1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
12#include "blk-cgroup.h"
13#include "blk.h"
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10;	/* 100 ms */
23
24static struct blkcg_policy blkcg_policy_throtl;
25
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
28
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued.  When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from.  When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's.  A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53	struct list_head	node;		/* service_queue->queued[] */
54	struct bio_list		bios;		/* queued bios */
55	struct throtl_grp	*tg;		/* tg this qnode belongs to */
56};
57
58struct throtl_service_queue {
59	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
60
61	/*
62	 * Bios queued directly to this service_queue or dispatched from
63	 * children throtl_grp's.
64	 */
65	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66	unsigned int		nr_queued[2];	/* number of queued bios */
67
68	/*
69	 * RB tree of active children throtl_grp's, which are sorted by
70	 * their ->disptime.
71	 */
72	struct rb_root		pending_tree;	/* RB tree of active tgs */
73	struct rb_node		*first_pending;	/* first node in the tree */
74	unsigned int		nr_pending;	/* # queued in the tree */
75	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77};
78
79enum tg_state_flags {
80	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82};
83
84#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
85
86/* Per-cpu group stats */
87struct tg_stats_cpu {
88	/* total bytes transferred */
89	struct blkg_rwstat		service_bytes;
90	/* total IOs serviced, post merge */
91	struct blkg_rwstat		serviced;
92};
93
94struct throtl_grp {
95	/* must be the first member */
96	struct blkg_policy_data pd;
97
98	/* active throtl group service_queue member */
99	struct rb_node rb_node;
100
101	/* throtl_data this group belongs to */
102	struct throtl_data *td;
103
104	/* this group's service queue */
105	struct throtl_service_queue service_queue;
106
107	/*
108	 * qnode_on_self is used when bios are directly queued to this
109	 * throtl_grp so that local bios compete fairly with bios
110	 * dispatched from children.  qnode_on_parent is used when bios are
111	 * dispatched from this throtl_grp into its parent and will compete
112	 * with the sibling qnode_on_parents and the parent's
113	 * qnode_on_self.
114	 */
115	struct throtl_qnode qnode_on_self[2];
116	struct throtl_qnode qnode_on_parent[2];
117
118	/*
119	 * Dispatch time in jiffies. This is the estimated time when group
120	 * will unthrottle and is ready to dispatch more bio. It is used as
121	 * key to sort active groups in service tree.
122	 */
123	unsigned long disptime;
124
125	unsigned int flags;
126
127	/* are there any throtl rules between this group and td? */
128	bool has_rules[2];
129
130	/* bytes per second rate limits */
131	uint64_t bps[2];
132
133	/* IOPS limits */
134	unsigned int iops[2];
135
136	/* Number of bytes disptached in current slice */
137	uint64_t bytes_disp[2];
138	/* Number of bio's dispatched in current slice */
139	unsigned int io_disp[2];
140
141	/* When did we start a new slice */
142	unsigned long slice_start[2];
143	unsigned long slice_end[2];
144
145	/* Per cpu stats pointer */
146	struct tg_stats_cpu __percpu *stats_cpu;
147
148	/* List of tgs waiting for per cpu stats memory to be allocated */
149	struct list_head stats_alloc_node;
150};
151
152struct throtl_data
153{
154	/* service tree for active throtl groups */
155	struct throtl_service_queue service_queue;
156
157	struct request_queue *queue;
158
159	/* Total Number of queued bios on READ and WRITE lists */
160	unsigned int nr_queued[2];
161
162	/*
163	 * number of total undestroyed groups
164	 */
165	unsigned int nr_undestroyed_grps;
166
167	/* Work for dispatching throttled bios */
168	struct work_struct dispatch_work;
169};
170
171/* list and work item to allocate percpu group stats */
172static DEFINE_SPINLOCK(tg_stats_alloc_lock);
173static LIST_HEAD(tg_stats_alloc_list);
174
175static void tg_stats_alloc_fn(struct work_struct *);
176static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
177
178static void throtl_pending_timer_fn(unsigned long arg);
179
180static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
181{
182	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
183}
184
185static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
186{
187	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
188}
189
190static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
191{
192	return pd_to_blkg(&tg->pd);
193}
194
195static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
196{
197	return blkg_to_tg(td->queue->root_blkg);
198}
199
200/**
201 * sq_to_tg - return the throl_grp the specified service queue belongs to
202 * @sq: the throtl_service_queue of interest
203 *
204 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
205 * embedded in throtl_data, %NULL is returned.
206 */
207static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
208{
209	if (sq && sq->parent_sq)
210		return container_of(sq, struct throtl_grp, service_queue);
211	else
212		return NULL;
213}
214
215/**
216 * sq_to_td - return throtl_data the specified service queue belongs to
217 * @sq: the throtl_service_queue of interest
218 *
219 * A service_queue can be embeded in either a throtl_grp or throtl_data.
220 * Determine the associated throtl_data accordingly and return it.
221 */
222static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
223{
224	struct throtl_grp *tg = sq_to_tg(sq);
225
226	if (tg)
227		return tg->td;
228	else
229		return container_of(sq, struct throtl_data, service_queue);
230}
231
232/**
233 * throtl_log - log debug message via blktrace
234 * @sq: the service_queue being reported
235 * @fmt: printf format string
236 * @args: printf args
237 *
238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
239 * throtl_grp; otherwise, just "throtl".
240 *
241 * TODO: this should be made a function and name formatting should happen
242 * after testing whether blktrace is enabled.
