[2];
206	enum async_tx_flags flags = submit->flags;
207	dma_async_tx_callback cb_fn = submit->cb_fn;
208	void *cb_param = submit->cb_param;
209	void *scribble = submit->scribble;
210	int good_srcs, good, i;
211
212	good_srcs = 0;
213	good = -1;
214	for (i = 0; i < disks-2; i++) {
215		if (blocks[i] == NULL)
216			continue;
217		if (i == faila || i == failb)
218			continue;
219		good = i;
220		good_srcs++;
221	}
222	BUG_ON(good_srcs > 1);
223
224	p = blocks[disks-2];
225	q = blocks[disks-1];
226	g = blocks[good];
227
228	/* Compute syndrome with zero for the missing data pages
229	 * Use the dead data pages as temporary storage for delta p and
230	 * delta q
231	 */
232	dp = blocks[faila];
233	dq = blocks[failb];
234
235	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
236	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
237	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
238	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
239
240	/* compute P + Pxy */
241	srcs[0] = dp;
242	srcs[1] = p;
243	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
244			  NULL, NULL, scribble);
245	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
246
247	/* compute Q + Qxy */
248	srcs[0] = dq;
249	srcs[1] = q;
250	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
251			  NULL, NULL, scribble);
252	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
253
254	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
255	srcs[0] = dp;
256	srcs[1] = dq;
257	coef[0] = raid6_gfexi[failb-faila];
258	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
259	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
260	tx = async_sum_product(dq, srcs, coef, bytes, submit);
261
262	/* Dy = P+Pxy+Dx */
263	srcs[0] = dp;
264	srcs[1] = dq;
265	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
266			  cb_param, scribble);
267	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
268
269	return tx;
270}
271
272static struct dma_async_tx_descriptor *
273__2data_recov_n(int disks, size_t bytes, int faila, int failb,
274	      struct page **blocks, struct async_submit_ctl *submit)
275{
276	struct dma_async_tx_descriptor *tx = NULL;
277	struct page *p, *q, *dp, *dq;
278	struct page *srcs[2];
279	unsigned char coef[2];
280	enum async_tx_flags flags = submit->flags;
281	dma_async_tx_callback cb_fn = submit->cb_fn;
282	void *cb_param = submit->cb_param;
283	void *scribble = submit->scribble;
284
285	p = blocks[disks-2];
286	q = blocks[disks-1];
287
288	/* Compute syndrome with zero for the missing data pages
289	 * Use the dead data pages as temporary storage for
290	 * delta p and delta q
291	 */
292	dp = blocks[faila];
293	blocks[faila] = NULL;
294	blocks[disks-2] = dp;
295	dq = blocks[failb];
296	blocks[failb] = NULL;
297	blocks[disks-1] = dq;
298
299	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
300	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
301
302	/* Restore pointer table */
303	blocks[faila]   = dp;
304	blocks[failb]   = dq;
305	blocks[disks-2] = p;
306	blocks[disks-1] = q;
307
308	/* compute P + Pxy */
309	srcs[0] = dp;
310	srcs[1] = p;
311	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
312			  NULL, NULL, scribble);
313	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
314
315	/* compute Q + Qxy */
316	srcs[0] = dq;
317	srcs[1] = q;
318	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
319			  NULL, NULL, scribble);
320	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
321
322	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
323	srcs[0] = dp;
324	srcs[1] = dq;
325	coef[0] = raid6_gfexi[failb-faila];
326	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
327	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
328	tx = async_sum_product(dq, srcs, coef, bytes, submit);
329
330	/* Dy = P+Pxy+Dx */
331	srcs[0] = dp;
332	srcs[1] = dq;
333	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
334			  cb_param, scribble);
335	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
336
337	return tx;
338}
339
340/**
341 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
342 * @disks: number of disks in the RAID-6 array
343 * @bytes: block size
344 * @faila: first failed drive index
345 * @failb: second failed drive index
346 * @blocks: array of source pointers where the last two entries are p and q
347 * @submit: submission/completion modifiers
348 */
349struct dma_async_tx_descriptor *
350async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
351			struct page **blocks, struct async_submit_ctl *submit)
352{
353	void *scribble = submit->scribble;
354	int non_zero_srcs, i;
355
356	BUG_ON(faila == failb);
357	if (failb < faila)
358		swap(faila, failb);
359
360	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
361
362	/* if a dma resource is not available or a scribble buffer is not
363	 * available punt to the synchronous path.  In the 'dma not
364	 * available' case be sure to use the scribble buffer to
365	 * preserve the content of 'blocks' as the caller intended.
