1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "blk-cgroup.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY		(HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT		(2)
47
48#define CFQ_SLICE_SCALE		(5)
49#define CFQ_HW_QUEUE_MIN	(5)
50#define CFQ_SERVICE_SHIFT       12
51
52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples)	((samples) > 80)
68#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71	unsigned long last_end_request;
72
73	unsigned long ttime_total;
74	unsigned long ttime_samples;
75	unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	u64 min_vdisktime;
89	struct cfq_ttime ttime;
90};
91#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
92			.ttime = {.last_end_request = jiffies,},}
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98	/* reference count */
99	int ref;
100	/* various state flags, see below */
101	unsigned int flags;
102	/* parent cfq_data */
103	struct cfq_data *cfqd;
104	/* service_tree member */
105	struct rb_node rb_node;
106	/* service_tree key */
107	unsigned long rb_key;
108	/* prio tree member */
109	struct rb_node p_node;
110	/* prio tree root we belong to, if any */
111	struct rb_root *p_root;
112	/* sorted list of pending requests */
113	struct rb_root sort_list;
114	/* if fifo isn't expired, next request to serve */
115	struct request *next_rq;
116	/* requests queued in sort_list */
117	int queued[2];
118	/* currently allocated requests */
119	int allocated[2];
120	/* fifo list of requests in sort_list */
121	struct list_head fifo;
122
123	/* time when queue got scheduled in to dispatch first request. */
124	unsigned long dispatch_start;
125	unsigned int allocated_slice;
126	unsigned int slice_dispatch;
127	/* time when first request from queue completed and slice started. */
128	unsigned long slice_start;
129	unsigned long slice_end;
130	long slice_resid;
131
132	/* pending priority requests */
133	int prio_pending;
134	/* number of requests that are on the dispatch list or inside driver */
135	int dispatched;
136
137	/* io prio of this group */
138	unsigned short ioprio, org_ioprio;
139	unsigned short ioprio_class;
140
141	pid_t pid;
142
143	u32 seek_history;
144	sector_t last_request_pos;
145
146	struct cfq_rb_root *service_tree;
147	struct cfq_queue *new_cfqq;
148	struct cfq_group *cfqg;
149	/* Number of sectors dispatched from queue in single dispatch round */
150	unsigned long nr_sectors;
151};
152
153/*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_class_t {
158	BE_WORKLOAD = 0,
159	RT_WORKLOAD = 1,
160	IDLE_WORKLOAD = 2,
161	CFQ_PRIO_NR,
162};
163
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168	ASYNC_WORKLOAD = 0,
169	SYNC_NOIDLE_WORKLOAD = 1,
170	SYNC_WORKLOAD = 2
171};
172
173struct cfqg_stats {
174#ifdef CONFIG_CFQ_GROUP_IOSCHED
175	/* total bytes transferred */
176	struct blkg_rwstat		service_bytes;
177	/* total IOs serviced, post merge */
178	struct blkg_rwstat		serviced;
179	/* number of ios merged */
180	struct blkg_rwstat		merged;
181	/* total time spent on device in ns, may not be accurate w/ queueing */
182	struct blkg_rwstat		service_time;
183	/* total time spent waiting in scheduler queue in ns */
184	struct blkg_rwstat		wait_time;
185	/* number of IOs queued up */
186	struct blkg_rwstat		queued;
187	/* total sectors transferred */
188	struct blkg_stat		sectors;
189	/* total disk time and nr sectors dispatched by this group */
190	struct blkg_stat		time;
191#ifdef CONFIG_DEBUG_BLK_CGROUP
192	/* time not charged to this cgroup */
193	struct blkg_stat		unaccounted_time;
194	/* sum of number of ios queued across all samples */
195	struct blkg_stat		avg_queue_size_sum;
196	/* count of samples taken for average */
197	struct blkg_stat		avg_queue_size_samples;
198	/* how many times this group has been removed from service tree */
199	struct blkg_stat		dequeue;
200	/* total time spent waiting for it to be assigned a timeslice. */
201	struct blkg_stat		group_wait_time;
202	/* time spent idling for this blkcg_gq */
203	struct blkg_stat		idle_time;
204	/* total time with empty current active q with other requests queued */
205	struct blkg_stat		empty_time;
206	/* fields after this shouldn't be cleared on stat reset */
207	uint64_t			start_group_wait_time;
208	uint64_t			start_idle_time;
209	uint64_t			start_empty_time;
210	uint16_t			flags;
211#endif	/* CONFIG_DEBUG_BLK_CGROUP */
212#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
213};
214
215/* This is per cgroup per device grouping structure */
216struct cfq_group {
217	/* must be the first member */
218	struct blkg_policy_data pd;
219
220	/* group service_tree member */
221	struct rb_node rb_node;
222
223	/* group service_tree key */
224	u64 vdisktime;
225
226	/*
227	 * The number of active cfqgs and sum of their weights under this
228	 * cfqg.  This covers this cfqg's leaf_weight and all children's
229	 * weights, but does not cover weights of further descendants.
230	 *
231	 * If a cfqg is on the service tree, it's active.  An active cfqg
232	 * also activates its parent and contributes to the children_weight
233	 * of the parent.
234	 */
235	int nr_active;
236	unsigned int children_weight;
237
238	/*
239	 * vfraction is the fraction of vdisktime that the tasks in this
240	 * cfqg are entitled to.  This is determined by compounding the
241	 * ratios walking up from this cfqg to the root.
242	 *
243	 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244	 * vfractions on a service tree is approximately 1.  The sum may
245	 * deviate a bit due to rounding errors and fluctuations caused by
246	 * cfqgs entering and leaving the service tree.
247	 */
248	unsigned int vfraction;
249
250	/*
251	 * There are two weights - (internal) weight is the weight of this
252	 * cfqg against the sibling cfqgs.  leaf_weight is the wight of
253	 * this cfqg against the child cfqgs.  For the root cfqg, both
254	 * weights are kept in sync for backward compatibility.
255	 */
256	unsigned int weight;
257	unsigned int new_weight;
258	unsigned int dev_weight;
259
260	unsigned int leaf_weight;
261	unsigned int new_leaf_weight;
262	unsigned int dev_leaf_weight;
263
264	/* number of cfqq currently on this group */
265	int nr_cfqq;
266
267	/*
268	 * Per group busy queues average. Useful for workload slice calc. We
269	 * create the array for each prio class but at run time it is used
270	 * only for RT and BE class and slot for IDLE class remains unused.
271	 * This is primarily done to avoid confusion and a gcc warning.
272	 */
273	unsigned int busy_queues_avg[CFQ_PRIO_NR];
274	/*
275	 * rr lists of queues with requests. We maintain service trees for
276	 * RT and BE classes. These trees are subdivided in subclasses
277	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278	 * class there is no subclassification and all the cfq queues go on
279	 * a single tree service_tree_idle.
280	 * Counts are embedded in the cfq_rb_root
281	 */
282	struct cfq_rb_root service_trees[2][3];
283	struct cfq_rb_root service_tree_idle;
284
285	unsigned long saved_wl_slice;
286	enum wl_type_t saved_wl_type;
287	enum wl_class_t saved_wl_class;
288
289	/* number of requests that are on the dispatch list or inside driver */
290	int dispatched;
291	struct cfq_ttime ttime;
292	struct cfqg_stats stats;	/* stats for this cfqg */
293	struct cfqg_stats dead_stats;	/* stats pushed from dead children */
294};
295
296struct cfq_io_cq {
297	struct io_cq		icq;		/* must be the first member */
298	struct cfq_queue	*cfqq[2];
299	struct cfq_ttime	ttime;
300	int			ioprio;		/* the current ioprio */
301#ifdef CONFIG_CFQ_GROUP_IOSCHED
302	uint64_t		blkcg_serial_nr; /* the current blkcg serial */
303#endif
304};
305
306/*
307 * Per block device queue structure
308 */
309struct cfq_data {
310	struct request_queue *queue;
311	/* Root service tree for cfq_groups */
312	struct cfq_rb_root grp_service_tree;
313	struct cfq_group *root_group;
314
315	/*
316	 * The priority currently being served
317	 */
318	enum wl_class_t serving_wl_class;
319	enum wl_type_t serving_wl_type;
320	unsigned long workload_expires;
321	struct cfq_group *serving_group;
322
323	/*
324	 * Each priority tree is sorted by next_request position.  These
325	 * trees are used when determining if two or more queues are
326	 * interleaving requests (see cfq_close_cooperator).
327	 */
328	struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330	unsigned int busy_queues;
331	unsigned int busy_sync_queues;
332
333	int rq_in_driver;
334	int rq_in_flight[2];
335
336	/*
337	 * queue-depth detection
338	 */
339	int rq_queued;
340	int hw_tag;
341	/*
342	 * hw_tag can be
343	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345	 *  0 => no NCQ
346	 */
347	int hw_tag_est_depth;
348	unsigned int hw_tag_samples;
349
350	/*
351	 * idle window management
352	 */
353	struct timer_list idle_slice_timer;
354	struct work_struct unplug_work;
355
356	struct cfq_queue *active_queue;
357	struct cfq_io_cq *active_cic;
358
359	/*
360	 * async queue for each priority case
361	 */
362	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363	struct cfq_queue *async_idle_cfqq;
364
365	sector_t last_position;
366
367	/*
368	 * tunables, see top of file
369	 */
370	unsigned int cfq_quantum;
371	unsigned int cfq_fifo_expire[2];
372	unsigned int cfq_back_penalty;
373	unsigned int cfq_back_max;
374	unsigned int cfq_slice[2];
375	unsigned int cfq_slice_async_rq;
376	unsigned int cfq_slice_idle;
377	unsigned int cfq_group_idle;
378	unsigned int cfq_latency;
379	unsigned int cfq_target_latency;
380
381	/*
382	 * Fallback dummy cfqq for extreme OOM conditions
383	 */
384	struct cfq_queue oom_cfqq;
385
386	unsigned long last_delayed_sync;
387};
388
389static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
391static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392					    enum wl_class_t class,
393					    enum wl_type_t type)
394{
395	if (!cfqg)
396		return NULL;
397
398	if (class == IDLE_WORKLOAD)
399		return &cfqg->service_tree_idle;
400
401	return &cfqg->service_trees[class][type];
402}
403
404enum cfqq_state_flags {
405	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
406	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
407	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
408	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
409	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
410	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
411	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
412	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
413	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
414	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
415	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
416	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
417	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
418};
419
420#define CFQ_CFQQ_FNS(name)						\
421static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
422{									\
423	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
424}									\
425static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
426{									\
427	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
428}									\
429static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
430{									\
431	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
432}
433
434CFQ_CFQQ_FNS(on_rr);
435CFQ_CFQQ_FNS(wait_request);
436CFQ_CFQQ_FNS(must_dispatch);
437CFQ_CFQQ_FNS(must_alloc_slice);
438CFQ_CFQQ_FNS(fifo_expire);
439CFQ_CFQQ_FNS(idle_window);
440CFQ_CFQQ_FNS(prio_changed);
441CFQ_CFQQ_FNS(slice_new);
442CFQ_CFQQ_FNS(sync);
443CFQ_CFQQ_FNS(coop);
444CFQ_CFQQ_FNS(split_coop);
445CFQ_CFQQ_FNS(deep);
446CFQ_CFQQ_FNS(wait_busy);
447#undef CFQ_CFQQ_FNS
448
449static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450{
451	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452}
453
454static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455{
456	return pd_to_blkg(&cfqg->pd);
457}
458
459#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461/* cfqg stats flags */
462enum cfqg_stats_flags {
463	CFQG_stats_waiting = 0,
464	CFQG_stats_idling,
465	CFQG_stats_empty,
466};
467
468#define CFQG_FLAG_FNS(name)						\
469static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
470{									\
471	stats->flags |= (1 << CFQG_stats_##name);			\
472}									\
473static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
474{									\
475	stats->flags &= ~(1 << CFQG_stats_##name);			\
476}									\
477static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
478{									\
479	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
480}									\
481
482CFQG_FLAG_FNS(waiting)
483CFQG_FLAG_FNS(idling)
484CFQG_FLAG_FNS(empty)
485#undef CFQG_FLAG_FNS
486
487/* This should be called with the queue_lock held. */
488static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489{
490	unsigned long long now;
491
492	if (!cfqg_stats_waiting(stats))
493		return;
494
495	now = sched_clock();
496	if (time_after64(now, stats->start_group_wait_time))
497		blkg_stat_add(&stats->group_wait_time,
498			      now - stats->start_group_wait_time);
499	cfqg_stats_clear_waiting(stats);
500}
501
502/* This should be called with the queue_lock held. */
503static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504						 struct cfq_group *curr_cfqg)
505{
506	struct cfqg_stats *stats = &cfqg->stats;
507
508	if (cfqg_stats_waiting(stats))
509		return;
510	if (cfqg == curr_cfqg)
511		return;
512	stats->start_group_wait_time = sched_clock();
513	cfqg_stats_mark_waiting(stats);
514}
515
516/* This should be called with the queue_lock held. */
517static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518{
519	unsigned long long now;
520
521	if (!cfqg_stats_empty(stats))
522		return;
523
524	now = sched_clock();
525	if (time_after64(now, stats->start_empty_time))
526		blkg_stat_add(&stats->empty_time,
527			      now - stats->start_empty_time);
528	cfqg_stats_clear_empty(stats);
529}
530
531static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532{
533	blkg_stat_add(&cfqg->stats.dequeue, 1);
534}
535
536static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537{
538	struct cfqg_stats *stats = &cfqg->stats;
539
540	if (blkg_rwstat_total(&stats->queued))
541		return;
542
543	/*
544	 * group is already marked empty. This can happen if cfqq got new
545	 * request in parent group and moved to this group while being added
546	 * to service tree. Just ignore the event and move on.