243 */
244#define throtl_log(sq, fmt, args...)	do {				\
245	struct throtl_grp *__tg = sq_to_tg((sq));			\
246	struct throtl_data *__td = sq_to_td((sq));			\
247									\
248	(void)__td;							\
249	if ((__tg)) {							\
250		char __pbuf[128];					\
251									\
252		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
253		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
254	} else {							\
255		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
256	}								\
257} while (0)
258
259static void tg_stats_init(struct tg_stats_cpu *tg_stats)
260{
261	blkg_rwstat_init(&tg_stats->service_bytes);
262	blkg_rwstat_init(&tg_stats->serviced);
263}
264
265/*
266 * Worker for allocating per cpu stat for tgs. This is scheduled on the
267 * system_wq once there are some groups on the alloc_list waiting for
268 * allocation.
269 */
270static void tg_stats_alloc_fn(struct work_struct *work)
271{
272	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
273	struct delayed_work *dwork = to_delayed_work(work);
274	bool empty = false;
275
276alloc_stats:
277	if (!stats_cpu) {
278		int cpu;
279
280		stats_cpu = alloc_percpu(struct tg_stats_cpu);
281		if (!stats_cpu) {
282			/* allocation failed, try again after some time */
283			schedule_delayed_work(dwork, msecs_to_jiffies(10));
284			return;
285		}
286		for_each_possible_cpu(cpu)
287			tg_stats_init(per_cpu_ptr(stats_cpu, cpu));
288	}
289
290	spin_lock_irq(&tg_stats_alloc_lock);
291
292	if (!list_empty(&tg_stats_alloc_list)) {
293		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
294							 struct throtl_grp,
295							 stats_alloc_node);
296		swap(tg->stats_cpu, stats_cpu);
297		list_del_init(&tg->stats_alloc_node);
298	}
299
300	empty = list_empty(&tg_stats_alloc_list);
301	spin_unlock_irq(&tg_stats_alloc_lock);
302	if (!empty)
303		goto alloc_stats;
304}
305
306static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
307{
308	INIT_LIST_HEAD(&qn->node);
309	bio_list_init(&qn->bios);
310	qn->tg = tg;
311}
312
313/**
314 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
315 * @bio: bio being added
316 * @qn: qnode to add bio to
317 * @queued: the service_queue->queued[] list @qn belongs to
318 *
319 * Add @bio to @qn and put @qn on @queued if it's not already on.
320 * @qn->tg's reference count is bumped when @qn is activated.  See the
321 * comment on top of throtl_qnode definition for details.
322 */
323static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
324				 struct list_head *queued)
325{
326	bio_list_add(&qn->bios, bio);
327	if (list_empty(&qn->node)) {
328		list_add_tail(&qn->node, queued);
329		blkg_get(tg_to_blkg(qn->tg));
330	}
331}
332
333/**
334 * throtl_peek_queued - peek the first bio on a qnode list
335 * @queued: the qnode list to peek
336 */
337static struct bio *throtl_peek_queued(struct list_head *queued)
338{
339	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
340	struct bio *bio;
341
342	if (list_empty(queued))
343		return NULL;
344
345	bio = bio_list_peek(&qn->bios);
346	WARN_ON_ONCE(!bio);
347	return bio;
348}
349
350/**
351 * throtl_pop_queued - pop the first bio form a qnode list
352 * @queued: the qnode list to pop a bio from
353 * @tg_to_put: optional out argument for throtl_grp to put
354 *
355 * Pop the first bio from the qnode list @queued.  After popping, the first
356 * qnode is removed from @queued if empty or moved to the end of @queued so
357 * that the popping order is round-robin.
358 *
359 * When the first qnode is removed, its associated throtl_grp should be put
360 * too.  If @tg_to_put is NULL, this function automatically puts it;
361 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
362 * responsible for putting it.
363 */
364static struct bio *throtl_pop_queued(struct list_head *queued,
365				     struct throtl_grp **tg_to_put)
366{
367	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
368	struct bio *bio;
369
370	if (list_empty(queued))
371		return NULL;
372
373	bio = bio_list_pop(&qn->bios);
374	WARN_ON_ONCE(!bio);
375
376	if (bio_list_empty(&qn->bios)) {
377		list_del_init(&qn->node);
378		if (tg_to_put)
379			*tg_to_put = qn->tg;
380		else
381			blkg_put(tg_to_blkg(qn->tg));
382	} else {
383		list_move_tail(&qn->node, queued);
384	}
385
386	return bio;
387}
388
389/* init a service_queue, assumes the caller zeroed it */
390static void throtl_service_queue_init(struct throtl_service_queue *sq,
391				      struct throtl_service_queue *parent_sq)
392{
393	INIT_LIST_HEAD(&sq->queued[0]);
394	INIT_LIST_HEAD(&sq->queued[1]);
395	sq->pending_tree = RB_ROOT;
396	sq->parent_sq = parent_sq;
397	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
398		    (unsigned long)sq);
399}
400
401static void throtl_service_queue_exit(struct throtl_service_queue *sq)
402{
403	del_timer_sync(&sq->pending_timer);
404}
405
406static void throtl_pd_init(struct blkcg_gq *blkg)
407{
408	struct throtl_grp *tg = blkg_to_tg(blkg);
409	struct throtl_data *td = blkg->q->td;
410	struct throtl_service_queue *parent_sq;
411	unsigned long flags;
412	int rw;
413
414	/*
415	 * If on the default hierarchy, we switch to properly hierarchical
416	 * behavior where limits on a given throtl_grp are applied to the
417	 * whole subtree rather than just the group itself.  e.g. If 16M
418	 * read_bps limit is set on the root group, the whole system can't
419	 * exceed 16M for the device.