366	 */
367	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
368		void **ptrs = scribble ? scribble : (void **) blocks;
369
370		async_tx_quiesce(&submit->depend_tx);
371		for (i = 0; i < disks; i++)
372			if (blocks[i] == NULL)
373				ptrs[i] = (void *) raid6_empty_zero_page;
374			else
375				ptrs[i] = page_address(blocks[i]);
376
377		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
378
379		async_tx_sync_epilog(submit);
380
381		return NULL;
382	}
383
384	non_zero_srcs = 0;
385	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
386		if (blocks[i])
387			non_zero_srcs++;
388	switch (non_zero_srcs) {
389	case 0:
390	case 1:
391		/* There must be at least 2 sources - the failed devices. */
392		BUG();
393
394	case 2:
395		/* dma devices do not uniformly understand a zero source pq
396		 * operation (in contrast to the synchronous case), so
397		 * explicitly handle the special case of a 4 disk array with
398		 * both data disks missing.
399		 */
400		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
401	case 3:
402		/* dma devices do not uniformly understand a single
403		 * source pq operation (in contrast to the synchronous
404		 * case), so explicitly handle the special case of a 5 disk
405		 * array with 2 of 3 data disks missing.
406		 */
407		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
408	default:
409		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
410	}
411}
412EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
413
414/**
415 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
416 * @disks: number of disks in the RAID-6 array
417 * @bytes: block size
418 * @faila: failed drive index
419 * @blocks: array of source pointers where the last two entries are p and q
420 * @submit: submission/completion modifiers
421 */
422struct dma_async_tx_descriptor *
423async_raid6_datap_recov(int disks, size_t bytes, int faila,
424			struct page **blocks, struct async_submit_ctl *submit)
425{
426	struct dma_async_tx_descriptor *tx = NULL;
427	struct page *p, *q, *dq;
428	u8 coef;
429	enum async_tx_flags flags = submit->flags;
430	dma_async_tx_callback cb_fn = submit->cb_fn;
431	void *cb_param = submit->cb_param;
432	void *scribble = submit->scribble;
433	int good_srcs, good, i;
434	struct page *srcs[2];
435
436	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
437
438	/* if a dma resource is not available or a scribble buffer is not
439	 * available punt to the synchronous path.  In the 'dma not
440	 * available' case be sure to use the scribble buffer to
441	 * preserve the content of 'blocks' as the caller intended.
442	 */
443	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
444		void **ptrs = scribble ? scribble : (void **) blocks;
445
446		async_tx_quiesce(&submit->depend_tx);
447		for (i = 0; i < disks; i++)
448			if (blocks[i] == NULL)
449				ptrs[i] = (void*)raid6_empty_zero_page;
450			else
451				ptrs[i] = page_address(blocks[i]);
452
453		raid6_datap_recov(disks, bytes, faila, ptrs);
454
455		async_tx_sync_epilog(submit);
456
457		return NULL;
458	}
459
460	good_srcs = 0;
461	good = -1;
462	for (i = 0; i < disks-2; i++) {
463		if (i == faila)
464			continue;
465		if (blocks[i]) {
466			good = i;
467			good_srcs++;
468			if (good_srcs > 1)
469				break;
470		}
471	}
472	BUG_ON(good_srcs == 0);
473
474	p = blocks[disks-2];
475	q = blocks[disks-1];
476
477	/* Compute syndrome with zero for the missing data page
478	 * Use the dead data page as temporary storage for delta q
479	 */
480	dq = blocks[faila];
481	blocks[faila] = NULL;
482	blocks[disks-1] = dq;
483
484	/* in the 4-disk case we only need to perform a single source
485	 * multiplication with the one good data block.
486	 */
487	if (good_srcs == 1) {
488		struct page *g = blocks[good];
489
490		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
491				  scribble);
492		tx = async_memcpy(p, g, 0, 0, bytes, submit);
493
494		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
495				  scribble);
496		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
497	} else {
498		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
499				  scribble);
500		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
501	}
502
503	/* Restore pointer table */
504	blocks[faila]   = dq;
505	blocks[disks-1] = q;
506
507	/* calculate g^{-faila} */
508	coef = raid6_gfinv[raid6_gfexp[faila]];
509
510	srcs[0] = dq;
511	srcs[1] = q;
512	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
513			  NULL, NULL, scribble);
514	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
515
516	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
517	tx = async_mult(dq, dq, coef, bytes, submit);
518
519	srcs[0] = p;
520	srcs[1] = dq;
521	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
522			  cb_param, scribble);
523	tx = async_xor(p, srcs, 0, 2, bytes, submit);
524
525	return tx;
526}
527EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
528
529MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
530MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
531MODULE_LICENSE("GPL");
532