547	 */
548	if (cfqg_stats_empty(stats))
549		return;
550
551	stats->start_empty_time = sched_clock();
552	cfqg_stats_mark_empty(stats);
553}
554
555static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556{
557	struct cfqg_stats *stats = &cfqg->stats;
558
559	if (cfqg_stats_idling(stats)) {
560		unsigned long long now = sched_clock();
561
562		if (time_after64(now, stats->start_idle_time))
563			blkg_stat_add(&stats->idle_time,
564				      now - stats->start_idle_time);
565		cfqg_stats_clear_idling(stats);
566	}
567}
568
569static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570{
571	struct cfqg_stats *stats = &cfqg->stats;
572
573	BUG_ON(cfqg_stats_idling(stats));
574
575	stats->start_idle_time = sched_clock();
576	cfqg_stats_mark_idling(stats);
577}
578
579static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580{
581	struct cfqg_stats *stats = &cfqg->stats;
582
583	blkg_stat_add(&stats->avg_queue_size_sum,
584		      blkg_rwstat_total(&stats->queued));
585	blkg_stat_add(&stats->avg_queue_size_samples, 1);
586	cfqg_stats_update_group_wait_time(stats);
587}
588
589#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
591static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601#ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603static struct blkcg_policy blkcg_policy_cfq;
604
605static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606{
607	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608}
609
610static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611{
612	struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613
614	return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615}
616
617static inline void cfqg_get(struct cfq_group *cfqg)
618{
619	return blkg_get(cfqg_to_blkg(cfqg));
620}
621
622static inline void cfqg_put(struct cfq_group *cfqg)
623{
624	return blkg_put(cfqg_to_blkg(cfqg));
625}
626
627#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
628	char __pbuf[128];						\
629									\
630	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\
631	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
633			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634			  __pbuf, ##args);				\
635} while (0)
636
637#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
638	char __pbuf[128];						\
639									\
640	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\
641	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\
642} while (0)
643
644static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645					    struct cfq_group *curr_cfqg, int rw)
646{
647	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648	cfqg_stats_end_empty_time(&cfqg->stats);
649	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650}
651
652static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653			unsigned long time, unsigned long unaccounted_time)
654{
655	blkg_stat_add(&cfqg->stats.time, time);
656#ifdef CONFIG_DEBUG_BLK_CGROUP
657	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658#endif
659}
660
661static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662{
663	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664}
665
666static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667{
668	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669}
670
671static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672					      uint64_t bytes, int rw)
673{
674	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677}
678
679static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680			uint64_t start_time, uint64_t io_start_time, int rw)
681{
682	struct cfqg_stats *stats = &cfqg->stats;
683	unsigned long long now = sched_clock();
684
685	if (time_after64(now, io_start_time))
686		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687	if (time_after64(io_start_time, start_time))
688		blkg_rwstat_add(&stats->wait_time, rw,
689				io_start_time - start_time);
690}
691
692/* @stats = 0 */
693static void cfqg_stats_reset(struct cfqg_stats *stats)
694{
695	/* queued stats shouldn't be cleared */
696	blkg_rwstat_reset(&stats->service_bytes);
697	blkg_rwstat_reset(&stats->serviced);
698	blkg_rwstat_reset(&stats->merged);
699	blkg_rwstat_reset(&stats->service_time);
700	blkg_rwstat_reset(&stats->wait_time);
701	blkg_stat_reset(&stats->time);
702#ifdef CONFIG_DEBUG_BLK_CGROUP
703	blkg_stat_reset(&stats->unaccounted_time);
704	blkg_stat_reset(&stats->avg_queue_size_sum);
705	blkg_stat_reset(&stats->avg_queue_size_samples);
706	blkg_stat_reset(&stats->dequeue);
707	blkg_stat_reset(&stats->group_wait_time);
708	blkg_stat_reset(&stats->idle_time);
709	blkg_stat_reset(&stats->empty_time);
710#endif
711}
712
713/* @to += @from */
714static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715{
716	/* queued stats shouldn't be cleared */
717	blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718	blkg_rwstat_merge(&to->serviced, &from->serviced);
719	blkg_rwstat_merge(&to->merged, &from->merged);
720	blkg_rwstat_merge(&to->service_time, &from->service_time);
721	blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722	blkg_stat_merge(&from->time, &from->time);
723#ifdef CONFIG_DEBUG_BLK_CGROUP
724	blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725	blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726	blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727	blkg_stat_merge(&to->dequeue, &from->dequeue);
728	blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729	blkg_stat_merge(&to->idle_time, &from->idle_time);
730	blkg_stat_merge(&to->empty_time, &from->empty_time);
731#endif
732}
733
734/*
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
738 */
739static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740{
741	struct cfq_group *parent = cfqg_parent(cfqg);
742
743	lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744
745	if (unlikely(!parent))
746		return;
747
748	cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749	cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750	cfqg_stats_reset(&cfqg->stats);
751	cfqg_stats_reset(&cfqg->dead_stats);
752}
753
754#else	/* CONFIG_CFQ_GROUP_IOSCHED */
755
756static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757static inline void cfqg_get(struct cfq_group *cfqg) { }
758static inline void cfqg_put(struct cfq_group *cfqg) { }
759
760#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
761	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\
762			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
763			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764				##args)
765#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
766
767static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768			struct cfq_group *curr_cfqg, int rw) { }
769static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770			unsigned long time, unsigned long unaccounted_time) { }
771static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774					      uint64_t bytes, int rw) { }
775static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776			uint64_t start_time, uint64_t io_start_time, int rw) { }
777
778#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
779
780#define cfq_log(cfqd, fmt, args...)	\
781	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782
783/* Traverses through cfq group service trees */
784#define for_each_cfqg_st(cfqg, i, j, st) \
785	for (i = 0; i <= IDLE_WORKLOAD; i++) \
786		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787			: &cfqg->service_tree_idle; \
788			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789			(i == IDLE_WORKLOAD && j == 0); \
790			j++, st = i < IDLE_WORKLOAD ? \
791			&cfqg->service_trees[i][j]: NULL) \
792
793static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794	struct cfq_ttime *ttime, bool group_idle)
795{
796	unsigned long slice;
797	if (!sample_valid(ttime->ttime_samples))
798		return false;
799	if (group_idle)
800		slice = cfqd->cfq_group_idle;
801	else
802		slice = cfqd->cfq_slice_idle;
803	return ttime->ttime_mean > slice;
804}
805
806static inline bool iops_mode(struct cfq_data *cfqd)
807{
808	/*
809	 * If we are not idling on queues and it is a NCQ drive, parallel
810	 * execution of requests is on and measuring time is not possible
811	 * in most of the cases until and unless we drive shallower queue
812	 * depths and that becomes a performance bottleneck. In such cases
813	 * switch to start providing fairness in terms of number of IOs.
814	 */
815	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816		return true;
817	else
818		return false;
819}
820
821static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822{
823	if (cfq_class_idle(cfqq))
824		return IDLE_WORKLOAD;
825	if (cfq_class_rt(cfqq))
826		return RT_WORKLOAD;
827	return BE_WORKLOAD;
828}
829
830
831static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832{
833	if (!cfq_cfqq_sync(cfqq))
834		return ASYNC_WORKLOAD;
835	if (!cfq_cfqq_idle_window(cfqq))
836		return SYNC_NOIDLE_WORKLOAD;
837	return SYNC_WORKLOAD;
838}
839
840static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841					struct cfq_data *cfqd,
842					struct cfq_group *cfqg)
843{
844	if (wl_class == IDLE_WORKLOAD)
845		return cfqg->service_tree_idle.count;
846
847	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850}
851
852static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853					struct cfq_group *cfqg)
854{
855	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857}
858
859static void cfq_dispatch_insert(struct request_queue *, struct request *);
860static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861				       struct cfq_io_cq *cic, struct bio *bio,
862				       gfp_t gfp_mask);
863
864static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865{
866	/* cic->icq is the first member, %NULL will convert to %NULL */
867	return container_of(icq, struct cfq_io_cq, icq);
868}
869
870static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871					       struct io_context *ioc)
872{
873	if (ioc)
874		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875	return NULL;
876}
877
878static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879{
880	return cic->cfqq[is_sync];
881}
882
883static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884				bool is_sync)
885{
886	cic->cfqq[is_sync] = cfqq;
887}
888
889static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890{
891	return cic->icq.q->elevator->elevator_data;
892}
893
894/*
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
897 */
898static inline bool cfq_bio_sync(struct bio *bio)
899{
900	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901}
902
903/*
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
906 */
907static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908{
909	if (cfqd->busy_queues) {
910		cfq_log(cfqd, "schedule dispatch");
911		kblockd_schedule_work(&cfqd->unplug_work);
912	}
913}
914
915/*
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
919 */
920static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921				 unsigned short prio)
922{
923	const int base_slice = cfqd->cfq_slice[sync];
924
925	WARN_ON(prio >= IOPRIO_BE_NR);
926
927	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928}
929
930static inline int
931cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932{
933	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934}
935
936/**
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940 *
941 * Scale @charge according to @vfraction, which is in range (0, 1].  The
942 * scaling is inversely proportional.
943 *
944 * scaled = charge / vfraction
945 *
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947 */
948static inline u64 cfqg_scale_charge(unsigned long charge,
949				    unsigned int vfraction)
950{
951	u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */
952
953	/* charge / vfraction */
954	c <<= CFQ_SERVICE_SHIFT;
955	do_div(c, vfraction);
956	return c;
957}
958
959static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960{
961	s64 delta = (s64)(vdisktime - min_vdisktime);
962	if (delta > 0)
963		min_vdisktime = vdisktime;
964
965	return min_vdisktime;
966}
967
968static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969{
970	s64 delta = (s64)(vdisktime - min_vdisktime);
971	if (delta < 0)
972		min_vdisktime = vdisktime;
973
974	return min_vdisktime;
975}
976
977static void update_min_vdisktime(struct cfq_rb_root *st)
978{
979	struct cfq_group *cfqg;
980
981	if (st->left) {
982		cfqg = rb_entry_cfqg(st->left);
983		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984						  cfqg->vdisktime);
985	}
986}
987
988/*
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
992 */
993
994static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995					struct cfq_group *cfqg, bool rt)
996{
997	unsigned min_q, max_q;
998	unsigned mult  = cfq_hist_divisor - 1;
999	unsigned round = cfq_hist_divisor / 2;
1000	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001
1002	min_q = min(cfqg->busy_queues_avg[rt], busy);
1003	max_q = max(cfqg->busy_queues_avg[rt], busy);
1004	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005		cfq_hist_divisor;
1006	return cfqg->busy_queues_avg[rt];
1007}
1008
1009static inline unsigned
1010cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011{
1012	return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013}
1014
1015static inline unsigned
1016cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017{
1018	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019	if (cfqd->cfq_latency) {
1020		/*
1021		 * interested queues (we consider only the ones with the same
1022		 * priority class in the cfq group)
1023		 */
1024		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025						cfq_class_rt(cfqq));
1026		unsigned sync_slice = cfqd->cfq_slice[1];
1027		unsigned expect_latency = sync_slice * iq;
1028		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029
1030		if (expect_latency > group_slice) {
1031			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032			/* scale low_slice according to IO priority
1033			 * and sync vs async */
1034			unsigned low_slice =
1035				min(slice, base_low_slice * slice / sync_slice);
1036			/* the adapted slice value is scaled to fit all iqs
1037			 * into the target latency */
1038			slice = max(slice * group_slice / expect_latency,
1039				    low_slice);
1040		}
1041	}
1042	return slice;
1043}
1044
1045static inline void
1046cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047{
1048	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049
1050	cfqq->slice_start = jiffies;
1051	cfqq->slice_end = jiffies + slice;
1052	cfqq->allocated_slice = slice;
1053	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054}
1055
1056/*
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1060 */
1061static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062{
1063	if (cfq_cfqq_slice_new(cfqq))
1064		return false;
1065	if (time_before(jiffies, cfqq->slice_end))
1066		return false;
1067
1068	return true;
1069}
1070
1071/*
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1075 */
1076static struct request *
1077cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078{
1079	sector_t s1, s2, d1 = 0, d2 = 0;
1080	unsigned long back_max;
1081#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
1082#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
1083	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084
1085	if (rq1 == NULL || rq1 == rq2)
1086		return rq2;
1087	if (rq2 == NULL)
1088		return rq1;
1089
1090	if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091		return rq_is_sync(rq1) ? rq1 : rq2;
1092
1093	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095
1096	s1 = blk_rq_pos(rq1);
1097	s2 = blk_rq_pos(rq2);
1098
1099	/*
1100	 * by definition, 1KiB is 2 sectors
1101	 */
1102	back_max = cfqd->cfq_back_max * 2;
1103
1104	/*
1105	 * Strict one way elevator _except_ in the case where we allow
1106	 * short backward seeks which are biased as twice the cost of a
1107	 * similar forward seek.
1108	 */
1109	if (s1 >= last)
1110		d1 = s1 - last;
1111	else if (s1 + back_max >= last)
1112		d1 = (last - s1) * cfqd->cfq_back_penalty;
1113	else
1114		wrap |= CFQ_RQ1_WRAP;
1115
1116	if (s2 >= last)
1117		d2 = s2 - last;
1118	else if (s2 + back_max >= last)
1119		d2 = (last - s2) * cfqd->cfq_back_penalty;
1120	else
1121		wrap |= CFQ_RQ2_WRAP;
1122
1123	/* Found required data */
1124
1125	/*
1126	 * By doing switch() on the bit mask "wrap" we avoid having to
1127	 * check two variables for all permutations: --> faster!
1128	 */
1129	switch (wrap) {
1130	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131		if (d1 < d2)
1132			return rq1;
1133		else if (d2 < d1)
1134			return rq2;
1135		else {
1136			if (s1 >= s2)
1137				return rq1;
1138			else
1139				return rq2;
1140		}
1141
1142	case CFQ_RQ2_WRAP:
1143		return rq1;
1144	case CFQ_RQ1_WRAP:
1145		return rq2;
1146	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147	default:
1148		/*
1149		 * Since both rqs are wrapped,
1150		 * start with the one that's further behind head
1151		 * (--> only *one* back seek required),
1152		 * since back seek takes more time than forward.
1153		 */
1154		if (s1 <= s2)
1155			return rq1;
1156		else
1157			return rq2;
1158	}
1159}
1160
1161/*
1162 * The below is leftmost cache rbtree addon
1163 */
1164static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165{
1166	/* Service tree is empty */
1167	if (!root->count)
1168		return NULL;
1169
1170	if (!root->left)
1171		root->left = rb_first(&root->rb);
1172
1173	if (root->left)
1174		return rb_entry(root->left, struct cfq_queue, rb_node);
1175
1176	return NULL;
1177}
1178
1179static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180{
1181	if (!root->left)
1182		root->left = rb_first(&root->rb);
1183
1184	if (root->left)
1185		return rb_entry_cfqg(root->left);
1186
1187	return NULL;
1188}
1189
1190static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191{
1192	rb_erase(n, root);
1193	RB_CLEAR_NODE(n);
1194}
1195
1196static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197{
1198	if (root->left == n)
1199		root->left = NULL;
1200	rb_erase_init(n, &root->rb);
1201	--root->count;
1202}
1203
1204/*
1205 * would be nice to take fifo expire time into account as well
1206 */
1207static struct request *
1208cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209		  struct request *last)
1210{
1211	struct rb_node *rbnext = rb_next(&last->rb_node);
1212	struct rb_node *rbprev = rb_prev(&last->rb_node);
1213	struct request *next = NULL, *prev = NULL;
1214
1215	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216
1217	if (rbprev)
1218		prev = rb_entry_rq(rbprev);
1219
1220	if (rbnext)
1221		next = rb_entry_rq(rbnext);
1222	else {
1223		rbnext = rb_first(&cfqq->sort_list);
1224		if (rbnext && rbnext != &last->rb_node)
1225			next = rb_entry_rq(rbnext);
1226	}
1227
1228	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229}
1230
1231static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232				      struct cfq_queue *cfqq)
1233{
1234	/*
1235	 * just an approximation, should be ok.
1236	 */
1237	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239}
1240
1241static inline s64
1242cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243{
1244	return cfqg->vdisktime - st->min_vdisktime;
1245}
1246
1247static void
1248__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249{
1250	struct rb_node **node = &st->rb.rb_node;
1251	struct rb_node *parent = NULL;
1252	struct cfq_group *__cfqg;
1253	s64 key = cfqg_key(st, cfqg);
1254	int left = 1;
1255
1256	while (*node != NULL) {
1257		parent = *node;
1258		__cfqg = rb_entry_cfqg(parent);
1259
1260		if (key < cfqg_key(st, __cfqg))
1261			node = &parent->rb_left;
1262		else {
1263			node = &parent->rb_right;
1264			left = 0;
1265		}
1266	}
1267
1268	if (left)
1269		st->left = &cfqg->rb_node;
1270
1271	rb_link_node(&cfqg->rb_node, parent, node);
1272	rb_insert_color(&cfqg->rb_node, &st->rb);
1273}
1274
1275/*
1276 * This has to be called only on activation of cfqg
1277 */
1278static void
1279cfq_update_group_weight(struct cfq_group *cfqg)
1280{
1281	if (cfqg->new_weight) {
1282		cfqg->weight = cfqg->new_weight;
1283		cfqg->new_weight = 0;
1284	}
1285}
1286
1287static void
1288cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1289{
1290	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1291
1292	if (cfqg->new_leaf_weight) {
1293		cfqg->leaf_weight = cfqg->new_leaf_weight;
1294		cfqg->new_leaf_weight = 0;
1295	}
1296}
1297
1298static void
1299cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1300{
1301	unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */
1302	struct cfq_group *pos = cfqg;
1303	struct cfq_group *parent;
1304	bool propagate;
1305
1306	/* add to the service tree */
1307	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1308
1309	/*
1310	 * Update leaf_weight.  We cannot update weight at this point
1311	 * because cfqg might already have been activated and is
1312	 * contributing its current weight to the parent's child_weight.
1313	 */
1314	cfq_update_group_leaf_weight(cfqg);
1315	__cfq_group_service_tree_add(st, cfqg);
1316
1317	/*
1318	 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1319	 * entitled to.  vfraction is calculated by walking the tree
1320	 * towards the root calculating the fraction it has at each level.
1321	 * The compounded ratio is how much vfraction @cfqg owns.
1322	 *
1323	 * Start with the proportion tasks in this cfqg has against active
1324	 * children cfqgs - its leaf_weight against children_weight.
1325	 */
1326	propagate = !pos->nr_active++;
1327	pos->children_weight += pos->leaf_weight;
1328	vfr = vfr * pos->leaf_weight / pos->children_weight;
1329
1330	/*
1331	 * Compound ->weight walking up the tree.  Both activation and
1332	 * vfraction calculation are done in the same loop.  Propagation
1333	 * stops once an already activated node is met.  vfraction
1334	 * calculation should always continue to the root.