420	 *
421	 * If not on the default hierarchy, the broken flat hierarchy
422	 * behavior is retained where all throtl_grps are treated as if
423	 * they're all separate root groups right below throtl_data.
424	 * Limits of a group don't interact with limits of other groups
425	 * regardless of the position of the group in the hierarchy.
426	 */
427	parent_sq = &td->service_queue;
428
429	if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
430		parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
431
432	throtl_service_queue_init(&tg->service_queue, parent_sq);
433
434	for (rw = READ; rw <= WRITE; rw++) {
435		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
436		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
437	}
438
439	RB_CLEAR_NODE(&tg->rb_node);
440	tg->td = td;
441
442	tg->bps[READ] = -1;
443	tg->bps[WRITE] = -1;
444	tg->iops[READ] = -1;
445	tg->iops[WRITE] = -1;
446
447	/*
448	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
449	 * but percpu allocator can't be called from IO path.  Queue tg on
450	 * tg_stats_alloc_list and allocate from work item.
451	 */
452	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
453	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
454	schedule_delayed_work(&tg_stats_alloc_work, 0);
455	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
456}
457
458/*
459 * Set has_rules[] if @tg or any of its parents have limits configured.
460 * This doesn't require walking up to the top of the hierarchy as the
461 * parent's has_rules[] is guaranteed to be correct.
462 */
463static void tg_update_has_rules(struct throtl_grp *tg)
464{
465	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
466	int rw;
467
468	for (rw = READ; rw <= WRITE; rw++)
469		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
470				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
471}
472
473static void throtl_pd_online(struct blkcg_gq *blkg)
474{
475	/*
476	 * We don't want new groups to escape the limits of its ancestors.
477	 * Update has_rules[] after a new group is brought online.
478	 */
479	tg_update_has_rules(blkg_to_tg(blkg));
480}
481
482static void throtl_pd_exit(struct blkcg_gq *blkg)
483{
484	struct throtl_grp *tg = blkg_to_tg(blkg);
485	unsigned long flags;
486
487	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
488	list_del_init(&tg->stats_alloc_node);
489	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
490
491	free_percpu(tg->stats_cpu);
492
493	throtl_service_queue_exit(&tg->service_queue);
494}
495
496static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
497{
498	struct throtl_grp *tg = blkg_to_tg(blkg);
499	int cpu;
500
501	if (tg->stats_cpu == NULL)
502		return;
503
504	for_each_possible_cpu(cpu) {
505		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
506
507		blkg_rwstat_reset(&sc->service_bytes);
508		blkg_rwstat_reset(&sc->serviced);
509	}
510}
511
512static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
513					   struct blkcg *blkcg)
514{
515	/*
516	 * This is the common case when there are no blkcgs.  Avoid lookup
517	 * in this case
518	 */
519	if (blkcg == &blkcg_root)
520		return td_root_tg(td);
521
522	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
523}
524
525static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
526						  struct blkcg *blkcg)
527{
528	struct request_queue *q = td->queue;
529	struct throtl_grp *tg = NULL;
530
531	/*
532	 * This is the common case when there are no blkcgs.  Avoid lookup
533	 * in this case
534	 */
535	if (blkcg == &blkcg_root) {
536		tg = td_root_tg(td);
537	} else {
538		struct blkcg_gq *blkg;
539
540		blkg = blkg_lookup_create(blkcg, q);
541
542		/* if %NULL and @q is alive, fall back to root_tg */
543		if (!IS_ERR(blkg))
544			tg = blkg_to_tg(blkg);
545		else if (!blk_queue_dying(q))
546			tg = td_root_tg(td);
547	}
548
549	return tg;
550}
551
552static struct throtl_grp *
553throtl_rb_first(struct throtl_service_queue *parent_sq)
554{
555	/* Service tree is empty */
556	if (!parent_sq->nr_pending)
557		return NULL;
558
559	if (!parent_sq->first_pending)
560		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
561
562	if (parent_sq->first_pending)
563		return rb_entry_tg(parent_sq->first_pending);
564
565	return NULL;
566}
567
568static void rb_erase_init(struct rb_node *n, struct rb_root *root)
569{
570	rb_erase(n, root);
571	RB_CLEAR_NODE(n);
572}
573
574static void throtl_rb_erase(struct rb_node *n,
575			    struct throtl_service_queue *parent_sq)
576{
577	if (parent_sq->first_pending == n)
578		parent_sq->first_pending = NULL;
579	rb_erase_init(n, &parent_sq->pending_tree);
580	--parent_sq->nr_pending;
581}
582
583static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
584{
585	struct throtl_grp *tg;
586
587	tg = throtl_rb_first(parent_sq);
588	if (!tg)
589		return;
590
591	parent_sq->first_pending_disptime = tg->disptime;
592}
593
594static void tg_service_queue_add(struct throtl_grp *tg)
595{
596	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
597	struct rb_node **node = &parent_sq->pending_tree.rb_node;
598	struct rb_node *parent = NULL;
599	struct throtl_grp *__tg;
600	unsigned long key = tg->disptime;
601	int left = 1;
602
603	while (*node != NULL) {
604		parent = *node;
605		__tg = rb_entry_tg(parent);
606
607		if (time_before(key, __tg->disptime))
608			node = &parent->rb_left;
609		else {
610			node = &parent->rb_right;
611			left = 0;
612		}
613	}
614
615	if (left)
616		parent_sq->first_pending = &tg->rb_node;
617
618	rb_link_node(&tg->rb_node, parent, node);
619	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
620}
621
622static void __throtl_enqueue_tg(struct throtl_grp *tg)
623{
624	tg_service_queue_add(tg);
625	tg->flags |= THROTL_TG_PENDING;
626	tg->service_queue.parent_sq->nr_pending++;
627}
628
629static void throtl_enqueue_tg(struct throtl_grp *tg)
630{
631	if (!(tg->flags & THROTL_TG_PENDING))
632		__throtl_enqueue_tg(tg);
633}
634
635static void __throtl_dequeue_tg(struct throtl_grp *tg)
636{
637	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
638	tg->flags &= ~THROTL_TG_PENDING;
639}
640
641static void throtl_dequeue_tg(struct throtl_grp *tg)
642{
643	if (tg->flags & THROTL_TG_PENDING)
644		__throtl_dequeue_tg(tg);
645}
646
647/* Call with queue lock held */
648static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
649					  unsigned long expires)
650{
651	mod_timer(&sq->pending_timer, expires);
652	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
653		   expires - jiffies, jiffies);
654}
655
656/**
657 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
658 * @sq: the service_queue to schedule dispatch for
659 * @force: force scheduling
660 *
661 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
662 * dispatch time of the first pending child.  Returns %true if either timer
663 * is armed or there's no pending child left.  %false if the current
664 * dispatch window is still open and the caller should continue
665 * dispatching.
