1/* 2 * PRNG: Pseudo Random Number Generator 3 * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using 4 * AES 128 cipher 5 * 6 * (C) Neil Horman <nhorman@tuxdriver.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * any later version. 12 * 13 * 14 */ 15 16#include <crypto/internal/rng.h> 17#include <linux/err.h> 18#include <linux/init.h> 19#include <linux/module.h> 20#include <linux/moduleparam.h> 21#include <linux/string.h> 22 23#include "internal.h" 24 25#define DEFAULT_PRNG_KEY "0123456789abcdef" 26#define DEFAULT_PRNG_KSZ 16 27#define DEFAULT_BLK_SZ 16 28#define DEFAULT_V_SEED "zaybxcwdveuftgsh" 29 30/* 31 * Flags for the prng_context flags field 32 */ 33 34#define PRNG_FIXED_SIZE 0x1 35#define PRNG_NEED_RESET 0x2 36 37/* 38 * Note: DT is our counter value 39 * I is our intermediate value 40 * V is our seed vector 41 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf 42 * for implementation details 43 */ 44 45 46struct prng_context { 47 spinlock_t prng_lock; 48 unsigned char rand_data[DEFAULT_BLK_SZ]; 49 unsigned char last_rand_data[DEFAULT_BLK_SZ]; 50 unsigned char DT[DEFAULT_BLK_SZ]; 51 unsigned char I[DEFAULT_BLK_SZ]; 52 unsigned char V[DEFAULT_BLK_SZ]; 53 u32 rand_data_valid; 54 struct crypto_cipher *tfm; 55 u32 flags; 56}; 57 58static int dbg; 59 60static void hexdump(char *note, unsigned char *buf, unsigned int len) 61{ 62 if (dbg) { 63 printk(KERN_CRIT "%s", note); 64 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 65 16, 1, 66 buf, len, false); 67 } 68} 69 70#define dbgprint(format, args...) do {\ 71if (dbg)\ 72 printk(format, ##args);\ 73} while (0) 74 75static void xor_vectors(unsigned char *in1, unsigned char *in2, 76 unsigned char *out, unsigned int size) 77{ 78 int i; 79 80 for (i = 0; i < size; i++) 81 out[i] = in1[i] ^ in2[i]; 82 83} 84/* 85 * Returns DEFAULT_BLK_SZ bytes of random data per call 86 * returns 0 if generation succeeded, <0 if something went wrong 87 */ 88static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test) 89{ 90 int i; 91 unsigned char tmp[DEFAULT_BLK_SZ]; 92 unsigned char *output = NULL; 93 94 95 dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n", 96 ctx); 97 98 hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ); 99 hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ); 100 hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ); 101 102 /* 103 * This algorithm is a 3 stage state machine 104 */ 105 for (i = 0; i < 3; i++) { 106 107 switch (i) { 108 case 0: 109 /* 110 * Start by encrypting the counter value 111 * This gives us an intermediate value I 112 */ 113 memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ); 114 output = ctx->I; 115 hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ); 116 break; 117 case 1: 118 119 /* 120 * Next xor I with our secret vector V 121 * encrypt that result to obtain our 122 * pseudo random data which we output 123 */ 124 xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ); 125 hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ); 126 output = ctx->rand_data; 127 break; 128 case 2: 129 /* 130 * First check that we didn't produce the same 131 * random data that we did last time around through this 132 */ 133 if (!memcmp(ctx->rand_data, ctx->last_rand_data, 134 DEFAULT_BLK_SZ)) { 135 if (cont_test) { 136 panic("cprng %p Failed repetition check!\n", 137 ctx); 138 } 139 140 printk(KERN_ERR 141 "ctx %p Failed repetition check!\n", 142 ctx); 143 144 ctx->flags |= PRNG_NEED_RESET; 145 return -EINVAL; 146 } 147 memcpy(ctx->last_rand_data, ctx->rand_data, 148 DEFAULT_BLK_SZ); 149 150 /* 151 * Lastly xor the random data with I 152 * and encrypt that to obtain a new secret vector V 153 */ 154 xor_vectors(ctx->rand_data, ctx->I, tmp, 155 DEFAULT_BLK_SZ); 156 output = ctx->V; 157 hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ); 158 break; 159 } 160 161 162 /* do the encryption */ 163 crypto_cipher_encrypt_one(ctx->tfm, output, tmp); 164 165 } 166 167 /* 168 * Now update our DT value 169 */ 170 for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) { 171 ctx->DT[i] += 