1335	 */
1336	while ((parent = cfqg_parent(pos))) {
1337		if (propagate) {
1338			cfq_update_group_weight(pos);
1339			propagate = !parent->nr_active++;
1340			parent->children_weight += pos->weight;
1341		}
1342		vfr = vfr * pos->weight / parent->children_weight;
1343		pos = parent;
1344	}
1345
1346	cfqg->vfraction = max_t(unsigned, vfr, 1);
1347}
1348
1349static void
1350cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1351{
1352	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1353	struct cfq_group *__cfqg;
1354	struct rb_node *n;
1355
1356	cfqg->nr_cfqq++;
1357	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1358		return;
1359
1360	/*
1361	 * Currently put the group at the end. Later implement something
1362	 * so that groups get lesser vtime based on their weights, so that
1363	 * if group does not loose all if it was not continuously backlogged.
1364	 */
1365	n = rb_last(&st->rb);
1366	if (n) {
1367		__cfqg = rb_entry_cfqg(n);
1368		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1369	} else
1370		cfqg->vdisktime = st->min_vdisktime;
1371	cfq_group_service_tree_add(st, cfqg);
1372}
1373
1374static void
1375cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1376{
1377	struct cfq_group *pos = cfqg;
1378	bool propagate;
1379
1380	/*
1381	 * Undo activation from cfq_group_service_tree_add().  Deactivate
1382	 * @cfqg and propagate deactivation upwards.
1383	 */
1384	propagate = !--pos->nr_active;
1385	pos->children_weight -= pos->leaf_weight;
1386
1387	while (propagate) {
1388		struct cfq_group *parent = cfqg_parent(pos);
1389
1390		/* @pos has 0 nr_active at this point */
1391		WARN_ON_ONCE(pos->children_weight);
1392		pos->vfraction = 0;
1393
1394		if (!parent)
1395			break;
1396
1397		propagate = !--parent->nr_active;
1398		parent->children_weight -= pos->weight;
1399		pos = parent;
1400	}
1401
1402	/* remove from the service tree */
1403	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1404		cfq_rb_erase(&cfqg->rb_node, st);
1405}
1406
1407static void
1408cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1409{
1410	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1411
1412	BUG_ON(cfqg->nr_cfqq < 1);
1413	cfqg->nr_cfqq--;
1414
1415	/* If there are other cfq queues under this group, don't delete it */
1416	if (cfqg->nr_cfqq)
1417		return;
1418
1419	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1420	cfq_group_service_tree_del(st, cfqg);
1421	cfqg->saved_wl_slice = 0;
1422	cfqg_stats_update_dequeue(cfqg);
1423}
1424
1425static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1426						unsigned int *unaccounted_time)
1427{
1428	unsigned int slice_used;
1429
1430	/*
1431	 * Queue got expired before even a single request completed or
1432	 * got expired immediately after first request completion.
1433	 */
1434	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1435		/*
1436		 * Also charge the seek time incurred to the group, otherwise
1437		 * if there are mutiple queues in the group, each can dispatch
1438		 * a single request on seeky media and cause lots of seek time
1439		 * and group will never know it.
1440		 */
1441		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1442					1);
1443	} else {
1444		slice_used = jiffies - cfqq->slice_start;
1445		if (slice_used > cfqq->allocated_slice) {
1446			*unaccounted_time = slice_used - cfqq->allocated_slice;
1447			slice_used = cfqq->allocated_slice;
1448		}
1449		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1450			*unaccounted_time += cfqq->slice_start -
1451					cfqq->dispatch_start;
1452	}
1453
1454	return slice_used;
1455}
1456
1457static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1458				struct cfq_queue *cfqq)
1459{
1460	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1461	unsigned int used_sl, charge, unaccounted_sl = 0;
1462	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1463			- cfqg->service_tree_idle.count;
1464	unsigned int vfr;
1465
1466	BUG_ON(nr_sync < 0);
1467	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1468
1469	if (iops_mode(cfqd))
1470		charge = cfqq->slice_dispatch;
1471	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1472		charge = cfqq->allocated_slice;
1473
1474	/*
1475	 * Can't update vdisktime while on service tree and cfqg->vfraction
1476	 * is valid only while on it.  Cache vfr, leave the service tree,
1477	 * update vdisktime and go back on.  The re-addition to the tree
1478	 * will also update the weights as necessary.
1479	 */
1480	vfr = cfqg->vfraction;
1481	cfq_group_service_tree_del(st, cfqg);
1482	cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1483	cfq_group_service_tree_add(st, cfqg);
1484
1485	/* This group is being expired. Save the context */
1486	if (time_after(cfqd->workload_expires, jiffies)) {
1487		cfqg->saved_wl_slice = cfqd->workload_expires
1488						- jiffies;
1489		cfqg->saved_wl_type = cfqd->serving_wl_type;
1490		cfqg->saved_wl_class = cfqd->serving_wl_class;
1491	} else
1492		cfqg->saved_wl_slice = 0;
1493
1494	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1495					st->min_vdisktime);
1496	cfq_log_cfqq(cfqq->cfqd, cfqq,
1497		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1498		     used_sl, cfqq->slice_dispatch, charge,
1499		     iops_mode(cfqd), cfqq->nr_sectors);
1500	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1501	cfqg_stats_set_start_empty_time(cfqg);
1502}
1503
1504/**
1505 * cfq_init_cfqg_base - initialize base part of a cfq_group
1506 * @cfqg: cfq_group to initialize
1507 *
1508 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1509 * is enabled or not.
1510 */
1511static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1512{
1513	struct cfq_rb_root *st;
1514	int i, j;
1515
1516	for_each_cfqg_st(cfqg, i, j, st)
1517		*st = CFQ_RB_ROOT;
1518	RB_CLEAR_NODE(&cfqg->rb_node);
1519
1520	cfqg->ttime.last_end_request = jiffies;
1521}
1522
1523#ifdef CONFIG_CFQ_GROUP_IOSCHED
1524static void cfqg_stats_init(struct cfqg_stats *stats)
1525{
1526	blkg_rwstat_init(&stats->service_bytes);
1527	blkg_rwstat_init(&stats->serviced);
1528	blkg_rwstat_init(&stats->merged);
1529	blkg_rwstat_init(&stats->service_time);
1530	blkg_rwstat_init(&stats->wait_time);
1531	blkg_rwstat_init(&stats->queued);
1532
1533	blkg_stat_init(&stats->sectors);
1534	blkg_stat_init(&stats->time);
1535
1536#ifdef CONFIG_DEBUG_BLK_CGROUP
1537	blkg_stat_init(&stats->unaccounted_time);
1538	blkg_stat_init(&stats->avg_queue_size_sum);
1539	blkg_stat_init(&stats->avg_queue_size_samples);
1540	blkg_stat_init(&stats->dequeue);
1541	blkg_stat_init(&stats->group_wait_time);
1542	blkg_stat_init(&stats->idle_time);
1543	blkg_stat_init(&stats->empty_time);
1544#endif
1545}
1546
1547static void cfq_pd_init(struct blkcg_gq *blkg)
1548{
1549	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1550
1551	cfq_init_cfqg_base(cfqg);
1552	cfqg->weight = blkg->blkcg->cfq_weight;
1553	cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1554	cfqg_stats_init(&cfqg->stats);
1555	cfqg_stats_init(&cfqg->dead_stats);
1556}
1557
1558static void cfq_pd_offline(struct blkcg_gq *blkg)
1559{
1560	/*
1561	 * @blkg is going offline and will be ignored by
1562	 * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1563	 * that they don't get lost.  If IOs complete after this point, the
1564	 * stats for them will be lost.  Oh well...
1565	 */
1566	cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1567}
1568
1569/* offset delta from cfqg->stats to cfqg->dead_stats */
1570static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1571					offsetof(struct cfq_group, stats);
1572
1573/* to be used by recursive prfill, sums live and dead stats recursively */
1574static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1575{
1576	u64 sum = 0;
1577
1578	sum += blkg_stat_recursive_sum(pd, off);
1579	sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1580	return sum;
1581}
1582
1583/* to be used by recursive prfill, sums live and dead rwstats recursively */
1584static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1585						       int off)
1586{
1587	struct blkg_rwstat a, b;
1588
1589	a = blkg_rwstat_recursive_sum(pd, off);
1590	b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1591	blkg_rwstat_merge(&a, &b);
1592	return a;
1593}
1594
1595static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1596{
1597	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1598
1599	cfqg_stats_reset(&cfqg->stats);
1600	cfqg_stats_reset(&cfqg->dead_stats);
1601}
1602
1603/*
1604 * Search for the cfq group current task belongs to. request_queue lock must
1605 * be held.
1606 */
1607static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1608						struct blkcg *blkcg)
1609{
1610	struct request_queue *q = cfqd->queue;
1611	struct cfq_group *cfqg = NULL;
1612
1613	/* avoid lookup for the common case where there's no blkcg */
1614	if (blkcg == &blkcg_root) {
1615		cfqg = cfqd->root_group;
1616	} else {
1617		struct blkcg_gq *blkg;
1618
1619		blkg = blkg_lookup_create(blkcg, q);
1620		if (!IS_ERR(blkg))
1621			cfqg = blkg_to_cfqg(blkg);
1622	}
1623
1624	return cfqg;
1625}
1626
1627static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1628{
1629	/* Currently, all async queues are mapped to root group */
1630	if (!cfq_cfqq_sync(cfqq))
1631		cfqg = cfqq->cfqd->root_group;
1632
1633	cfqq->cfqg = cfqg;
1634	/* cfqq reference on cfqg */
1635	cfqg_get(cfqg);
1636}
1637
1638static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1639				     struct blkg_policy_data *pd, int off)
1640{
1641	struct cfq_group *cfqg = pd_to_cfqg(pd);
1642
1643	if (!cfqg->dev_weight)
1644		return 0;
1645	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1646}
1647
1648static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1649{
1650	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1651			  cfqg_prfill_weight_device, &blkcg_policy_cfq,
1652			  0, false);
1653	return 0;
1654}
1655
1656static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1657					  struct blkg_policy_data *pd, int off)
1658{
1659	struct cfq_group *cfqg = pd_to_cfqg(pd);
1660
1661	if (!cfqg->dev_leaf_weight)
1662		return 0;
1663	return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1664}
1665
1666static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1667{
1668	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1669			  cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1670			  0, false);
1671	return 0;
1672}
1673
1674static int cfq_print_weight(struct seq_file *sf, void *v)
1675{
1676	seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_weight);
1677	return 0;
1678}
1679
1680static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1681{
1682	seq_printf(sf, "%u\n", css_to_blkcg(seq_css(sf))->cfq_leaf_weight);
1683	return 0;
1684}
1685
1686static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1687					char *buf, size_t nbytes, loff_t off,
1688					bool is_leaf_weight)
1689{
1690	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1691	struct blkg_conf_ctx ctx;
1692	struct cfq_group *cfqg;
1693	int ret;
1694
1695	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1696	if (ret)
1697		return ret;
1698
1699	ret = -EINVAL;
1700	cfqg = blkg_to_cfqg(ctx.blkg);
1701	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1702		if (!is_leaf_weight) {
1703			cfqg->dev_weight = ctx.v;
1704			cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1705		} else {
1706			cfqg->dev_leaf_weight = ctx.v;
1707			cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1708		}
1709		ret = 0;
1710	}
1711
1712	blkg_conf_finish(&ctx);
1713	return ret ?: nbytes;
1714}
1715
1716static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1717				      char *buf, size_t nbytes, loff_t off)
1718{
1719	return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1720}
1721
1722static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1723					   char *buf, size_t nbytes, loff_t off)
1724{
1725	return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1726}
1727
1728static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1729			    u64 val, bool is_leaf_weight)
1730{
1731	struct blkcg *blkcg = css_to_blkcg(css);
1732	struct blkcg_gq *blkg;
1733
1734	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1735		return -EINVAL;
1736
1737	spin_lock_irq(&blkcg->lock);
1738
1739	if (!is_leaf_weight)
1740		blkcg->cfq_weight = val;
1741	else
1742		blkcg->cfq_leaf_weight = val;
1743
1744	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1745		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1746
1747		if (!cfqg)
1748			continue;
1749
1750		if (!is_leaf_weight) {
1751			if (!cfqg->dev_weight)
1752				cfqg->new_weight = blkcg->cfq_weight;
1753		} else {
1754			if (!cfqg->dev_leaf_weight)
1755				cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1756		}
1757	}
1758
1759	spin_unlock_irq(&blkcg->lock);
1760	return 0;
1761}
1762
1763static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1764			  u64 val)
1765{
1766	return __cfq_set_weight(css, cft, val, false);
1767}
1768
1769static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1770			       struct cftype *cft, u64 val)
1771{
1772	return __cfq_set_weight(css, cft, val, true);
1773}
1774
1775static int cfqg_print_stat(struct seq_file *sf, void *v)
1776{
1777	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1778			  &blkcg_policy_cfq, seq_cft(sf)->private, false);
1779	return 0;
1780}
1781
1782static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1783{
1784	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1785			  &blkcg_policy_cfq, seq_cft(sf)->private, true);
1786	return 0;
1787}
1788
1789static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1790				      struct blkg_policy_data *pd, int off)
1791{
1792	u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1793
1794	return __blkg_prfill_u64(sf, pd, sum);
1795}
1796
1797static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1798					struct blkg_policy_data *pd, int off)
1799{
1800	struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1801
1802	return __blkg_prfill_rwstat(sf, pd, &sum);
1803}
1804
1805static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1806{
1807	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1808			  cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1809			  seq_cft(sf)->private, false);
1810	return 0;
1811}
1812
1813static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1814{
1815	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1816			  cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1817			  seq_cft(sf)->private, true);
1818	return 0;
1819}
1820
1821#ifdef CONFIG_DEBUG_BLK_CGROUP
1822static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1823				      struct blkg_policy_data *pd, int off)
1824{
1825	struct cfq_group *cfqg = pd_to_cfqg(pd);
1826	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1827	u64 v = 0;
1828
1829	if (samples) {
1830		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1831		v = div64_u64(v, samples);
1832	}
1833	__blkg_prfill_u64(sf, pd, v);
1834	return 0;
1835}
1836
1837/* print avg_queue_size */
1838static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1839{
1840	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1841			  cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1842			  0, false);
1843	return 0;
1844}
1845#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1846
1847static struct cftype cfq_blkcg_files[] = {
1848	/* on root, weight is mapped to leaf_weight */
1849	{
1850		.name = "weight_device",
1851		.flags = CFTYPE_ONLY_ON_ROOT,
1852		.seq_show = cfqg_print_leaf_weight_device,
1853		.write = cfqg_set_leaf_weight_device,
1854	},
1855	{
1856		.name = "weight",
1857		.flags = CFTYPE_ONLY_ON_ROOT,
1858		.seq_show = cfq_print_leaf_weight,
1859		.write_u64 = cfq_set_leaf_weight,
1860	},
1861
1862	/* no such mapping necessary for !roots */
1863	{
1864		.name = "weight_device",
1865		.flags = CFTYPE_NOT_ON_ROOT,
1866		.seq_show = cfqg_print_weight_device,
1867		.write = cfqg_set_weight_device,
1868	},
1869	{
1870		.name = "weight",
1871		.flags = CFTYPE_NOT_ON_ROOT,
1872		.seq_show = cfq_print_weight,
1873		.write_u64 = cfq_set_weight,
1874	},
1875
1876	{
1877		.name = "leaf_weight_device",
1878		.seq_show = cfqg_print_leaf_weight_device,
1879		.write = cfqg_set_leaf_weight_device,
1880	},
1881	{
1882		.name = "leaf_weight",
1883		.seq_show = cfq_print_leaf_weight,
1884		.write_u64 = cfq_set_leaf_weight,
1885	},
1886
1887	/* statistics, covers only the tasks in the cfqg */
1888	{
1889		.name = "time",
1890		.private = offsetof(struct cfq_group, stats.time),
1891		.seq_show = cfqg_print_stat,
1892	},
1893	{
1894		.name = "sectors",
1895		.private = offsetof(struct cfq_group, stats.sectors),
1896		.seq_show = cfqg_print_stat,
1897	},
1898	{
1899		.name = "io_service_bytes",
1900		.private = offsetof(struct cfq_group, stats.service_bytes),
1901		.seq_show = cfqg_print_rwstat,
1902	},
1903	{
1904		.name = "io_serviced",
1905		.private = offsetof(struct cfq_group, stats.serviced),
1906		.seq_show = cfqg_print_rwstat,
1907	},
1908	{
1909		.name = "io_service_time",
1910		.private = offsetof(struct cfq_group, stats.service_time),
1911		.seq_show = cfqg_print_rwstat,
1912	},
1913	{
1914		.name = "io_wait_time",
1915		.private = offsetof(struct cfq_group, stats.wait_time),
1916		.seq_show = cfqg_print_rwstat,
1917	},
1918	{
1919		.name = "io_merged",
1920		.private = offsetof(struct cfq_group, stats.merged),
1921		.seq_show = cfqg_print_rwstat,
1922	},
1923	{
1924		.name = "io_queued",
1925		.private = offsetof(struct cfq_group, stats.queued),
1926		.seq_show = cfqg_print_rwstat,
1927	},
1928
1929	/* the same statictics which cover the cfqg and its descendants */
1930	{
1931		.name = "time_recursive",
1932		.private = offsetof(struct cfq_group, stats.time),
1933		.seq_show = cfqg_print_stat_recursive,
1934	},
1935	{
1936		.name = "sectors_recursive",
1937		.private = offsetof(struct cfq_group, stats.sectors),
1938		.seq_show = cfqg_print_stat_recursive,
1939	},
1940	{
1941		.name = "io_service_bytes_recursive",
1942		.private = offsetof(struct cfq_group, stats.service_bytes),
1943		.seq_show = cfqg_print_rwstat_recursive,
1944	},
1945	{
1946		.name = "io_serviced_recursive",
1947		.private = offsetof(struct cfq_group, stats.serviced),
1948		.seq_show = cfqg_print_rwstat_recursive,
1949	},
1950	{
1951		.name = "io_service_time_recursive",
1952		.private = offsetof(struct cfq_group, stats.service_time),
1953		.seq_show = cfqg_print_rwstat_recursive,
1954	},
1955	{
1956		.name = "io_wait_time_recursive",
1957		.private = offsetof(struct cfq_group, stats.wait_time),
1958		.seq_show = cfqg_print_rwstat_recursive,
1959	},
1960	{
1961		.name = "io_merged_recursive",
1962		.private = offsetof(struct cfq_group, stats.merged),
1963		.seq_show = cfqg_print_rwstat_recursive,
1964	},
1965	{
1966		.name = "io_queued_recursive",
1967		.private = offsetof(struct cfq_group, stats.queued),
1968		.seq_show = cfqg_print_rwstat_recursive,
1969	},
1970#ifdef CONFIG_DEBUG_BLK_CGROUP
1971	{
1972		.name = "avg_queue_size",
1973		.seq_show = cfqg_print_avg_queue_size,
1974	},
1975	{
1976		.name = "group_wait_time",
1977		.private = offsetof(struct cfq_group, stats.group_wait_time),
1978		.seq_show = cfqg_print_stat,
1979	},
1980	{
1981		.name = "idle_time",
1982		.private = offsetof(struct cfq_group, stats.idle_time),
1983		.seq_show = cfqg_print_stat,
1984	},
1985	{
1986		.name = "empty_time",
1987		.private = offsetof(struct cfq_group, stats.empty_time),
1988		.seq_show = cfqg_print_stat,
1989	},
1990	{
1991		.name = "dequeue",
1992		.private = offsetof(struct cfq_group, stats.dequeue),
1993		.seq_show = cfqg_print_stat,
1994	},
1995	{
1996		.name = "unaccounted_time",
1997		.private = offsetof(struct cfq_group, stats.unaccounted_time),
1998		.seq_show = cfqg_print_stat,
1999	},
2000#endif	/* CONFIG_DEBUG_BLK_CGROUP */
2001	{ }	/* terminate */
2002};
2003#else /* GROUP_IOSCHED */
2004static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
2005						struct blkcg *blkcg)
2006{
2007	return cfqd->root_group;
2008}
2009
2010static inline void
2011cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2012	cfqq->cfqg = cfqg;
2013}
2014
2015#endif /* GROUP_IOSCHED */
2016
2017/*
2018 * The cfqd->service_trees holds all pending cfq_queue's that have
2019 * requests waiting to be processed. It is sorted in the order that
2020 * we will service the queues.