666 *
667 * If @force is %true, the dispatch timer is always scheduled and this
668 * function is guaranteed to return %true.  This is to be used when the
669 * caller can't dispatch itself and needs to invoke pending_timer
670 * unconditionally.  Note that forced scheduling is likely to induce short
671 * delay before dispatch starts even if @sq->first_pending_disptime is not
672 * in the future and thus shouldn't be used in hot paths.
673 */
674static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
675					  bool force)
676{
677	/* any pending children left? */
678	if (!sq->nr_pending)
679		return true;
680
681	update_min_dispatch_time(sq);
682
683	/* is the next dispatch time in the future? */
684	if (force || time_after(sq->first_pending_disptime, jiffies)) {
685		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
686		return true;
687	}
688
689	/* tell the caller to continue dispatching */
690	return false;
691}
692
693static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
694		bool rw, unsigned long start)
695{
696	tg->bytes_disp[rw] = 0;
697	tg->io_disp[rw] = 0;
698
699	/*
700	 * Previous slice has expired. We must have trimmed it after last
701	 * bio dispatch. That means since start of last slice, we never used
702	 * that bandwidth. Do try to make use of that bandwidth while giving
703	 * credit.
704	 */
705	if (time_after_eq(start, tg->slice_start[rw]))
706		tg->slice_start[rw] = start;
707
708	tg->slice_end[rw] = jiffies + throtl_slice;
709	throtl_log(&tg->service_queue,
710		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
711		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
712		   tg->slice_end[rw], jiffies);
713}
714
715static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
716{
717	tg->bytes_disp[rw] = 0;
718	tg->io_disp[rw] = 0;
719	tg->slice_start[rw] = jiffies;
720	tg->slice_end[rw] = jiffies + throtl_slice;
721	throtl_log(&tg->service_queue,
722		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
723		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
724		   tg->slice_end[rw], jiffies);
725}
726
727static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
728					unsigned long jiffy_end)
729{
730	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
731}
732
733static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
734				       unsigned long jiffy_end)
735{
736	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
737	throtl_log(&tg->service_queue,
738		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
739		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
740		   tg->slice_end[rw], jiffies);
741}
742
743/* Determine if previously allocated or extended slice is complete or not */
744static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
745{
746	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
747		return false;
748
749	return 1;
750}
751
752/* Trim the used slices and adjust slice start accordingly */
753static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
754{
755	unsigned long nr_slices, time_elapsed, io_trim;
756	u64 bytes_trim, tmp;
757
758	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
759
760	/*
761	 * If bps are unlimited (-1), then time slice don't get
762	 * renewed. Don't try to trim the slice if slice is used. A new
763	 * slice will start when appropriate.
764	 */
765	if (throtl_slice_used(tg, rw))
766		return;
767
768	/*
769	 * A bio has been dispatched. Also adjust slice_end. It might happen
770	 * that initially cgroup limit was very low resulting in high
771	 * slice_end, but later limit was bumped up and bio was dispached
772	 * sooner, then we need to reduce slice_end. A high bogus slice_end
773	 * is bad because it does not allow new slice to start.
774	 */
775
776	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
777
778	time_elapsed = jiffies - tg->slice_start[rw];
779
780	nr_slices = time_elapsed / throtl_slice;
781
782	if (!nr_slices)
783		return;
784	tmp = tg->bps[rw] * throtl_slice * nr_slices;
785	do_div(tmp, HZ);
786	bytes_trim = tmp;
787
788	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
789
790	if (!bytes_trim && !io_trim)
791		return;
792
793	if (tg->bytes_disp[rw] >= bytes_trim)
794		tg->bytes_disp[rw] -= bytes_trim;
795	else
796		tg->bytes_disp[rw] = 0;
797
798	if (tg->io_disp[rw] >= io_trim)
799		tg->io_disp[rw] -= io_trim;
800	else
801		tg->io_disp[rw] = 0;
802
803	tg->slice_start[rw] += nr_slices * throtl_slice;
804
805	throtl_log(&tg->service_queue,
806		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
807		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
808		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
809}
810
811static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
812				  unsigned long *wait)
813{
814	bool rw = bio_data_dir(bio);
815	unsigned int io_allowed;
816	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
817	u64 tmp;
818
819	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
820
821	/* Slice has just started. Consider one slice interval */
822	if (!jiffy_elapsed)
823		jiffy_elapsed_rnd = throtl_slice;
824
825	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
826
827	/*
828	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
829	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
830	 * will allow dispatch after 1 second and after that slice should
831	 * have been trimmed.