1; 172 if (ctx->DT[i] != 0) 173 break; 174 } 175 176 dbgprint("Returning new block for context %p\n", ctx); 177 ctx->rand_data_valid = 0; 178 179 hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ); 180 hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ); 181 hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ); 182 hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ); 183 184 return 0; 185} 186 187/* Our exported functions */ 188static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx, 189 int do_cont_test) 190{ 191 unsigned char *ptr = buf; 192 unsigned int byte_count = (unsigned int)nbytes; 193 int err; 194 195 196 spin_lock_bh(&ctx->prng_lock); 197 198 err = -EINVAL; 199 if (ctx->flags & PRNG_NEED_RESET) 200 goto done; 201 202 /* 203 * If the FIXED_SIZE flag is on, only return whole blocks of 204 * pseudo random data 205 */ 206 err = -EINVAL; 207 if (ctx->flags & PRNG_FIXED_SIZE) { 208 if (nbytes < DEFAULT_BLK_SZ) 209 goto done; 210 byte_count = DEFAULT_BLK_SZ; 211 } 212 213 /* 214 * Return 0 in case of success as mandated by the kernel 215 * crypto API interface definition. 216 */ 217 err = 0; 218 219 dbgprint(KERN_CRIT "getting %d random bytes for context %p\n", 220 byte_count, ctx); 221 222 223remainder: 224 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) { 225 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) { 226 memset(buf, 0, nbytes); 227 err = -EINVAL; 228 goto done; 229 } 230 } 231 232 /* 233 * Copy any data less than an entire block 234 */ 235 if (byte_count < DEFAULT_BLK_SZ) { 236empty_rbuf: 237 while (ctx->rand_data_valid < DEFAULT_BLK_SZ) { 238 *ptr = ctx->rand_data[ctx->rand_data_valid]; 239 ptr++; 240 byte_count--; 241 ctx->rand_data_valid++; 242 if (byte_count == 0) 243 goto done; 244 } 245 } 246 247 /* 248 * Now copy whole blocks 249 */ 250 for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) { 251 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) { 252 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) { 253 memset(buf, 0, nbytes); 254 err = -EINVAL; 255 goto done; 256 } 257 } 258 if (ctx->rand_data_valid > 0) 259 goto empty_rbuf; 260 memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ); 261 ctx->rand_data_valid += DEFAULT_BLK_SZ; 262 ptr += DEFAULT_BLK_SZ; 263 } 264 265 /* 266 * Now go back and get any remaining partial block 267 */ 268 if (byte_count) 269 goto remainder; 270 271done: 272 spin_unlock_bh(&ctx->prng_lock); 273 dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n", 274 err, ctx); 275 return err; 276} 277 278static void free_prng_context(struct prng_context *ctx) 279{ 280 crypto_free_cipher(ctx->tfm); 281} 282 283static int reset_prng_context(struct prng_context *ctx, 284 unsigned char *key, size_t klen, 285 unsigned char *V, unsigned char *DT) 286{ 287 int ret; 288 unsigned char *prng_key; 289 290 spin_lock_bh(&ctx->prng_lock); 291 ctx->flags |= PRNG_NEED_RESET; 292 293 prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY; 294 295 if (!key) 296 klen = DEFAULT_PRNG_KSZ; 297 298 if (V) 299 memcpy(ctx->V, V, DEFAULT_BLK_SZ); 300 else 301 memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ); 302 303 if (DT) 304 memcpy(ctx->DT, DT, DEFAULT_BLK_SZ); 305 else 306 memset(ctx->DT, 0, DEFAULT_BLK_SZ); 307 308 memset(ctx->rand_data, 0, DEFAULT_BLK_SZ); 309 memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ); 310 311 ctx->rand_data_valid = DEFAULT_BLK_SZ; 312 313 ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen); 314 if (ret) { 315 dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n", 316 crypto_cipher_get_flags(ctx->tfm)); 317 goto out; 318 } 319 320 ret = 0; 321 ctx->flags &= ~PRNG_NEED_RESET; 322out: 323 spin_unlock_bh(&ctx->prng_lock); 324 return ret; 325} 326 327static int cprng_init(struct crypto_tfm *tfm) 328{ 329 struct prng_context *ctx = crypto_tfm_ctx(tfm); 330 331 spin_lock_init(&ctx->prng_lock); 332 ctx->tfm = crypto_alloc_cipher("aes", 0, 0); 333 if (IS_ERR(ctx->tfm)) { 334 dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n", 335 ctx); 336 return PTR_ERR(ctx->tfm); 