2021 */
2022static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2023				 bool add_front)
2024{
2025	struct rb_node **p, *parent;
2026	struct cfq_queue *__cfqq;
2027	unsigned long rb_key;
2028	struct cfq_rb_root *st;
2029	int left;
2030	int new_cfqq = 1;
2031
2032	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2033	if (cfq_class_idle(cfqq)) {
2034		rb_key = CFQ_IDLE_DELAY;
2035		parent = rb_last(&st->rb);
2036		if (parent && parent != &cfqq->rb_node) {
2037			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2038			rb_key += __cfqq->rb_key;
2039		} else
2040			rb_key += jiffies;
2041	} else if (!add_front) {
2042		/*
2043		 * Get our rb key offset. Subtract any residual slice
2044		 * value carried from last service. A negative resid
2045		 * count indicates slice overrun, and this should position
2046		 * the next service time further away in the tree.
2047		 */
2048		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2049		rb_key -= cfqq->slice_resid;
2050		cfqq->slice_resid = 0;
2051	} else {
2052		rb_key = -HZ;
2053		__cfqq = cfq_rb_first(st);
2054		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2055	}
2056
2057	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2058		new_cfqq = 0;
2059		/*
2060		 * same position, nothing more to do
2061		 */
2062		if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2063			return;
2064
2065		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2066		cfqq->service_tree = NULL;
2067	}
2068
2069	left = 1;
2070	parent = NULL;
2071	cfqq->service_tree = st;
2072	p = &st->rb.rb_node;
2073	while (*p) {
2074		parent = *p;
2075		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2076
2077		/*
2078		 * sort by key, that represents service time.
2079		 */
2080		if (time_before(rb_key, __cfqq->rb_key))
2081			p = &parent->rb_left;
2082		else {
2083			p = &parent->rb_right;
2084			left = 0;
2085		}
2086	}
2087
2088	if (left)
2089		st->left = &cfqq->rb_node;
2090
2091	cfqq->rb_key = rb_key;
2092	rb_link_node(&cfqq->rb_node, parent, p);
2093	rb_insert_color(&cfqq->rb_node, &st->rb);
2094	st->count++;
2095	if (add_front || !new_cfqq)
2096		return;
2097	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2098}
2099
2100static struct cfq_queue *
2101cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2102		     sector_t sector, struct rb_node **ret_parent,
2103		     struct rb_node ***rb_link)
2104{
2105	struct rb_node **p, *parent;
2106	struct cfq_queue *cfqq = NULL;
2107
2108	parent = NULL;
2109	p = &root->rb_node;
2110	while (*p) {
2111		struct rb_node **n;
2112
2113		parent = *p;
2114		cfqq = rb_entry(parent, struct cfq_queue, p_node);
2115
2116		/*
2117		 * Sort strictly based on sector.  Smallest to the left,
2118		 * largest to the right.
2119		 */
2120		if (sector > blk_rq_pos(cfqq->next_rq))
2121			n = &(*p)->rb_right;
2122		else if (sector < blk_rq_pos(cfqq->next_rq))
2123			n = &(*p)->rb_left;
2124		else
2125			break;
2126		p = n;
2127		cfqq = NULL;
2128	}
2129
2130	*ret_parent = parent;
2131	if (rb_link)
2132		*rb_link = p;
2133	return cfqq;
2134}
2135
2136static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2137{
2138	struct rb_node **p, *parent;
2139	struct cfq_queue *__cfqq;
2140
2141	if (cfqq->p_root) {
2142		rb_erase(&cfqq->p_node, cfqq->p_root);
2143		cfqq->p_root = NULL;
2144	}
2145
2146	if (cfq_class_idle(cfqq))
2147		return;
2148	if (!cfqq->next_rq)
2149		return;
2150
2151	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2152	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2153				      blk_rq_pos(cfqq->next_rq), &parent, &p);
2154	if (!__cfqq) {
2155		rb_link_node(&cfqq->p_node, parent, p);
2156		rb_insert_color(&cfqq->p_node, cfqq->p_root);
2157	} else
2158		cfqq->p_root = NULL;
2159}
2160
2161/*
2162 * Update cfqq's position in the service tree.
2163 */
2164static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2165{
2166	/*
2167	 * Resorting requires the cfqq to be on the RR list already.
2168	 */
2169	if (cfq_cfqq_on_rr(cfqq)) {
2170		cfq_service_tree_add(cfqd, cfqq, 0);
2171		cfq_prio_tree_add(cfqd, cfqq);
2172	}
2173}
2174
2175/*
2176 * add to busy list of queues for service, trying to be fair in ordering
2177 * the pending list according to last request service
2178 */
2179static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2180{
2181	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2182	BUG_ON(cfq_cfqq_on_rr(cfqq));
2183	cfq_mark_cfqq_on_rr(cfqq);
2184	cfqd->busy_queues++;
2185	if (cfq_cfqq_sync(cfqq))
2186		cfqd->busy_sync_queues++;
2187
2188	cfq_resort_rr_list(cfqd, cfqq);
2189}
2190
2191/*
2192 * Called when the cfqq no longer has requests pending, remove it from
2193 * the service tree.
2194 */
2195static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2196{
2197	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2198	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2199	cfq_clear_cfqq_on_rr(cfqq);
2200
2201	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2202		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2203		cfqq->service_tree = NULL;
2204	}
2205	if (cfqq->p_root) {
2206		rb_erase(&cfqq->p_node, cfqq->p_root);
2207		cfqq->p_root = NULL;
2208	}
2209
2210	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2211	BUG_ON(!cfqd->busy_queues);
2212	cfqd->busy_queues--;
2213	if (cfq_cfqq_sync(cfqq))
2214		cfqd->busy_sync_queues--;
2215}
2216
2217/*
2218 * rb tree support functions
2219 */
2220static void cfq_del_rq_rb(struct request *rq)
2221{
2222	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2223	const int sync = rq_is_sync(rq);
2224
2225	BUG_ON(!cfqq->queued[sync]);
2226	cfqq->queued[sync]--;
2227
2228	elv_rb_del(&cfqq->sort_list, rq);
2229
2230	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2231		/*
2232		 * Queue will be deleted from service tree when we actually
2233		 * expire it later. Right now just remove it from prio tree
2234		 * as it is empty.
2235		 */
2236		if (cfqq->p_root) {
2237			rb_erase(&cfqq->p_node, cfqq->p_root);
2238			cfqq->p_root = NULL;
2239		}
2240	}
2241}
2242
2243static void cfq_add_rq_rb(struct request *rq)
2244{
2245	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2246	struct cfq_data *cfqd = cfqq->cfqd;
2247	struct request *prev;
2248
2249	cfqq->queued[rq_is_sync(rq)]++;
2250
2251	elv_rb_add(&cfqq->sort_list, rq);
2252
2253	if (!cfq_cfqq_on_rr(cfqq))
2254		cfq_add_cfqq_rr(cfqd, cfqq);
2255
2256	/*
2257	 * check if this request is a better next-serve candidate
2258	 */
2259	prev = cfqq->next_rq;
2260	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2261
2262	/*
2263	 * adjust priority tree position, if ->next_rq changes
2264	 */
2265	if (prev != cfqq->next_rq)
2266		cfq_prio_tree_add(cfqd, cfqq);
2267
2268	BUG_ON(!cfqq->next_rq);
2269}
2270
2271static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2272{
2273	elv_rb_del(&cfqq->sort_list, rq);
2274	cfqq->queued[rq_is_sync(rq)]--;
2275	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2276	cfq_add_rq_rb(rq);
2277	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2278				 rq->cmd_flags);
2279}
2280
2281static struct request *
2282cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2283{
2284	struct task_struct *tsk = current;
2285	struct cfq_io_cq *cic;
2286	struct cfq_queue *cfqq;
2287
2288	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2289	if (!cic)
2290		return NULL;
2291
2292	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2293	if (cfqq)
2294		return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2295
2296	return NULL;
2297}
2298
2299static void cfq_activate_request(struct request_queue *q, struct request *rq)
2300{
2301	struct cfq_data *cfqd = q->elevator->elevator_data;
2302
2303	cfqd->rq_in_driver++;
2304	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2305						cfqd->rq_in_driver);
2306
2307	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2308}
2309
2310static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2311{
2312	struct cfq_data *cfqd = q->elevator->elevator_data;
2313
2314	WARN_ON(!cfqd->rq_in_driver);
2315	cfqd->rq_in_driver--;
2316	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2317						cfqd->rq_in_driver);
2318}
2319
2320static void cfq_remove_request(struct request *rq)
2321{
2322	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2323
2324	if (cfqq->next_rq == rq)
2325		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2326
2327	list_del_init(&rq->queuelist);
2328	cfq_del_rq_rb(rq);
2329
2330	cfqq->cfqd->rq_queued--;
2331	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2332	if (rq->cmd_flags & REQ_PRIO) {
2333		WARN_ON(!cfqq->prio_pending);
2334		cfqq->prio_pending--;
2335	}
2336}
2337
2338static int cfq_merge(struct request_queue *q, struct request **req,
2339		     struct bio *bio)
2340{
2341	struct cfq_data *cfqd = q->elevator->elevator_data;
2342	struct request *__rq;
2343
2344	__rq = cfq_find_rq_fmerge(cfqd, bio);
2345	if (__rq && elv_rq_merge_ok(__rq, bio)) {
2346		*req = __rq;
2347		return ELEVATOR_FRONT_MERGE;
2348	}
2349
2350	return ELEVATOR_NO_MERGE;
2351}
2352
2353static void cfq_merged_request(struct request_queue *q, struct request *req,
2354			       int type)
2355{
2356	if (type == ELEVATOR_FRONT_MERGE) {
2357		struct cfq_queue *cfqq = RQ_CFQQ(req);
2358
2359		cfq_reposition_rq_rb(cfqq, req);
2360	}
2361}
2362
2363static void cfq_bio_merged(struct request_queue *q, struct request *req,
2364				struct bio *bio)
2365{
2366	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2367}
2368
2369static void
2370cfq_merged_requests(struct request_queue *q, struct request *rq,
2371		    struct request *next)
2372{
2373	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2374	struct cfq_data *cfqd = q->elevator->elevator_data;
2375
2376	/*
2377	 * reposition in fifo if next is older than rq
2378	 */
2379	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2380	    time_before(next->fifo_time, rq->fifo_time) &&
2381	    cfqq == RQ_CFQQ(next)) {
2382		list_move(&rq->queuelist, &next->queuelist);
2383		rq->fifo_time = next->fifo_time;
2384	}
2385
2386	if (cfqq->next_rq == next)
2387		cfqq->next_rq = rq;
2388	cfq_remove_request(next);
2389	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2390
2391	cfqq = RQ_CFQQ(next);
2392	/*
2393	 * all requests of this queue are merged to other queues, delete it
2394	 * from the service tree. If it's the active_queue,
2395	 * cfq_dispatch_requests() will choose to expire it or do idle
2396	 */
2397	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2398	    cfqq != cfqd->active_queue)
2399		cfq_del_cfqq_rr(cfqd, cfqq);
2400}
2401
2402static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2403			   struct bio *bio)
2404{
2405	struct cfq_data *cfqd = q->elevator->elevator_data;
2406	struct cfq_io_cq *cic;
2407	struct cfq_queue *cfqq;
2408
2409	/*
2410	 * Disallow merge of a sync bio into an async request.
2411	 */
2412	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2413		return false;
2414
2415	/*
2416	 * Lookup the cfqq that this bio will be queued with and allow
2417	 * merge only if rq is queued there.