832	 */
833
834	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
835	do_div(tmp, HZ);
836
837	if (tmp > UINT_MAX)
838		io_allowed = UINT_MAX;
839	else
840		io_allowed = tmp;
841
842	if (tg->io_disp[rw] + 1 <= io_allowed) {
843		if (wait)
844			*wait = 0;
845		return true;
846	}
847
848	/* Calc approx time to dispatch */
849	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
850
851	if (jiffy_wait > jiffy_elapsed)
852		jiffy_wait = jiffy_wait - jiffy_elapsed;
853	else
854		jiffy_wait = 1;
855
856	if (wait)
857		*wait = jiffy_wait;
858	return 0;
859}
860
861static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
862				 unsigned long *wait)
863{
864	bool rw = bio_data_dir(bio);
865	u64 bytes_allowed, extra_bytes, tmp;
866	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
867
868	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
869
870	/* Slice has just started. Consider one slice interval */
871	if (!jiffy_elapsed)
872		jiffy_elapsed_rnd = throtl_slice;
873
874	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
875
876	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
877	do_div(tmp, HZ);
878	bytes_allowed = tmp;
879
880	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
881		if (wait)
882			*wait = 0;
883		return true;
884	}
885
886	/* Calc approx time to dispatch */
887	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
888	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
889
890	if (!jiffy_wait)
891		jiffy_wait = 1;
892
893	/*
894	 * This wait time is without taking into consideration the rounding
895	 * up we did. Add that time also.
896	 */
897	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
898	if (wait)
899		*wait = jiffy_wait;
900	return 0;
901}
902
903/*
904 * Returns whether one can dispatch a bio or not. Also returns approx number
905 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
906 */
907static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
908			    unsigned long *wait)
909{
910	bool rw = bio_data_dir(bio);
911	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
912
913	/*
914 	 * Currently whole state machine of group depends on first bio
915	 * queued in the group bio list. So one should not be calling
916	 * this function with a different bio if there are other bios
917	 * queued.
918	 */
919	BUG_ON(tg->service_queue.nr_queued[rw] &&
920	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
921
922	/* If tg->bps = -1, then BW is unlimited */
923	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
924		if (wait)
925			*wait = 0;
926		return true;
927	}
928
929	/*
930	 * If previous slice expired, start a new one otherwise renew/extend
931	 * existing slice to make sure it is at least throtl_slice interval
932	 * long since now.
933	 */
934	if (throtl_slice_used(tg, rw))
935		throtl_start_new_slice(tg, rw);
936	else {
937		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
938			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
939	}
940
941	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
942	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
943		if (wait)
944			*wait = 0;
945		return 1;
946	}
947
948	max_wait = max(bps_wait, iops_wait);
949
950	if (wait)
951		*wait = max_wait;
952
953	if (time_before(tg->slice_end[rw], jiffies + max_wait))
954		throtl_extend_slice(tg, rw, jiffies + max_wait);
955
956	return 0;
957}
958
959static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
960					 int rw)
961{
962	struct throtl_grp *tg = blkg_to_tg(blkg);
963	struct tg_stats_cpu *stats_cpu;
964	unsigned long flags;
965
966	/* If per cpu stats are not allocated yet, don't do any accounting. */
967	if (tg->stats_cpu == NULL)
968		return;
969
970	/*
971	 * Disabling interrupts to provide mutual exclusion between two
972	 * writes on same cpu. It probably is not needed for 64bit. Not
973	 * optimizing that case yet.
974	 */
975	local_irq_save(flags);
976
977	stats_cpu = this_cpu_ptr(tg->stats_cpu);
978
979	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
980	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
981
982	local_irq_restore(flags);
983}
984
985static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
986{
987	bool rw = bio_data_dir(bio);
988
989	/* Charge the bio to the group */
990	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
991	tg->io_disp[rw]++;
992
993	/*
994	 * REQ_THROTTLED is used to prevent the same bio to be throttled
995	 * more than once as a throttled bio will go through blk-throtl the
996	 * second time when it eventually gets issued.  Set it when a bio
997	 * is being charged to a tg.
998	 *
999	 * Dispatch stats aren't recursive and each @bio should only be
1000	 * accounted by the @tg it was originally associated with.  Let's
1001	 * update the stats when setting REQ_THROTTLED for the first time
1002	 * which is guaranteed to be for the @bio's original tg.
1003	 */
1004	if (!(bio->bi_rw & REQ_THROTTLED)) {
1005		bio->bi_rw |= REQ_THROTTLED;
1006		throtl_update_dispatch_stats(tg_to_blkg(tg),
1007					     bio->bi_iter.bi_size, bio->bi_rw);
1008	}
1009}
1010
1011/**
1012 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1013 * @bio: bio to add
1014 * @qn: qnode to use
1015 * @tg: the target throtl_grp
1016 *
1017 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1018 * tg->qnode_on_self[] is used.
1019 */
1020static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1021			      struct throtl_grp *tg)
1022{
1023	struct throtl_service_queue *sq = &tg->service_queue;
1024	bool rw = bio_data_dir(bio);
1025
1026	if (!qn)
1027		qn = &tg->qnode_on_self[rw];
1028
1029	/*
1030	 * If @tg doesn't currently have any bios queued in the same
1031	 * direction, queueing @bio can change when @tg should be
1032	 * dispatched.  Mark that @tg was empty.  This is automatically
1033	 * cleaered on the next tg_update_disptime().