337 } 338 339 if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0) 340 return -EINVAL; 341 342 /* 343 * after allocation, we should always force the user to reset 344 * so they don't inadvertently use the insecure default values 345 * without specifying them intentially 346 */ 347 ctx->flags |= PRNG_NEED_RESET; 348 return 0; 349} 350 351static void cprng_exit(struct crypto_tfm *tfm) 352{ 353 free_prng_context(crypto_tfm_ctx(tfm)); 354} 355 356static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata, 357 unsigned int dlen) 358{ 359 struct prng_context *prng = crypto_rng_ctx(tfm); 360 361 return get_prng_bytes(rdata, dlen, prng, 0); 362} 363 364/* 365 * This is the cprng_registered reset method the seed value is 366 * interpreted as the tuple { V KEY DT} 367 * V and KEY are required during reset, and DT is optional, detected 368 * as being present by testing the length of the seed 369 */ 370static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen) 371{ 372 struct prng_context *prng = crypto_rng_ctx(tfm); 373 u8 *key = seed + DEFAULT_BLK_SZ; 374 u8 *dt = NULL; 375 376 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ) 377 return -EINVAL; 378 379 if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ)) 380 dt = key + DEFAULT_PRNG_KSZ; 381 382 reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt); 383 384 if (prng->flags & PRNG_NEED_RESET) 385 return -EINVAL; 386 return 0; 387} 388 389#ifdef CONFIG_CRYPTO_FIPS 390static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata, 391 unsigned int dlen) 392{ 393 struct prng_context *prng = crypto_rng_ctx(tfm); 394 395 return get_prng_bytes(rdata, dlen, prng, 1); 396} 397 398static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen) 399{ 400 u8 rdata[DEFAULT_BLK_SZ]; 401 u8 *key = seed + DEFAULT_BLK_SZ; 402 int rc; 403 404 struct prng_context *prng = crypto_rng_ctx(tfm); 405 406 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ) 407 return -EINVAL; 408 409 /* fips strictly requires seed != key */ 410 if (!memcmp(seed, key, DEFAULT_PRNG_KSZ)) 411 return -EINVAL; 412 413 rc = cprng_reset(tfm, seed, slen); 414 415 if (!rc) 416 goto out; 417 418 /* this primes our continuity test */ 419 rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0); 420 prng->rand_data_valid = DEFAULT_BLK_SZ; 421 422out: 423 return rc; 424} 425#endif 426 427static struct crypto_alg rng_algs[] = { { 428 .cra_name = "stdrng", 429 .cra_driver_name = "ansi_cprng", 430 .cra_priority = 100, 431 .cra_flags = CRYPTO_ALG_TYPE_RNG, 432 .cra_ctxsize = sizeof(struct prng_context), 433 .cra_type = &crypto_rng_type, 434 .cra_module = THIS_MODULE, 435 .cra_init = cprng_init, 436 .cra_exit = cprng_exit, 437 .cra_u = { 438 .rng = { 439 .rng_make_random = cprng_get_random, 440 .rng_reset = cprng_reset, 441 .seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ, 442 } 443 } 444#ifdef CONFIG_CRYPTO_FIPS 445}, { 446 .cra_name = "fips(ansi_cprng)", 447 .cra_driver_name = "fips_ansi_cprng", 448 .cra_priority = 300, 449 .cra_flags = CRYPTO_ALG_TYPE_RNG, 450 .cra_ctxsize = sizeof(struct prng_context), 451 .cra_type = &crypto_rng_type, 452 .cra_module = THIS_MODULE, 453 .cra_init = cprng_init, 454 .cra_exit = cprng_exit, 455 .cra_u = { 456 .rng = { 457 .rng_make_random = fips_cprng_get_random, 458 .rng_reset = fips_cprng_reset, 459 .seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ, 460 } 461 } 462#endif 463} }; 464 465/* Module initalization */ 466static int __init prng_mod_init(void) 467{ 468 return crypto_register_algs(rng_algs, ARRAY_SIZE(rng_algs)); 469} 470 471static void __exit prng_mod_fini(void) 472{ 473 crypto_unregister_algs(rng_algs, ARRAY_SIZE(rng_algs)); 474} 475 476MODULE_LICENSE("GPL"); 477MODULE_DESCRIPTION("Software Pseudo Random Number Generator"); 478MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>"); 479module_param(dbg, int, 0); 480MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)"); 481module_init(prng_mod_init); 482module_exit(prng_mod_fini); 483MODULE_ALIAS_CRYPTO("stdrng"); 484MODULE_ALIAS_CRYPTO("ansi_cprng"); 485