2418	 */
2419	cic = cfq_cic_lookup(cfqd, current->io_context);
2420	if (!cic)
2421		return false;
2422
2423	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2424	return cfqq == RQ_CFQQ(rq);
2425}
2426
2427static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2428{
2429	del_timer(&cfqd->idle_slice_timer);
2430	cfqg_stats_update_idle_time(cfqq->cfqg);
2431}
2432
2433static void __cfq_set_active_queue(struct cfq_data *cfqd,
2434				   struct cfq_queue *cfqq)
2435{
2436	if (cfqq) {
2437		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2438				cfqd->serving_wl_class, cfqd->serving_wl_type);
2439		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2440		cfqq->slice_start = 0;
2441		cfqq->dispatch_start = jiffies;
2442		cfqq->allocated_slice = 0;
2443		cfqq->slice_end = 0;
2444		cfqq->slice_dispatch = 0;
2445		cfqq->nr_sectors = 0;
2446
2447		cfq_clear_cfqq_wait_request(cfqq);
2448		cfq_clear_cfqq_must_dispatch(cfqq);
2449		cfq_clear_cfqq_must_alloc_slice(cfqq);
2450		cfq_clear_cfqq_fifo_expire(cfqq);
2451		cfq_mark_cfqq_slice_new(cfqq);
2452
2453		cfq_del_timer(cfqd, cfqq);
2454	}
2455
2456	cfqd->active_queue = cfqq;
2457}
2458
2459/*
2460 * current cfqq expired its slice (or was too idle), select new one
2461 */
2462static void
2463__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2464		    bool timed_out)
2465{
2466	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2467
2468	if (cfq_cfqq_wait_request(cfqq))
2469		cfq_del_timer(cfqd, cfqq);
2470
2471	cfq_clear_cfqq_wait_request(cfqq);
2472	cfq_clear_cfqq_wait_busy(cfqq);
2473
2474	/*
2475	 * If this cfqq is shared between multiple processes, check to
2476	 * make sure that those processes are still issuing I/Os within
2477	 * the mean seek distance.  If not, it may be time to break the
2478	 * queues apart again.
2479	 */
2480	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2481		cfq_mark_cfqq_split_coop(cfqq);
2482
2483	/*
2484	 * store what was left of this slice, if the queue idled/timed out
2485	 */
2486	if (timed_out) {
2487		if (cfq_cfqq_slice_new(cfqq))
2488			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2489		else
2490			cfqq->slice_resid = cfqq->slice_end - jiffies;
2491		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2492	}
2493
2494	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2495
2496	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2497		cfq_del_cfqq_rr(cfqd, cfqq);
2498
2499	cfq_resort_rr_list(cfqd, cfqq);
2500
2501	if (cfqq == cfqd->active_queue)
2502		cfqd->active_queue = NULL;
2503
2504	if (cfqd->active_cic) {
2505		put_io_context(cfqd->active_cic->icq.ioc);
2506		cfqd->active_cic = NULL;
2507	}
2508}
2509
2510static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2511{
2512	struct cfq_queue *cfqq = cfqd->active_queue;
2513
2514	if (cfqq)
2515		__cfq_slice_expired(cfqd, cfqq, timed_out);
2516}
2517
2518/*
2519 * Get next queue for service. Unless we have a queue preemption,
2520 * we'll simply select the first cfqq in the service tree.
2521 */
2522static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2523{
2524	struct cfq_rb_root *st = st_for(cfqd->serving_group,
2525			cfqd->serving_wl_class, cfqd->serving_wl_type);
2526
2527	if (!cfqd->rq_queued)
2528		return NULL;
2529
2530	/* There is nothing to dispatch */
2531	if (!st)
2532		return NULL;
2533	if (RB_EMPTY_ROOT(&st->rb))
2534		return NULL;
2535	return cfq_rb_first(st);
2536}
2537
2538static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2539{
2540	struct cfq_group *cfqg;
2541	struct cfq_queue *cfqq;
2542	int i, j;
2543	struct cfq_rb_root *st;
2544
2545	if (!cfqd->rq_queued)
2546		return NULL;
2547
2548	cfqg = cfq_get_next_cfqg(cfqd);
2549	if (!cfqg)
2550		return NULL;
2551
2552	for_each_cfqg_st(cfqg, i, j, st)
2553		if ((cfqq = cfq_rb_first(st)) != NULL)
2554			return cfqq;
2555	return NULL;
2556}
2557
2558/*
2559 * Get and set a new active queue for service.
2560 */
2561static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2562					      struct cfq_queue *cfqq)
2563{
2564	if (!cfqq)
2565		cfqq = cfq_get_next_queue(cfqd);
2566
2567	__cfq_set_active_queue(cfqd, cfqq);
2568	return cfqq;
2569}
2570
2571static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2572					  struct request *rq)
2573{
2574	if (blk_rq_pos(rq) >= cfqd->last_position)
2575		return blk_rq_pos(rq) - cfqd->last_position;
2576	else
2577		return cfqd->last_position - blk_rq_pos(rq);
2578}
2579
2580static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2581			       struct request *rq)
2582{
2583	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2584}
2585
2586static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2587				    struct cfq_queue *cur_cfqq)
2588{
2589	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2590	struct rb_node *parent, *node;
2591	struct cfq_queue *__cfqq;
2592	sector_t sector = cfqd->last_position;
2593
2594	if (RB_EMPTY_ROOT(root))
2595		return NULL;
2596
2597	/*
2598	 * First, if we find a request starting at the end of the last
2599	 * request, choose it.
2600	 */
2601	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2602	if (__cfqq)
2603		return __cfqq;
2604
2605	/*
2606	 * If the exact sector wasn't found, the parent of the NULL leaf
2607	 * will contain the closest sector.
2608	 */
2609	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2610	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2611		return __cfqq;
2612
2613	if (blk_rq_pos(__cfqq->next_rq) < sector)
2614		node = rb_next(&__cfqq->p_node);
2615	else
2616		node = rb_prev(&__cfqq->p_node);
2617	if (!node)
2618		return NULL;
2619
2620	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2621	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2622		return __cfqq;
2623
2624	return NULL;
2625}
2626
2627/*
2628 * cfqd - obvious
2629 * cur_cfqq - passed in so that we don't decide that the current queue is
2630 * 	      closely cooperating with itself.
2631 *
2632 * So, basically we're assuming that that cur_cfqq has dispatched at least
2633 * one request, and that cfqd->last_position reflects a position on the disk
2634 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2635 * assumption.
2636 */
2637static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2638					      struct cfq_queue *cur_cfqq)
2639{
2640	struct cfq_queue *cfqq;
2641
2642	if (cfq_class_idle(cur_cfqq))
2643		return NULL;
2644	if (!cfq_cfqq_sync(cur_cfqq))
2645		return NULL;
2646	if (CFQQ_SEEKY(cur_cfqq))
2647		return NULL;
2648
2649	/*
2650	 * Don't search priority tree if it's the only queue in the group.
2651	 */
2652	if (cur_cfqq->cfqg->nr_cfqq == 1)
2653		return NULL;
2654
2655	/*
2656	 * We should notice if some of the queues are cooperating, eg
2657	 * working closely on the same area of the disk. In that case,
2658	 * we can group them together and don't waste time idling.
2659	 */
2660	cfqq = cfqq_close(cfqd, cur_cfqq);
2661	if (!cfqq)
2662		return NULL;
2663
2664	/* If new queue belongs to different cfq_group, don't choose it */
2665	if (cur_cfqq->cfqg != cfqq->cfqg)
2666		return NULL;
2667
2668	/*
2669	 * It only makes sense to merge sync queues.
2670	 */
2671	if (!cfq_cfqq_sync(cfqq))
2672		return NULL;
2673	if (CFQQ_SEEKY(cfqq))
2674		return NULL;
2675
2676	/*
2677	 * Do not merge queues of different priority classes
2678	 */
2679	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2680		return NULL;
2681
2682	return cfqq;
2683}
2684
2685/*
2686 * Determine whether we should enforce idle window for this queue.
2687 */
2688
2689static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2690{
2691	enum wl_class_t wl_class = cfqq_class(cfqq);
2692	struct cfq_rb_root *st = cfqq->service_tree;
2693
2694	BUG_ON(!st);
2695	BUG_ON(!st->count);
2696
2697	if (!cfqd->cfq_slice_idle)
2698		return false;
2699
2700	/* We never do for idle class queues. */
2701	if (wl_class == IDLE_WORKLOAD)
2702		return false;
2703
2704	/* We do for queues that were marked with idle window flag. */
2705	if (cfq_cfqq_idle_window(cfqq) &&
2706	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2707		return true;
2708
2709	/*
2710	 * Otherwise, we do only if they are the last ones
2711	 * in their service tree.
2712	 */
2713	if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2714	   !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2715		return true;
2716	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2717	return false;
2718}
2719
2720static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2721{
2722	struct cfq_queue *cfqq = cfqd->active_queue;
2723	struct cfq_io_cq *cic;
2724	unsigned long sl, group_idle = 0;
2725
2726	/*
2727	 * SSD device without seek penalty, disable idling. But only do so
2728	 * for devices that support queuing, otherwise we still have a problem
2729	 * with sync vs async workloads.
2730	 */
2731	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2732		return;
2733
2734	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2735	WARN_ON(cfq_cfqq_slice_new(cfqq));
2736
2737	/*
2738	 * idle is disabled, either manually or by past process history
2739	 */
2740	if (!cfq_should_idle(cfqd, cfqq)) {
2741		/* no queue idling. Check for group idling */
2742		if (cfqd->cfq_group_idle)
2743			group_idle = cfqd->cfq_group_idle;
2744		else
2745			return;
2746	}
2747
2748	/*
2749	 * still active requests from this queue, don't idle
2750	 */
2751	if (cfqq->dispatched)
2752		return;
2753
2754	/*
2755	 * task has exited, don't wait
2756	 */
2757	cic = cfqd->active_cic;
2758	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2759		return;
2760
2761	/*
2762	 * If our average think time is larger than the remaining time
2763	 * slice, then don't idle. This avoids overrunning the allotted
2764	 * time slice.
2765	 */
2766	if (sample_valid(cic->ttime.ttime_samples) &&
2767	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2768		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2769			     cic->ttime.ttime_mean);
2770		return;
2771	}
2772
2773	/* There are other queues in the group, don't do group idle */
2774	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2775		return;
2776
2777	cfq_mark_cfqq_wait_request(cfqq);
2778
2779	if (group_idle)
2780		sl = cfqd->cfq_group_idle;
2781	else
2782		sl = cfqd->cfq_slice_idle;
2783
2784	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2785	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2786	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2787			group_idle ? 1 : 0);
2788}
2789
2790/*
2791 * Move request from internal lists to the request queue dispatch list.
2792 */
2793static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2794{
2795	struct cfq_data *cfqd = q->elevator->elevator_data;
2796	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2797
2798	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2799
2800	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2801	cfq_remove_request(rq);
2802	cfqq->dispatched++;
2803	(RQ_CFQG(rq))->dispatched++;
2804	elv_dispatch_sort(q, rq);
2805
2806	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2807	cfqq->nr_sectors += blk_rq_sectors(rq);
2808	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2809}
2810
2811/*
2812 * return expired entry, or NULL to just start from scratch in rbtree
2813 */
2814static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2815{
2816	struct request *rq = NULL;
2817
2818	if (cfq_cfqq_fifo_expire(cfqq))
2819		return NULL;
2820
2821	cfq_mark_cfqq_fifo_expire(cfqq);
2822
2823	if (list_empty(&cfqq->fifo))
2824		return NULL;
2825
2826	rq = rq_entry_fifo(cfqq->fifo.next);
2827	if (time_before(jiffies, rq->fifo_time))
2828		rq = NULL;
2829
2830	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2831	return rq;
2832}
2833
2834static inline int
2835cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2836{
2837	const int base_rq = cfqd->cfq_slice_async_rq;
2838
2839	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2840
2841	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2842}
2843
2844/*
2845 * Must be called with the queue_lock held.
2846 */
2847static int cfqq_process_refs(struct cfq_queue *cfqq)
2848{
2849	int process_refs, io_refs;
2850
2851	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2852	process_refs = cfqq->ref - io_refs;
2853	BUG_ON(process_refs < 0);
2854	return process_refs;
2855}
2856
2857static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2858{
2859	int process_refs, new_process_refs;
2860	struct cfq_queue *__cfqq;
2861
2862	/*
2863	 * If there are no process references on the new_cfqq, then it is
2864	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2865	 * chain may have dropped their last reference (not just their
2866	 * last process reference).
2867	 */
2868	if (!cfqq_process_refs(new_cfqq))
2869		return;
2870
2871	/* Avoid a circular list and skip interim queue merges */
2872	while ((__cfqq = new_cfqq->new_cfqq)) {
2873		if (__cfqq == cfqq)
2874			return;
2875		new_cfqq = __cfqq;
2876	}
2877
2878	process_refs = cfqq_process_refs(cfqq);
2879	new_process_refs = cfqq_process_refs(new_cfqq);
2880	/*
2881	 * If the process for the cfqq has gone away, there is no
2882	 * sense in merging the queues.
2883	 */
2884	if (process_refs == 0 || new_process_refs == 0)
2885		return;
2886
2887	/*
2888	 * Merge in the direction of the lesser amount of work.
2889	 */
2890	if (new_process_refs >= process_refs) {
2891		cfqq->new_cfqq = new_cfqq;
2892		new_cfqq->ref += process_refs;
2893	} else {
2894		new_cfqq->new_cfqq = cfqq;
2895		cfqq->ref += new_process_refs;
2896	}
2897}
2898
2899static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2900			struct cfq_group *cfqg, enum wl_class_t wl_class)
2901{
2902	struct cfq_queue *queue;
2903	int i;
2904	bool key_valid = false;
2905	unsigned long lowest_key = 0;
2906	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2907
2908	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2909		/* select the one with lowest rb_key */
2910		queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2911		if (queue &&
2912		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2913			lowest_key = queue->rb_key;
2914			cur_best = i;
2915			key_valid = true;
2916		}
2917	}
2918
2919	return cur_best;
2920}
2921
2922static void
2923choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2924{
2925	unsigned slice;
2926	unsigned count;
2927	struct cfq_rb_root *st;
2928	unsigned group_slice;
2929	enum wl_class_t original_class = cfqd->serving_wl_class;
2930
2931	/* Choose next priority. RT > BE > IDLE */
2932	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2933		cfqd->serving_wl_class = RT_WORKLOAD;
2934	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2935		cfqd->serving_wl_class = BE_WORKLOAD;
2936	else {
2937		cfqd->serving_wl_class = IDLE_WORKLOAD;
2938		cfqd->workload_expires = jiffies + 1;
2939		return;
2940	}
2941
2942	if (original_class != cfqd->serving_wl_class)
2943		goto new_workload;
2944
2945	/*
2946	 * For RT and BE, we have to choose also the type
2947	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2948	 * expiration time
2949	 */
2950	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2951	count = st->count;
2952
2953	/*
2954	 * check workload expiration, and that we still have other queues ready
2955	 */
2956	if (count && !time_after(jiffies, cfqd->workload_expires))
2957		return;
2958
2959new_workload:
2960	/* otherwise select new workload type */
2961	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2962					cfqd->serving_wl_class);
2963	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2964	count = st->count;
2965
2966	/*
2967	 * the workload slice is computed as a fraction of target latency
2968	 * proportional to the number of queues in that workload, over
2969	 * all the queues in the same priority class
2970	 */
2971	group_slice = cfq_group_slice(cfqd, cfqg);
2972
2973	slice = group_slice * count /
2974		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2975		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2976					cfqg));
2977
2978	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2979		unsigned int tmp;
2980
2981		/*
2982		 * Async queues are currently system wide. Just taking
2983		 * proportion of queues with-in same group will lead to higher
2984		 * async ratio system wide as generally root group is going
2985		 * to have higher weight. A more accurate thing would be to
2986		 * calculate system wide asnc/sync ratio.
2987		 */
2988		tmp = cfqd->cfq_target_latency *
2989			cfqg_busy_async_queues(cfqd, cfqg);
2990		tmp = tmp/cfqd->busy_queues;
2991		slice = min_t(unsigned, slice, tmp);
2992
2993		/* async workload slice is scaled down according to
2994		 * the sync/async slice ratio. */
2995		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2996	} else
2997		/* sync workload slice is at least 2 * cfq_slice_idle */
2998		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2999
3000	slice = max_t(unsigned, slice, CFQ_MIN_TT);
3001	cfq_log(cfqd, "workload slice:%d", slice);
3002	cfqd->workload_expires = jiffies + slice;
3003}
3004
3005static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3006{
3007	struct cfq_rb_root *st = &cfqd->grp_service_tree;
3008	struct cfq_group *cfqg;
3009
3010	if (RB_EMPTY_ROOT(&st->rb))
3011		return NULL;
3012	cfqg = cfq_rb_first_group(st);
3013	update_min_vdisktime(st);
3014	return cfqg;
3015}
3016
3017static void cfq_choose_cfqg(struct cfq_data *cfqd)
3018{
3019	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3020
3021	cfqd->serving_group = cfqg;
3022
3023	/* Restore the workload type data */
3024	if (cfqg->saved_wl_slice) {
3025		cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3026		cfqd->serving_wl_type = cfqg->saved_wl_type;
3027		cfqd->serving_wl_class = cfqg->saved_wl_class;
3028	} else
3029		cfqd->workload_expires = jiffies - 1;
3030
3031	choose_wl_class_and_type(cfqd, cfqg);
3032}
3033
3034/*
3035 * Select a queue for service. If we have a current active queue,
3036 * check whether to continue servicing it, or retrieve and set a new one.