1034	 */
1035	if (!sq->nr_queued[rw])
1036		tg->flags |= THROTL_TG_WAS_EMPTY;
1037
1038	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1039
1040	sq->nr_queued[rw]++;
1041	throtl_enqueue_tg(tg);
1042}
1043
1044static void tg_update_disptime(struct throtl_grp *tg)
1045{
1046	struct throtl_service_queue *sq = &tg->service_queue;
1047	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1048	struct bio *bio;
1049
1050	if ((bio = throtl_peek_queued(&sq->queued[READ])))
1051		tg_may_dispatch(tg, bio, &read_wait);
1052
1053	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1054		tg_may_dispatch(tg, bio, &write_wait);
1055
1056	min_wait = min(read_wait, write_wait);
1057	disptime = jiffies + min_wait;
1058
1059	/* Update dispatch time */
1060	throtl_dequeue_tg(tg);
1061	tg->disptime = disptime;
1062	throtl_enqueue_tg(tg);
1063
1064	/* see throtl_add_bio_tg() */
1065	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1066}
1067
1068static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1069					struct throtl_grp *parent_tg, bool rw)
1070{
1071	if (throtl_slice_used(parent_tg, rw)) {
1072		throtl_start_new_slice_with_credit(parent_tg, rw,
1073				child_tg->slice_start[rw]);
1074	}
1075
1076}
1077
1078static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1079{
1080	struct throtl_service_queue *sq = &tg->service_queue;
1081	struct throtl_service_queue *parent_sq = sq->parent_sq;
1082	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1083	struct throtl_grp *tg_to_put = NULL;
1084	struct bio *bio;
1085
1086	/*
1087	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1088	 * from @tg may put its reference and @parent_sq might end up
1089	 * getting released prematurely.  Remember the tg to put and put it
1090	 * after @bio is transferred to @parent_sq.
1091	 */
1092	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1093	sq->nr_queued[rw]--;
1094
1095	throtl_charge_bio(tg, bio);
1096
1097	/*
1098	 * If our parent is another tg, we just need to transfer @bio to
1099	 * the parent using throtl_add_bio_tg().  If our parent is
1100	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1101	 * bio_lists[] and decrease total number queued.  The caller is
1102	 * responsible for issuing these bios.
1103	 */
1104	if (parent_tg) {
1105		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1106		start_parent_slice_with_credit(tg, parent_tg, rw);
1107	} else {
1108		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1109				     &parent_sq->queued[rw]);
1110		BUG_ON(tg->td->nr_queued[rw] <= 0);
1111		tg->td->nr_queued[rw]--;
1112	}
1113
1114	throtl_trim_slice(tg, rw);
1115
1116	if (tg_to_put)
1117		blkg_put(tg_to_blkg(tg_to_put));
1118}
1119
1120static int throtl_dispatch_tg(struct throtl_grp *tg)
1121{
1122	struct throtl_service_queue *sq = &tg->service_queue;
1123	unsigned int nr_reads = 0, nr_writes = 0;
1124	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1125	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1126	struct bio *bio;
1127
1128	/* Try to dispatch 75% READS and 25% WRITES */
1129
1130	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1131	       tg_may_dispatch(tg, bio, NULL)) {
1132
1133		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134		nr_reads++;
1135
1136		if (nr_reads >= max_nr_reads)
1137			break;
1138	}
1139
1140	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1141	       tg_may_dispatch(tg, bio, NULL)) {
1142
1143		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1144		nr_writes++;
1145
1146		if (nr_writes >= max_nr_writes)
1147			break;
1148	}
1149
1150	return nr_reads + nr_writes;
1151}
1152
1153static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1154{
1155	unsigned int nr_disp = 0;
1156
1157	while (1) {
1158		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1159		struct throtl_service_queue *sq = &tg->service_queue;
1160
1161		if (!tg)
1162			break;
1163
1164		if (time_before(jiffies, tg->disptime))
1165			break;
1166
1167		throtl_dequeue_tg(tg);
1168
1169		nr_disp += throtl_dispatch_tg(tg);
1170
1171		if (sq->nr_queued[0] || sq->nr_queued[1])
1172			tg_update_disptime(tg);
1173
1174		if (nr_disp >= throtl_quantum)
1175			break;
1176	}
1177
1178	return nr_disp;
1179}
1180
1181/**
1182 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1183 * @arg: the throtl_service_queue being serviced
1184 *
1185 * This timer is armed when a child throtl_grp with active bio's become
1186 * pending and queued on the service_queue's pending_tree and expires when
1187 * the first child throtl_grp should be dispatched.  This function
1188 * dispatches bio's from the children throtl_grps to the parent
1189 * service_queue.
1190 *
1191 * If the parent's parent is another throtl_grp, dispatching is propagated
1192 * by either arming its pending_timer or repeating dispatch directly.  If
1193 * the top-level service_tree is reached, throtl_data->dispatch_work is
1194 * kicked so that the ready bio's are issued.