3037 */
3038static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3039{
3040	struct cfq_queue *cfqq, *new_cfqq = NULL;
3041
3042	cfqq = cfqd->active_queue;
3043	if (!cfqq)
3044		goto new_queue;
3045
3046	if (!cfqd->rq_queued)
3047		return NULL;
3048
3049	/*
3050	 * We were waiting for group to get backlogged. Expire the queue
3051	 */
3052	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3053		goto expire;
3054
3055	/*
3056	 * The active queue has run out of time, expire it and select new.
3057	 */
3058	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3059		/*
3060		 * If slice had not expired at the completion of last request
3061		 * we might not have turned on wait_busy flag. Don't expire
3062		 * the queue yet. Allow the group to get backlogged.
3063		 *
3064		 * The very fact that we have used the slice, that means we
3065		 * have been idling all along on this queue and it should be
3066		 * ok to wait for this request to complete.
3067		 */
3068		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3069		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3070			cfqq = NULL;
3071			goto keep_queue;
3072		} else
3073			goto check_group_idle;
3074	}
3075
3076	/*
3077	 * The active queue has requests and isn't expired, allow it to
3078	 * dispatch.
3079	 */
3080	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3081		goto keep_queue;
3082
3083	/*
3084	 * If another queue has a request waiting within our mean seek
3085	 * distance, let it run.  The expire code will check for close
3086	 * cooperators and put the close queue at the front of the service
3087	 * tree.  If possible, merge the expiring queue with the new cfqq.
3088	 */
3089	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3090	if (new_cfqq) {
3091		if (!cfqq->new_cfqq)
3092			cfq_setup_merge(cfqq, new_cfqq);
3093		goto expire;
3094	}
3095
3096	/*
3097	 * No requests pending. If the active queue still has requests in
3098	 * flight or is idling for a new request, allow either of these
3099	 * conditions to happen (or time out) before selecting a new queue.
3100	 */
3101	if (timer_pending(&cfqd->idle_slice_timer)) {
3102		cfqq = NULL;
3103		goto keep_queue;
3104	}
3105
3106	/*
3107	 * This is a deep seek queue, but the device is much faster than
3108	 * the queue can deliver, don't idle
3109	 **/
3110	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3111	    (cfq_cfqq_slice_new(cfqq) ||
3112	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3113		cfq_clear_cfqq_deep(cfqq);
3114		cfq_clear_cfqq_idle_window(cfqq);
3115	}
3116
3117	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3118		cfqq = NULL;
3119		goto keep_queue;
3120	}
3121
3122	/*
3123	 * If group idle is enabled and there are requests dispatched from
3124	 * this group, wait for requests to complete.
3125	 */
3126check_group_idle:
3127	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3128	    cfqq->cfqg->dispatched &&
3129	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3130		cfqq = NULL;
3131		goto keep_queue;
3132	}
3133
3134expire:
3135	cfq_slice_expired(cfqd, 0);
3136new_queue:
3137	/*
3138	 * Current queue expired. Check if we have to switch to a new
3139	 * service tree
3140	 */
3141	if (!new_cfqq)
3142		cfq_choose_cfqg(cfqd);
3143
3144	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3145keep_queue:
3146	return cfqq;
3147}
3148
3149static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3150{
3151	int dispatched = 0;
3152
3153	while (cfqq->next_rq) {
3154		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3155		dispatched++;
3156	}
3157
3158	BUG_ON(!list_empty(&cfqq->fifo));
3159
3160	/* By default cfqq is not expired if it is empty. Do it explicitly */
3161	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3162	return dispatched;
3163}
3164
3165/*
3166 * Drain our current requests. Used for barriers and when switching
3167 * io schedulers on-the-fly.
3168 */
3169static int cfq_forced_dispatch(struct cfq_data *cfqd)
3170{
3171	struct cfq_queue *cfqq;
3172	int dispatched = 0;
3173
3174	/* Expire the timeslice of the current active queue first */
3175	cfq_slice_expired(cfqd, 0);
3176	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3177		__cfq_set_active_queue(cfqd, cfqq);
3178		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3179	}
3180
3181	BUG_ON(cfqd->busy_queues);
3182
3183	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3184	return dispatched;
3185}
3186
3187static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3188	struct cfq_queue *cfqq)
3189{
3190	/* the queue hasn't finished any request, can't estimate */
3191	if (cfq_cfqq_slice_new(cfqq))
3192		return true;
3193	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3194		cfqq->slice_end))
3195		return true;
3196
3197	return false;
3198}
3199
3200static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3201{
3202	unsigned int max_dispatch;
3203
3204	/*
3205	 * Drain async requests before we start sync IO
3206	 */
3207	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3208		return false;
3209
3210	/*
3211	 * If this is an async queue and we have sync IO in flight, let it wait
3212	 */
3213	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3214		return false;
3215
3216	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3217	if (cfq_class_idle(cfqq))
3218		max_dispatch = 1;
3219
3220	/*
3221	 * Does this cfqq already have too much IO in flight?
3222	 */
3223	if (cfqq->dispatched >= max_dispatch) {
3224		bool promote_sync = false;
3225		/*
3226		 * idle queue must always only have a single IO in flight
3227		 */
3228		if (cfq_class_idle(cfqq))
3229			return false;
3230
3231		/*
3232		 * If there is only one sync queue
3233		 * we can ignore async queue here and give the sync
3234		 * queue no dispatch limit. The reason is a sync queue can
3235		 * preempt async queue, limiting the sync queue doesn't make
3236		 * sense. This is useful for aiostress test.
3237		 */
3238		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3239			promote_sync = true;
3240
3241		/*
3242		 * We have other queues, don't allow more IO from this one
3243		 */
3244		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3245				!promote_sync)
3246			return false;
3247
3248		/*
3249		 * Sole queue user, no limit
3250		 */
3251		if (cfqd->busy_queues == 1 || promote_sync)
3252			max_dispatch = -1;
3253		else
3254			/*
3255			 * Normally we start throttling cfqq when cfq_quantum/2
3256			 * requests have been dispatched. But we can drive
3257			 * deeper queue depths at the beginning of slice
3258			 * subjected to upper limit of cfq_quantum.
3259			 * */
3260			max_dispatch = cfqd->cfq_quantum;
3261	}
3262
3263	/*
3264	 * Async queues must wait a bit before being allowed dispatch.
3265	 * We also ramp up the dispatch depth gradually for async IO,
3266	 * based on the last sync IO we serviced
3267	 */
3268	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3269		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3270		unsigned int depth;
3271
3272		depth = last_sync / cfqd->cfq_slice[1];
3273		if (!depth && !cfqq->dispatched)
3274			depth = 1;
3275		if (depth < max_dispatch)
3276			max_dispatch = depth;
3277	}
3278
3279	/*
3280	 * If we're below the current max, allow a dispatch
3281	 */
3282	return cfqq->dispatched < max_dispatch;
3283}
3284
3285/*
3286 * Dispatch a request from cfqq, moving them to the request queue
3287 * dispatch list.
3288 */
3289static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3290{
3291	struct request *rq;
3292
3293	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3294
3295	if (!cfq_may_dispatch(cfqd, cfqq))
3296		return false;
3297
3298	/*
3299	 * follow expired path, else get first next available
3300	 */
3301	rq = cfq_check_fifo(cfqq);
3302	if (!rq)
3303		rq = cfqq->next_rq;
3304
3305	/*
3306	 * insert request into driver dispatch list
3307	 */
3308	cfq_dispatch_insert(cfqd->queue, rq);
3309
3310	if (!cfqd->active_cic) {
3311		struct cfq_io_cq *cic = RQ_CIC(rq);
3312
3313		atomic_long_inc(&cic->icq.ioc->refcount);
3314		cfqd->active_cic = cic;
3315	}
3316
3317	return true;
3318}
3319
3320/*
3321 * Find the cfqq that we need to service and move a request from that to the
3322 * dispatch list
3323 */
3324static int cfq_dispatch_requests(struct request_queue *q, int force)
3325{
3326	struct cfq_data *cfqd = q->elevator->elevator_data;
3327	struct cfq_queue *cfqq;
3328
3329	if (!cfqd->busy_queues)
3330		return 0;
3331
3332	if (unlikely(force))
3333		return cfq_forced_dispatch(cfqd);
3334
3335	cfqq = cfq_select_queue(cfqd);
3336	if (!cfqq)
3337		return 0;
3338
3339	/*
3340	 * Dispatch a request from this cfqq, if it is allowed
3341	 */
3342	if (!cfq_dispatch_request(cfqd, cfqq))
3343		return 0;
3344
3345	cfqq->slice_dispatch++;
3346	cfq_clear_cfqq_must_dispatch(cfqq);
3347
3348	/*
3349	 * expire an async queue immediately if it has used up its slice. idle
3350	 * queue always expire after 1 dispatch round.
3351	 */
3352	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3353	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3354	    cfq_class_idle(cfqq))) {
3355		cfqq->slice_end = jiffies + 1;
3356		cfq_slice_expired(cfqd, 0);
3357	}
3358
3359	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3360	return 1;
3361}
3362
3363/*
3364 * task holds one reference to the queue, dropped when task exits. each rq
3365 * in-flight on this queue also holds a reference, dropped when rq is freed.
3366 *
3367 * Each cfq queue took a reference on the parent group. Drop it now.
3368 * queue lock must be held here.
3369 */
3370static void cfq_put_queue(struct cfq_queue *cfqq)
3371{
3372	struct cfq_data *cfqd = cfqq->cfqd;
3373	struct cfq_group *cfqg;
3374
3375	BUG_ON(cfqq->ref <= 0);
3376
3377	cfqq->ref--;
3378	if (cfqq->ref)
3379		return;
3380
3381	cfq_log_cfqq(cfqd, cfqq, "put_queue");
3382	BUG_ON(rb_first(&cfqq->sort_list));
3383	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3384	cfqg = cfqq->cfqg;
3385
3386	if (unlikely(cfqd->active_queue == cfqq)) {
3387		__cfq_slice_expired(cfqd, cfqq, 0);
3388		cfq_schedule_dispatch(cfqd);
3389	}
3390
3391	BUG_ON(cfq_cfqq_on_rr(cfqq));
3392	kmem_cache_free(cfq_pool, cfqq);
3393	cfqg_put(cfqg);
3394}
3395
3396static void cfq_put_cooperator(struct cfq_queue *cfqq)
3397{
3398	struct cfq_queue *__cfqq, *next;
3399
3400	/*
3401	 * If this queue was scheduled to merge with another queue, be
3402	 * sure to drop the reference taken on that queue (and others in
3403	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3404	 */
3405	__cfqq = cfqq->new_cfqq;
3406	while (__cfqq) {
3407		if (__cfqq == cfqq) {
3408			WARN(1, "cfqq->new_cfqq loop detected\n");
3409			break;
3410		}
3411		next = __cfqq->new_cfqq;
3412		cfq_put_queue(__cfqq);
3413		__cfqq = next;
3414	}
3415}
3416
3417static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3418{
3419	if (unlikely(cfqq == cfqd->active_queue)) {
3420		__cfq_slice_expired(cfqd, cfqq, 0);
3421		cfq_schedule_dispatch(cfqd);
3422	}
3423
3424	cfq_put_cooperator(cfqq);
3425
3426	cfq_put_queue(cfqq);
3427}
3428
3429static void cfq_init_icq(struct io_cq *icq)
3430{
3431	struct cfq_io_cq *cic = icq_to_cic(icq);
3432
3433	cic->ttime.last_end_request = jiffies;
3434}
3435
3436static void cfq_exit_icq(struct io_cq *icq)
3437{
3438	struct cfq_io_cq *cic = icq_to_cic(icq);
3439	struct cfq_data *cfqd = cic_to_cfqd(cic);
3440
3441	if (cic->cfqq[BLK_RW_ASYNC]) {
3442		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3443		cic->cfqq[BLK_RW_ASYNC] = NULL;
3444	}
3445
3446	if (cic->cfqq[BLK_RW_SYNC]) {
3447		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3448		cic->cfqq[BLK_RW_SYNC] = NULL;
3449	}
3450}
3451
3452static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3453{
3454	struct task_struct *tsk = current;
3455	int ioprio_class;
3456
3457	if (!cfq_cfqq_prio_changed(cfqq))
3458		return;
3459
3460	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3461	switch (ioprio_class) {
3462	default:
3463		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3464	case IOPRIO_CLASS_NONE:
3465		/*
3466		 * no prio set, inherit CPU scheduling settings
3467		 */
3468		cfqq->ioprio = task_nice_ioprio(tsk);
3469		cfqq->ioprio_class = task_nice_ioclass(tsk);
3470		break;
3471	case IOPRIO_CLASS_RT:
3472		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3473		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3474		break;
3475	case IOPRIO_CLASS_BE:
3476		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3477		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3478		break;
3479	case IOPRIO_CLASS_IDLE:
3480		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3481		cfqq->ioprio = 7;
3482		cfq_clear_cfqq_idle_window(cfqq);
3483		break;
3484	}
3485
3486	/*
3487	 * keep track of original prio settings in case we have to temporarily
3488	 * elevate the priority of this queue
3489	 */
3490	cfqq->org_ioprio = cfqq->ioprio;
3491	cfq_clear_cfqq_prio_changed(cfqq);
3492}
3493
3494static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3495{
3496	int ioprio = cic->icq.ioc->ioprio;
3497	struct cfq_data *cfqd = cic_to_cfqd(cic);
3498	struct cfq_queue *cfqq;
3499
3500	/*
3501	 * Check whether ioprio has changed.  The condition may trigger
3502	 * spuriously on a newly created cic but there's no harm.
3503	 */
3504	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3505		return;
3506
3507	cfqq = cic->cfqq[BLK_RW_ASYNC];
3508	if (cfqq) {
3509		struct cfq_queue *new_cfqq;
3510		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3511					 GFP_ATOMIC);
3512		if (new_cfqq) {
3513			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3514			cfq_put_queue(cfqq);
3515		}
3516	}
3517
3518	cfqq = cic->cfqq[BLK_RW_SYNC];
3519	if (cfqq)
3520		cfq_mark_cfqq_prio_changed(cfqq);
3521
3522	cic->ioprio = ioprio;
3523}
3524
3525static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3526			  pid_t pid, bool is_sync)
3527{
3528	RB_CLEAR_NODE(&cfqq->rb_node);
3529	RB_CLEAR_NODE(&cfqq->p_node);
3530	INIT_LIST_HEAD(&cfqq->fifo);
3531
3532	cfqq->ref = 0;
3533	cfqq->cfqd = cfqd;
3534
3535	cfq_mark_cfqq_prio_changed(cfqq);
3536
3537	if (is_sync) {
3538		if (!cfq_class_idle(cfqq))
3539			cfq_mark_cfqq_idle_window(cfqq);
3540		cfq_mark_cfqq_sync(cfqq);
3541	}
3542	cfqq->pid = pid;
3543}
3544
3545#ifdef CONFIG_CFQ_GROUP_IOSCHED
3546static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3547{
3548	struct cfq_data *cfqd = cic_to_cfqd(cic);
3549	struct cfq_queue *sync_cfqq;
3550	uint64_t serial_nr;
3551
3552	rcu_read_lock();
3553	serial_nr = bio_blkcg(bio)->css.serial_nr;
3554	rcu_read_unlock();
3555
3556	/*
3557	 * Check whether blkcg has changed.  The condition may trigger
3558	 * spuriously on a newly created cic but there's no harm.
3559	 */
3560	if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3561		return;
3562
3563	sync_cfqq = cic_to_cfqq(cic, 1);
3564	if (sync_cfqq) {
3565		/*
3566		 * Drop reference to sync queue. A new sync queue will be
3567		 * assigned in new group upon arrival of a fresh request.