1195 */
1196static void throtl_pending_timer_fn(unsigned long arg)
1197{
1198	struct throtl_service_queue *sq = (void *)arg;
1199	struct throtl_grp *tg = sq_to_tg(sq);
1200	struct throtl_data *td = sq_to_td(sq);
1201	struct request_queue *q = td->queue;
1202	struct throtl_service_queue *parent_sq;
1203	bool dispatched;
1204	int ret;
1205
1206	spin_lock_irq(q->queue_lock);
1207again:
1208	parent_sq = sq->parent_sq;
1209	dispatched = false;
1210
1211	while (true) {
1212		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1213			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1214			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1215
1216		ret = throtl_select_dispatch(sq);
1217		if (ret) {
1218			throtl_log(sq, "bios disp=%u", ret);
1219			dispatched = true;
1220		}
1221
1222		if (throtl_schedule_next_dispatch(sq, false))
1223			break;
1224
1225		/* this dispatch windows is still open, relax and repeat */
1226		spin_unlock_irq(q->queue_lock);
1227		cpu_relax();
1228		spin_lock_irq(q->queue_lock);
1229	}
1230
1231	if (!dispatched)
1232		goto out_unlock;
1233
1234	if (parent_sq) {
1235		/* @parent_sq is another throl_grp, propagate dispatch */
1236		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1237			tg_update_disptime(tg);
1238			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1239				/* window is already open, repeat dispatching */
1240				sq = parent_sq;
1241				tg = sq_to_tg(sq);
1242				goto again;
1243			}
1244		}
1245	} else {
1246		/* reached the top-level, queue issueing */
1247		queue_work(kthrotld_workqueue, &td->dispatch_work);
1248	}
1249out_unlock:
1250	spin_unlock_irq(q->queue_lock);
1251}
1252
1253/**
1254 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1255 * @work: work item being executed
1256 *
1257 * This function is queued for execution when bio's reach the bio_lists[]
1258 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1259 * function.
1260 */
1261static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1262{
1263	struct throtl_data *td = container_of(work, struct throtl_data,
1264					      dispatch_work);
1265	struct throtl_service_queue *td_sq = &td->service_queue;
1266	struct request_queue *q = td->queue;
1267	struct bio_list bio_list_on_stack;
1268	struct bio *bio;
1269	struct blk_plug plug;
1270	int rw;
1271
1272	bio_list_init(&bio_list_on_stack);
1273
1274	spin_lock_irq(q->queue_lock);
1275	for (rw = READ; rw <= WRITE; rw++)
1276		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1277			bio_list_add(&bio_list_on_stack, bio);
1278	spin_unlock_irq(q->queue_lock);
1279
1280	if (!bio_list_empty(&bio_list_on_stack)) {
1281		blk_start_plug(&plug);
1282		while((bio = bio_list_pop(&bio_list_on_stack)))
1283			generic_make_request(bio);
1284		blk_finish_plug(&plug);
1285	}
1286}
1287
1288static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1289				struct blkg_policy_data *pd, int off)
1290{
1291	struct throtl_grp *tg = pd_to_tg(pd);
1292	struct blkg_rwstat rwstat = { }, tmp;
1293	int i, cpu;
1294
1295	if (tg->stats_cpu == NULL)
1296		return 0;
1297
1298	for_each_possible_cpu(cpu) {
1299		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1300
1301		tmp = blkg_rwstat_read((void *)sc + off);
1302		for (i = 0; i < BLKG_RWSTAT_NR; i++)
1303			rwstat.cnt[i] += tmp.cnt[i];
1304	}
1305
1306	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1307}
1308
1309static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1310{
1311	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1312			  &blkcg_policy_throtl, seq_cft(sf)->private, true);
1313	return 0;
1314}
1315
1316static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1317			      int off)
1318{
1319	struct throtl_grp *tg = pd_to_tg(pd);
1320	u64 v = *(u64 *)((void *)tg + off);
1321
1322	if (v == -1)
1323		return 0;
1324	return __blkg_prfill_u64(sf, pd, v);
1325}
1326
1327static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1328			       int off)
1329{
1330	struct throtl_grp *tg = pd_to_tg(pd);
1331	unsigned int v = *(unsigned int *)((void *)tg + off);
1332
1333	if (v == -1)
1334		return 0;
1335	return __blkg_prfill_u64(sf, pd, v);
1336}
1337
1338static int tg_print_conf_u64(struct seq_file *sf, void *v)
1339{
1340	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1341			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1342	return 0;
1343}
1344
1345static int tg_print_conf_uint(struct seq_file *sf, void *v)
1346{
1347	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1348			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1349	return 0;
1350}
1351
1352static ssize_t tg_set_conf(struct kernfs_open_file *of,
1353			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1354{
1355	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1356	struct blkg_conf_ctx ctx;
1357	struct throtl_grp *tg;
1358	struct throtl_service_queue *sq;
1359	struct blkcg_gq *blkg;
1360	struct cgroup_subsys_state *pos_css;
1361	int ret;
1362
1363	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1364	if (ret)
1365		return ret;
1366
1367	tg = blkg_to_tg(ctx.blkg);
1368	sq = &tg->service_queue;
1369
1370	if (!ctx.v)
1371		ctx.v = -1;
1372
1373	if (is_u64)
1374		*(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
1375	else
1376		*(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
1377
1378	throtl_log(&tg->service_queue,
1379		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1380		   tg->bps[READ], tg->bps[WRITE],
1381		   tg->iops[READ], tg->iops[WRITE]);
1382
1383	/*
1384	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1385	 * considered to have rules if either the tg itself or any of its
1386	 * ancestors has rules.  This identifies groups without any
1387	 * restrictions in the whole hierarchy and allows them to bypass
1388	 * blk-throttle.
1389	 */
1390	blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1391		tg_update_has_rules(blkg_to_tg(blkg));
1392
1393	/*
1394	 * We're already holding queue_lock and know @tg is valid.  Let's
1395	 * apply the new config directly.