3568		 */
3569		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3570		cic_set_cfqq(cic, NULL, 1);
3571		cfq_put_queue(sync_cfqq);
3572	}
3573
3574	cic->blkcg_serial_nr = serial_nr;
3575}
3576#else
3577static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3578#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3579
3580static struct cfq_queue *
3581cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3582		     struct bio *bio, gfp_t gfp_mask)
3583{
3584	struct blkcg *blkcg;
3585	struct cfq_queue *cfqq, *new_cfqq = NULL;
3586	struct cfq_group *cfqg;
3587
3588retry:
3589	rcu_read_lock();
3590
3591	blkcg = bio_blkcg(bio);
3592	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3593	if (!cfqg) {
3594		cfqq = &cfqd->oom_cfqq;
3595		goto out;
3596	}
3597
3598	cfqq = cic_to_cfqq(cic, is_sync);
3599
3600	/*
3601	 * Always try a new alloc if we fell back to the OOM cfqq
3602	 * originally, since it should just be a temporary situation.
3603	 */
3604	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3605		cfqq = NULL;
3606		if (new_cfqq) {
3607			cfqq = new_cfqq;
3608			new_cfqq = NULL;
3609		} else if (gfp_mask & __GFP_WAIT) {
3610			rcu_read_unlock();
3611			spin_unlock_irq(cfqd->queue->queue_lock);
3612			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3613					gfp_mask | __GFP_ZERO,
3614					cfqd->queue->node);
3615			spin_lock_irq(cfqd->queue->queue_lock);
3616			if (new_cfqq)
3617				goto retry;
3618			else
3619				return &cfqd->oom_cfqq;
3620		} else {
3621			cfqq = kmem_cache_alloc_node(cfq_pool,
3622					gfp_mask | __GFP_ZERO,
3623					cfqd->queue->node);
3624		}
3625
3626		if (cfqq) {
3627			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3628			cfq_init_prio_data(cfqq, cic);
3629			cfq_link_cfqq_cfqg(cfqq, cfqg);
3630			cfq_log_cfqq(cfqd, cfqq, "alloced");
3631		} else
3632			cfqq = &cfqd->oom_cfqq;
3633	}
3634out:
3635	if (new_cfqq)
3636		kmem_cache_free(cfq_pool, new_cfqq);
3637
3638	rcu_read_unlock();
3639	return cfqq;
3640}
3641
3642static struct cfq_queue **
3643cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3644{
3645	switch (ioprio_class) {
3646	case IOPRIO_CLASS_RT:
3647		return &cfqd->async_cfqq[0][ioprio];
3648	case IOPRIO_CLASS_NONE:
3649		ioprio = IOPRIO_NORM;
3650		/* fall through */
3651	case IOPRIO_CLASS_BE:
3652		return &cfqd->async_cfqq[1][ioprio];
3653	case IOPRIO_CLASS_IDLE:
3654		return &cfqd->async_idle_cfqq;
3655	default:
3656		BUG();
3657	}
3658}
3659
3660static struct cfq_queue *
3661cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3662	      struct bio *bio, gfp_t gfp_mask)
3663{
3664	int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3665	int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3666	struct cfq_queue **async_cfqq = NULL;
3667	struct cfq_queue *cfqq = NULL;
3668
3669	if (!is_sync) {
3670		if (!ioprio_valid(cic->ioprio)) {
3671			struct task_struct *tsk = current;
3672			ioprio = task_nice_ioprio(tsk);
3673			ioprio_class = task_nice_ioclass(tsk);
3674		}
3675		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3676		cfqq = *async_cfqq;
3677	}
3678
3679	if (!cfqq)
3680		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3681
3682	/*
3683	 * pin the queue now that it's allocated, scheduler exit will prune it
3684	 */
3685	if (!is_sync && !(*async_cfqq)) {
3686		cfqq->ref++;
3687		*async_cfqq = cfqq;
3688	}
3689
3690	cfqq->ref++;
3691	return cfqq;
3692}
3693
3694static void
3695__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3696{
3697	unsigned long elapsed = jiffies - ttime->last_end_request;
3698	elapsed = min(elapsed, 2UL * slice_idle);
3699
3700	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3701	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3702	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3703}
3704
3705static void
3706cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3707			struct cfq_io_cq *cic)
3708{
3709	if (cfq_cfqq_sync(cfqq)) {
3710		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3711		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3712			cfqd->cfq_slice_idle);
3713	}
3714#ifdef CONFIG_CFQ_GROUP_IOSCHED
3715	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3716#endif
3717}
3718
3719static void
3720cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3721		       struct request *rq)
3722{
3723	sector_t sdist = 0;
3724	sector_t n_sec = blk_rq_sectors(rq);
3725	if (cfqq->last_request_pos) {
3726		if (cfqq->last_request_pos < blk_rq_pos(rq))
3727			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3728		else
3729			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3730	}
3731
3732	cfqq->seek_history <<= 1;
3733	if (blk_queue_nonrot(cfqd->queue))
3734		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3735	else
3736		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3737}
3738
3739/*
3740 * Disable idle window if the process thinks too long or seeks so much that
3741 * it doesn't matter
3742 */
3743static void
3744cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3745		       struct cfq_io_cq *cic)
3746{
3747	int old_idle, enable_idle;
3748
3749	/*
3750	 * Don't idle for async or idle io prio class
3751	 */
3752	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3753		return;
3754
3755	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3756
3757	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3758		cfq_mark_cfqq_deep(cfqq);
3759
3760	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3761		enable_idle = 0;
3762	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3763		 !cfqd->cfq_slice_idle ||
3764		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3765		enable_idle = 0;
3766	else if (sample_valid(cic->ttime.ttime_samples)) {
3767		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3768			enable_idle = 0;
3769		else
3770			enable_idle = 1;
3771	}
3772
3773	if (old_idle != enable_idle) {
3774		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3775		if (enable_idle)
3776			cfq_mark_cfqq_idle_window(cfqq);
3777		else
3778			cfq_clear_cfqq_idle_window(cfqq);
3779	}
3780}
3781
3782/*
3783 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3784 * no or if we aren't sure, a 1 will cause a preempt.
3785 */
3786static bool
3787cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3788		   struct request *rq)
3789{
3790	struct cfq_queue *cfqq;
3791
3792	cfqq = cfqd->active_queue;
3793	if (!cfqq)
3794		return false;
3795
3796	if (cfq_class_idle(new_cfqq))
3797		return false;
3798
3799	if (cfq_class_idle(cfqq))
3800		return true;
3801
3802	/*
3803	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3804	 */
3805	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3806		return false;
3807
3808	/*
3809	 * if the new request is sync, but the currently running queue is
3810	 * not, let the sync request have priority.
3811	 */
3812	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3813		return true;
3814
3815	if (new_cfqq->cfqg != cfqq->cfqg)
3816		return false;
3817
3818	if (cfq_slice_used(cfqq))
3819		return true;
3820
3821	/* Allow preemption only if we are idling on sync-noidle tree */
3822	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3823	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3824	    new_cfqq->service_tree->count == 2 &&
3825	    RB_EMPTY_ROOT(&cfqq->sort_list))
3826		return true;
3827
3828	/*
3829	 * So both queues are sync. Let the new request get disk time if
3830	 * it's a metadata request and the current queue is doing regular IO.
3831	 */
3832	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3833		return true;
3834
3835	/*
3836	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3837	 */
3838	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3839		return true;
3840
3841	/* An idle queue should not be idle now for some reason */
3842	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3843		return true;
3844
3845	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3846		return false;
3847
3848	/*
3849	 * if this request is as-good as one we would expect from the
3850	 * current cfqq, let it preempt
3851	 */
3852	if (cfq_rq_close(cfqd, cfqq, rq))
3853		return true;
3854
3855	return false;
3856}
3857
3858/*
3859 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3860 * let it have half of its nominal slice.
3861 */
3862static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3863{
3864	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3865
3866	cfq_log_cfqq(cfqd, cfqq, "preempt");
3867	cfq_slice_expired(cfqd, 1);
3868
3869	/*
3870	 * workload type is changed, don't save slice, otherwise preempt
3871	 * doesn't happen
3872	 */
3873	if (old_type != cfqq_type(cfqq))
3874		cfqq->cfqg->saved_wl_slice = 0;
3875
3876	/*
3877	 * Put the new queue at the front of the of the current list,
3878	 * so we know that it will be selected next.
3879	 */
3880	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3881
3882	cfq_service_tree_add(cfqd, cfqq, 1);
3883
3884	cfqq->slice_end = 0;
3885	cfq_mark_cfqq_slice_new(cfqq);
3886}
3887
3888/*
3889 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3890 * something we should do about it
3891 */
3892static void
3893cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3894		struct request *rq)
3895{
3896	struct cfq_io_cq *cic = RQ_CIC(rq);
3897
3898	cfqd->rq_queued++;
3899	if (rq->cmd_flags & REQ_PRIO)
3900		cfqq->prio_pending++;
3901
3902	cfq_update_io_thinktime(cfqd, cfqq, cic);
3903	cfq_update_io_seektime(cfqd, cfqq, rq);
3904	cfq_update_idle_window(cfqd, cfqq, cic);
3905
3906	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3907
3908	if (cfqq == cfqd->active_queue) {
3909		/*
3910		 * Remember that we saw a request from this process, but
3911		 * don't start queuing just yet. Otherwise we risk seeing lots
3912		 * of tiny requests, because we disrupt the normal plugging
3913		 * and merging. If the request is already larger than a single
3914		 * page, let it rip immediately. For that case we assume that
3915		 * merging is already done. Ditto for a busy system that
3916		 * has other work pending, don't risk delaying until the
3917		 * idle timer unplug to continue working.
3918		 */
3919		if (cfq_cfqq_wait_request(cfqq)) {
3920			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3921			    cfqd->busy_queues > 1) {
3922				cfq_del_timer(cfqd, cfqq);
3923				cfq_clear_cfqq_wait_request(cfqq);
3924				__blk_run_queue(cfqd->queue);
3925			} else {
3926				cfqg_stats_update_idle_time(cfqq->cfqg);
3927				cfq_mark_cfqq_must_dispatch(cfqq);
3928			}
3929		}
3930	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3931		/*
3932		 * not the active queue - expire current slice if it is
3933		 * idle and has expired it's mean thinktime or this new queue
3934		 * has some old slice time left and is of higher priority or
3935		 * this new queue is RT and the current one is BE
3936		 */
3937		cfq_preempt_queue(cfqd, cfqq);
3938		__blk_run_queue(cfqd->queue);
3939	}
3940}
3941
3942static void cfq_insert_request(struct request_queue *q, struct request *rq)
3943{
3944	struct cfq_data *cfqd = q->elevator->elevator_data;
3945	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3946
3947	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3948	cfq_init_prio_data(cfqq, RQ_CIC(rq));
3949
3950	rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
3951	list_add_tail(&rq->queuelist, &cfqq->fifo);
3952	cfq_add_rq_rb(rq);
3953	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3954				 rq->cmd_flags);
3955	cfq_rq_enqueued(cfqd, cfqq, rq);
3956}
3957
3958/*
3959 * Update hw_tag based on peak queue depth over 50 samples under
3960 * sufficient load.
3961 */
3962static void cfq_update_hw_tag(struct cfq_data *cfqd)
3963{
3964	struct cfq_queue *cfqq = cfqd->active_queue;
3965
3966	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3967		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3968
3969	if (cfqd->hw_tag == 1)
3970		return;
3971
3972	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3973	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3974		return;
3975
3976	/*
3977	 * If active queue hasn't enough requests and can idle, cfq might not
3978	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3979	 * case
3980	 */
3981	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3982	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3983	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3984		return;
3985
3986	if (cfqd->hw_tag_samples++ < 50)
3987		return;
3988
3989	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3990		cfqd->hw_tag = 1;
3991	else
3992		cfqd->hw_tag = 0;
3993}
3994
3995static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3996{
3997	struct cfq_io_cq *cic = cfqd->active_cic;
3998
3999	/* If the queue already has requests, don't wait */
4000	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4001		return false;
4002
4003	/* If there are other queues in the group, don't wait */
4004	if (cfqq->cfqg->nr_cfqq > 1)
4005		return false;
4006
4007	/* the only queue in the group, but think time is big */
4008	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4009		return false;
4010
4011	if (cfq_slice_used(cfqq))
4012		return true;
4013
4014	/* if slice left is less than think time, wait busy */
4015	if (cic && sample_valid(cic->ttime.ttime_samples)
4016	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4017		return true;
4018
4019	/*
4020	 * If think times is less than a jiffy than ttime_mean=0 and above
4021	 * will not be true. It might happen that slice has not expired yet
4022	 * but will expire soon (4-5 ns) during select_queue(). To cover the
4023	 * case where think time is less than a jiffy, mark the queue wait
4024	 * busy if only 1 jiffy is left in the slice.
4025	 */
4026	if (cfqq->slice_end - jiffies == 1)
4027		return true;
4028
4029	return false;
4030}
4031
4032static void cfq_completed_request(struct request_queue *q, struct request *rq)
4033{
4034	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4035	struct cfq_data *cfqd = cfqq->cfqd;
4036	const int sync = rq_is_sync(rq);
4037	unsigned long now;
4038
4039	now = jiffies;
4040	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4041		     !!(rq->cmd_flags & REQ_NOIDLE));
4042
4043	cfq_update_hw_tag(cfqd);
4044
4045	WARN_ON(!cfqd->rq_in_driver);
4046	WARN_ON(!cfqq->dispatched);
4047	cfqd->rq_in_driver--;
4048	cfqq->dispatched--;
4049	(RQ_CFQG(rq))->dispatched--;
4050	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4051				     rq_io_start_time_ns(rq), rq->cmd_flags);
4052
4053	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4054
4055	if (sync) {
4056		struct cfq_rb_root *st;
4057
4058		RQ_CIC(rq)->ttime.last_end_request = now;
4059
4060		if (cfq_cfqq_on_rr(cfqq))
4061			st = cfqq->service_tree;
4062		else
4063			st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4064					cfqq_type(cfqq));
4065
4066		st->ttime.last_end_request = now;
4067		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4068			cfqd->last_delayed_sync = now;
4069	}
4070
4071#ifdef CONFIG_CFQ_GROUP_IOSCHED
4072	cfqq->cfqg->ttime.last_end_request = now;
4073#endif
4074
4075	/*
4076	 * If this is the active queue, check if it needs to be expired,
4077	 * or if we want to idle in case it has no pending requests.
4078	 */
4079	if (cfqd->active_queue == cfqq) {
4080		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4081
4082		if (cfq_cfqq_slice_new(cfqq)) {
4083			cfq_set_prio_slice(cfqd, cfqq);
4084			cfq_clear_cfqq_slice_new(cfqq);
4085		}
4086
4087		/*
4088		 * Should we wait for next request to come in before we expire
4089		 * the queue.
4090		 */
4091		if (cfq_should_wait_busy(cfqd, cfqq)) {
4092			unsigned long extend_sl = cfqd->cfq_slice_idle;
4093			if (!cfqd->cfq_slice_idle)
4094				extend_sl = cfqd->cfq_group_idle;
4095			cfqq->slice_end = jiffies + extend_sl;
4096			cfq_mark_cfqq_wait_busy(cfqq);
4097			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4098		}
4099
4100		/*
4101		 * Idling is not enabled on:
4102		 * - expired queues
4103		 * - idle-priority queues
4104		 * - async queues
4105		 * - queues with still some requests queued
4106		 * - when there is a close cooperator
4107		 */
4108		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4109			cfq_slice_expired(cfqd, 1);
4110		else if (sync && cfqq_empty &&
4111			 !cfq_close_cooperator(cfqd, cfqq)) {
4112			cfq_arm_slice_timer(cfqd);
4113		}
4114	}
4115
4116	if (!cfqd->rq_in_driver)
4117		cfq_schedule_dispatch(cfqd);
4118}
4119
4120static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4121{
4122	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4123		cfq_mark_cfqq_must_alloc_slice(cfqq);
4124		return ELV_MQUEUE_MUST;
4125	}
4126
4127	return ELV_MQUEUE_MAY;
4128}
4129
4130static int cfq_may_queue(struct request_queue *q, int rw)
4131{
4132	struct cfq_data *cfqd = q->elevator->elevator_data;
4133	struct task_struct *tsk = current;
4134	struct cfq_io_cq *cic;
4135	struct cfq_queue *cfqq;
4136
4137	/*
4138	 * don't force setup of a queue from here, as a call to may_queue
4139	 * does not necessarily imply that a request actually will be queued.
4140	 * so just lookup a possibly existing queue, or return 'may queue'
4141	 * if that fails
4142	 */
4143	cic = cfq_cic_lookup(cfqd, tsk->io_context);
4144	if (!cic)
4145		return ELV_MQUEUE_MAY;
4146
4147	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4148	if (cfqq) {
4149		cfq_init_prio_data(cfqq, cic);
4150
4151		return __cfq_may_queue(cfqq);
4152	}
4153
4154	return ELV_MQUEUE_MAY;
4155}
4156
4157/*
4158 * queue lock held here
4159 */
4160static void cfq_put_request(struct request *rq)
4161{
4162	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4163
4164	if (cfqq) {
4165		const int rw = rq_data_dir(rq);
4166
4167		BUG_ON(!cfqq->allocated[rw]);
4168		cfqq->allocated[rw]--;
4169
4170		/* Put down rq reference on cfqg */
4171		cfqg_put(RQ_CFQG(rq));
4172		rq->elv.priv[0] = NULL;
4173		rq->elv.priv[1] = NULL;
4174
4175		cfq_put_queue(cfqq);
4176	}
4177}
4178
4179static struct cfq_queue *
4180cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4181		struct cfq_queue *cfqq)
4182{
4183	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4184	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4185	cfq_mark_cfqq_coop(cfqq->new_cfqq);
4186	cfq_put_queue(cfqq);
4187	return cic_to_cfqq(cic, 1);
4188}
4189
4190/*
4191 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4192 * was the last process referring to said cfqq.
4193 */
4194static struct cfq_queue *
4195split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4196{
4197	if (cfqq_process_refs(cfqq) == 1) {
4198		cfqq->pid = current->pid;
4199		cfq_clear_cfqq_coop(cfqq);
4200		cfq_clear_cfqq_split_coop(cfqq);
4201		return cfqq;
4202	}
4203
4204	cic_set_cfqq(cic, NULL, 1);
4205
4206	cfq_put_cooperator(cfqq);
4207
4208	cfq_put_queue(cfqq);
4209	return NULL;
4210}
4211/*
4212 * Allocate cfq data structures associated with this request.
4213 */
4214static int
4215cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4216		gfp_t gfp_mask)
4217{
4218	struct cfq_data *cfqd = q->elevator->elevator_data;
4219	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4220	const int rw = rq_data_dir(rq);
4221	const bool is_sync = rq_is_sync(rq);
4222	struct cfq_queue *cfqq;
4223
4224	might_sleep_if(gfp_mask & __GFP_WAIT);
4225
4226	spin_lock_irq(q->queue_lock);
4227
4228	check_ioprio_changed(cic, bio);
4229	check_blkcg_changed(cic, bio);
4230new_queue:
4231	cfqq = cic_to_cfqq(cic, is_sync);
4232	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4233		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4234		cic_set_cfqq(cic, cfqq, is_sync);
4235	} else {
4236		/*
4237		 * If the queue was seeky for too long, break it apart.
4238		 */
4239		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4240			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4241			cfqq = split_cfqq(cic, cfqq);
4242			if (!cfqq)
4243				goto new_queue;
4244		}
4245
4246		/*
4247		 * Check to see if this queue is scheduled to merge with
4248		 * another, closely cooperating queue.  The merging of
4249		 * queues happens here as it must be done in process context.
4250		 * The reference on new_cfqq was taken in merge_cfqqs.
4251		 */
4252		if (cfqq->new_cfqq)
4253			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4254	}
4255
4256	cfqq->allocated[rw]++;
4257
4258	cfqq->ref++;
4259	cfqg_get(cfqq->cfqg);
4260	rq->elv.priv[0] = cfqq;
4261	rq->elv.priv[1] = cfqq->cfqg;
4262	spin_unlock_irq(q->queue_lock);
4263	return 0;
4264}
4265
4266static void cfq_kick_queue(struct work_struct *work)
4267{
4268	struct cfq_data *cfqd =
4269		container_of(work, struct cfq_data, unplug_work);
4270	struct request_queue *q = cfqd->queue;
4271
4272	spin_lock_irq(q->queue_lock);
4273	__blk_run_queue(cfqd->queue);
4274	spin_unlock_irq(q->queue_lock);
4275}
4276
4277/*
4278 * Timer running if the active_queue is currently idling inside its time slice
4279 */
4280static void cfq_idle_slice_timer(unsigned long data)
4281{
4282	struct cfq_data *cfqd = (struct cfq_data *) data;
4283	struct cfq_queue *cfqq;
4284	unsigned long flags;
4285	int timed_out = 1;
4286
4287	cfq_log(cfqd, "idle timer fired");
4288
4289	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4290
4291	cfqq = cfqd->active_queue;
4292	if (cfqq) {
4293		timed_out = 0;
4294
4295		/*
4296		 * We saw a request before the queue expired, let it through
4297		 */
4298		if (cfq_cfqq_must_dispatch(cfqq))
4299			goto out_kick;
4300
4301		/*
4302		 * expired
4303		 */
4304		if (cfq_slice_used(cfqq))
4305			goto expire;
4306
4307		/*
4308		 * only expire and reinvoke request handler, if there are
4309		 * other queues with pending requests
4310		 */
4311		if (!cfqd->busy_queues)
4312			goto out_cont;
4313
4314		/*
4315		 * not expired and it has a request pending, let it dispatch
4316		 */
4317		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4318			goto out_kick;
4319
4320		/*
4321		 * Queue depth flag is reset only when the idle didn't succeed
4322		 */
4323		cfq_clear_cfqq_deep(cfqq);
4324	}
4325expire:
4326	cfq_slice_expired(cfqd, timed_out);
4327out_kick:
4328	cfq_schedule_dispatch(cfqd);
4329out_cont:
4330	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4331}
4332
4333static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4334{
4335	del_timer_sync(&cfqd->idle_slice_timer);
4336	cancel_work_sync(&cfqd->unplug_work);
4337}
4338
4339static void cfq_put_async_queues(struct cfq_data *cfqd)
4340{
4341	int i;
4342
4343	for (i = 0; i < IOPRIO_BE_NR; i++) {
4344		if (cfqd->async_cfqq[0][i])
4345			cfq_put_queue(cfqd->async_cfqq[0][i]);
4346		if (cfqd->async_cfqq[1][i])
4347			cfq_put_queue(cfqd->async_cfqq[1][i]);
4348	}
4349
4350	if (cfqd->async_idle_cfqq)
4351		cfq_put_queue(cfqd->async_idle_cfqq);
4352}
4353
4354static void cfq_exit_queue(struct elevator_queue *e)
4355{
4356	struct cfq_data *cfqd = e->elevator_data;
4357	struct request_queue *q = cfqd->queue;
4358
4359	cfq_shutdown_timer_wq(cfqd);
4360
4361	spin_lock_irq(q->queue_lock);
4362
4363	if (cfqd->active_queue)
4364		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4365
4366	cfq_put_async_queues(cfqd);
4367
4368	spin_unlock_irq(q->queue_lock);
4369
4370	cfq_shutdown_timer_wq(cfqd);
4371
4372#ifdef CONFIG_CFQ_GROUP_IOSCHED
4373	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4374#else
4375	kfree(cfqd->root_group);
4376#endif
4377	kfree(cfqd);
4378}
4379
4380static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4381{
4382	struct cfq_data *cfqd;
4383	struct blkcg_gq *blkg __maybe_unused;
4384	int i, ret;
4385	struct elevator_queue *eq;
4386
4387	eq = elevator_alloc(q, e);
4388	if (!eq)
4389		return -ENOMEM;
4390
4391	cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4392	if (!cfqd) {
4393		kobject_put(&eq->kobj);
4394		return -ENOMEM;
4395	}
4396	eq->elevator_data = cfqd;
4397
4398	cfqd->queue = q;
4399	spin_lock_irq(q->queue_lock);
4400	q->elevator = eq;
4401	spin_unlock_irq(q->queue_lock);
4402
4403	/* Init root service tree */
4404	cfqd->grp_service_tree = CFQ_RB_ROOT;
4405
4406	/* Init root group and prefer root group over other groups by default */
4407#ifdef CONFIG_CFQ_GROUP_IOSCHED
4408	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4409	if (ret)
4410		goto out_free;
4411
4412	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4413#else
4414	ret = -ENOMEM;
4415	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4416					GFP_KERNEL, cfqd->queue->node);
4417	if (!cfqd->root_group)
4418		goto out_free;
4419
4420	cfq_init_cfqg_base(cfqd->root_group);
4421#endif
4422	cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4423	cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4424
4425	/*
4426	 * Not strictly needed (since RB_ROOT just clears the node and we
4427	 * zeroed cfqd on alloc), but better be safe in case someone decides
4428	 * to add magic to the rb code
4429	 */
4430	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4431		cfqd->prio_trees[i] = RB_ROOT;
4432
4433	/*
4434	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4435	 * Grab a permanent reference to it, so that the normal code flow
4436	 * will not attempt to free it.  oom_cfqq is linked to root_group
4437	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4438	 * the reference from linking right away.
4439	 */
4440	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4441	cfqd->oom_cfqq.ref++;
4442
4443	spin_lock_irq(q->queue_lock);
4444	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4445	cfqg_put(cfqd->root_group);
4446	spin_unlock_irq(q->queue_lock);
4447
4448	init_timer(&cfqd->idle_slice_timer);
4449	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4450	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4451
4452	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4453
4454	cfqd->cfq_quantum = cfq_quantum;
4455	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4456	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4457	cfqd->cfq_back_max = cfq_back_max;
4458	cfqd->cfq_back_penalty = cfq_back_penalty;
4459	cfqd->cfq_slice[0] = cfq_slice_async;
4460	cfqd->cfq_slice[1] = cfq_slice_sync;
4461	cfqd->cfq_target_latency = cfq_target_latency;
4462	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4463	cfqd->cfq_slice_idle = cfq_slice_idle;
4464	cfqd->cfq_group_idle = cfq_group_idle;
4465	cfqd->cfq_latency = 1;
4466	cfqd->hw_tag = -1;
4467	/*
4468	 * we optimistically start assuming sync ops weren't delayed in last
4469	 * second, in order to have larger depth for async operations.
4470	 */
4471	cfqd->last_delayed_sync = jiffies - HZ;
4472	return 0;
4473
4474out_free:
4475	kfree(cfqd);
4476	kobject_put(&eq->kobj);
4477	return ret;
4478}
4479
4480/*
4481 * sysfs parts below -->
4482 */
4483static ssize_t
4484cfq_var_show(unsigned int var, char *page)
4485{
4486	return sprintf(page, "%u\n", var);
4487}
4488
4489static ssize_t
4490cfq_var_store(unsigned int *var, const char *page, size_t count)
4491{
4492	char *p = (char *) page;
4493
4494	*var = simple_strtoul(p, &p, 10);
4495	return count;
4496}
4497
4498#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4499static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4500{									\
4501	struct cfq_data *cfqd = e->elevator_data;			\
4502	unsigned int __data = __VAR;					\
4503	if (__CONV)							\
4504		__data = jiffies_to_msecs(__data);			\
4505	return cfq_var_show(__data, (page));				\
4506}
4507SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4508SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4509SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4510SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4511SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4512SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4513SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4514SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4515SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4516SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4517SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4518SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4519#undef SHOW_FUNCTION
4520
4521#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4522static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4523{									\
4524	struct cfq_data *cfqd = e->elevator_data;			\
4525	unsigned int __data;						\
4526	int ret = cfq_var_store(&__data, (page), count);		\
4527	if (__data < (MIN))						\
4528		__data = (MIN);						\
4529	else if (__data > (MAX))					\
4530		__data = (MAX);						\
4531	if (__CONV)							\
4532		*(__PTR) = msecs_to_jiffies(__data);			\
4533	else								\
4534		*(__PTR) = __data;					\
4535	return ret;							\
4536}
4537STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4538STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4539		UINT_MAX, 1);
4540STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4541		UINT_MAX, 1);
4542STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4543STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4544		UINT_MAX, 0);
4545STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4546STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4547STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4548STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4549STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4550		UINT_MAX, 0);
4551STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4552STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4553#undef STORE_FUNCTION
4554
4555#define CFQ_ATTR(name) \
4556	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4557
4558static struct elv_fs_entry cfq_attrs[] = {
4559	CFQ_ATTR(quantum),
4560	CFQ_ATTR(fifo_expire_sync),
4561	CFQ_ATTR(fifo_expire_async),
4562	CFQ_ATTR(back_seek_max),
4563	CFQ_ATTR(back_seek_penalty),
4564	CFQ_ATTR(slice_sync),
4565	CFQ_ATTR(slice_async),
4566	CFQ_ATTR(slice_async_rq),
4567	CFQ_ATTR(slice_idle),
4568	CFQ_ATTR(group_idle),
4569	CFQ_ATTR(low_latency),
4570	CFQ_ATTR(target_latency),
4571	__ATTR_NULL
4572};
4573
4574static struct elevator_type iosched_cfq = {
4575	.ops = {
4576		.elevator_merge_fn = 		cfq_merge,
4577		.elevator_merged_fn =		cfq_merged_request,
4578		.elevator_merge_req_fn =	cfq_merged_requests,
4579		.elevator_allow_merge_fn =	cfq_allow_merge,
4580		.elevator_bio_merged_fn =	cfq_bio_merged,
4581		.elevator_dispatch_fn =		cfq_dispatch_requests,
4582		.elevator_add_req_fn =		cfq_insert_request,
4583		.elevator_activate_req_fn =	cfq_activate_request,
4584		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4585		.elevator_completed_req_fn =	cfq_completed_request,
4586		.elevator_former_req_fn =	elv_rb_former_request,
4587		.elevator_latter_req_fn =	elv_rb_latter_request,
4588		.elevator_init_icq_fn =		cfq_init_icq,
4589		.elevator_exit_icq_fn =		cfq_exit_icq,
4590		.elevator_set_req_fn =		cfq_set_request,
4591		.elevator_put_req_fn =		cfq_put_request,
4592		.elevator_may_queue_fn =	cfq_may_queue,
4593		.elevator_init_fn =		cfq_init_queue,
4594		.elevator_exit_fn =		cfq_exit_queue,
4595	},
4596	.icq_size	=	sizeof(struct cfq_io_cq),
4597	.icq_align	=	__alignof__(struct cfq_io_cq),
4598	.elevator_attrs =	cfq_attrs,
4599	.elevator_name	=	"cfq",
4600	.elevator_owner =	THIS_MODULE,
4601};
4602
4603#ifdef CONFIG_CFQ_GROUP_IOSCHED
4604static struct blkcg_policy blkcg_policy_cfq = {
4605	.pd_size		= sizeof(struct cfq_group),
4606	.cftypes		= cfq_blkcg_files,
4607
4608	.pd_init_fn		= cfq_pd_init,
4609	.pd_offline_fn		= cfq_pd_offline,
4610	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4611};
4612#endif
4613
4614static int __init cfq_init(void)
4615{
4616	int ret;
4617
4618	/*
4619	 * could be 0 on HZ < 1000 setups
4620	 */
4621	if (!cfq_slice_async)
4622		cfq_slice_async = 1;
4623	if (!cfq_slice_idle)
4624		cfq_slice_idle = 1;
4625
4626#ifdef CONFIG_CFQ_GROUP_IOSCHED
4627	if (!cfq_group_idle)
4628		cfq_group_idle = 1;
4629
4630	ret = blkcg_policy_register(&blkcg_policy_cfq);
4631	if (ret)
4632		return ret;
4633#else
4634	cfq_group_idle = 0;
4635#endif
4636
4637	ret = -ENOMEM;
4638	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4639	if (!cfq_pool)
4640		goto err_pol_unreg;
4641
4642	ret = elv_register(&iosched_cfq);
4643	if (ret)
4644		goto err_free_pool;
4645
4646	return 0;
4647
4648err_free_pool:
4649	kmem_cache_destroy(cfq_pool);
4650err_pol_unreg:
4651#ifdef CONFIG_CFQ_GROUP_IOSCHED
4652	blkcg_policy_unregister(&blkcg_policy_cfq);
4653#endif
4654	return ret;
4655}
4656
4657static void __exit cfq_exit(void)
4658{
4659#ifdef CONFIG_CFQ_GROUP_IOSCHED
4660	blkcg_policy_unregister(&blkcg_policy_cfq);
4661#endif
4662	elv_unregister(&iosched_cfq);
4663	kmem_cache_destroy(cfq_pool);
4664}
4665
4666module_init(cfq_init);
4667module_exit(cfq_exit);
4668
4669MODULE_AUTHOR("Jens Axboe");
4670MODULE_LICENSE("GPL");
4671MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4672