1396	 *
1397	 * Restart the slices for both READ and WRITES. It might happen
1398	 * that a group's limit are dropped suddenly and we don't want to
1399	 * account recently dispatched IO with new low rate.
1400	 */
1401	throtl_start_new_slice(tg, 0);
1402	throtl_start_new_slice(tg, 1);
1403
1404	if (tg->flags & THROTL_TG_PENDING) {
1405		tg_update_disptime(tg);
1406		throtl_schedule_next_dispatch(sq->parent_sq, true);
1407	}
1408
1409	blkg_conf_finish(&ctx);
1410	return nbytes;
1411}
1412
1413static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1414			       char *buf, size_t nbytes, loff_t off)
1415{
1416	return tg_set_conf(of, buf, nbytes, off, true);
1417}
1418
1419static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1420				char *buf, size_t nbytes, loff_t off)
1421{
1422	return tg_set_conf(of, buf, nbytes, off, false);
1423}
1424
1425static struct cftype throtl_files[] = {
1426	{
1427		.name = "throttle.read_bps_device",
1428		.private = offsetof(struct throtl_grp, bps[READ]),
1429		.seq_show = tg_print_conf_u64,
1430		.write = tg_set_conf_u64,
1431	},
1432	{
1433		.name = "throttle.write_bps_device",
1434		.private = offsetof(struct throtl_grp, bps[WRITE]),
1435		.seq_show = tg_print_conf_u64,
1436		.write = tg_set_conf_u64,
1437	},
1438	{
1439		.name = "throttle.read_iops_device",
1440		.private = offsetof(struct throtl_grp, iops[READ]),
1441		.seq_show = tg_print_conf_uint,
1442		.write = tg_set_conf_uint,
1443	},
1444	{
1445		.name = "throttle.write_iops_device",
1446		.private = offsetof(struct throtl_grp, iops[WRITE]),
1447		.seq_show = tg_print_conf_uint,
1448		.write = tg_set_conf_uint,
1449	},
1450	{
1451		.name = "throttle.io_service_bytes",
1452		.private = offsetof(struct tg_stats_cpu, service_bytes),
1453		.seq_show = tg_print_cpu_rwstat,
1454	},
1455	{
1456		.name = "throttle.io_serviced",
1457		.private = offsetof(struct tg_stats_cpu, serviced),
1458		.seq_show = tg_print_cpu_rwstat,
1459	},
1460	{ }	/* terminate */
1461};
1462
1463static void throtl_shutdown_wq(struct request_queue *q)
1464{
1465	struct throtl_data *td = q->td;
1466
1467	cancel_work_sync(&td->dispatch_work);
1468}
1469
1470static struct blkcg_policy blkcg_policy_throtl = {
1471	.pd_size		= sizeof(struct throtl_grp),
1472	.cftypes		= throtl_files,
1473
1474	.pd_init_fn		= throtl_pd_init,
1475	.pd_online_fn		= throtl_pd_online,
1476	.pd_exit_fn		= throtl_pd_exit,
1477	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1478};
1479
1480bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1481{
1482	struct throtl_data *td = q->td;
1483	struct throtl_qnode *qn = NULL;
1484	struct throtl_grp *tg;
1485	struct throtl_service_queue *sq;
1486	bool rw = bio_data_dir(bio);
1487	struct blkcg *blkcg;
1488	bool throttled = false;
1489
1490	/* see throtl_charge_bio() */
1491	if (bio->bi_rw & REQ_THROTTLED)
1492		goto out;
1493
1494	/*
1495	 * A throtl_grp pointer retrieved under rcu can be used to access
1496	 * basic fields like stats and io rates. If a group has no rules,
1497	 * just update the dispatch stats in lockless manner and return.
1498	 */
1499	rcu_read_lock();
1500	blkcg = bio_blkcg(bio);
1501	tg = throtl_lookup_tg(td, blkcg);
1502	if (tg) {
1503		if (!tg->has_rules[rw]) {
1504			throtl_update_dispatch_stats(tg_to_blkg(tg),
1505					bio->bi_iter.bi_size, bio->bi_rw);
1506			goto out_unlock_rcu;
1507		}
1508	}
1509
1510	/*
1511	 * Either group has not been allocated yet or it is not an unlimited
1512	 * IO group
1513	 */
1514	spin_lock_irq(q->queue_lock);
1515	tg = throtl_lookup_create_tg(td, blkcg);
1516	if (unlikely(!tg))
1517		goto out_unlock;
1518
1519	sq = &tg->service_queue;
1520
1521	while (true) {
1522		/* throtl is FIFO - if bios are already queued, should queue */
1523		if (sq->nr_queued[rw])
1524			break;
1525
1526		/* if above limits, break to queue */
1527		if (!tg_may_dispatch(tg, bio, NULL))
1528			break;
1529
1530		/* within limits, let's charge and dispatch directly */
1531		throtl_charge_bio(tg, bio);
1532
1533		/*
1534		 * We need to trim slice even when bios are not being queued
1535		 * otherwise it might happen that a bio is not queued for
1536		 * a long time and slice keeps on extending and trim is not
1537		 * called for a long time. Now if limits are reduced suddenly
1538		 * we take into account all the IO dispatched so far at new
1539		 * low rate and * newly queued IO gets a really long dispatch
1540		 * time.
1541		 *
1542		 * So keep on trimming slice even if bio is not queued.
1543		 */
1544		throtl_trim_slice(tg, rw);
1545
1546		/*
1547		 * @bio passed through this layer without being throttled.
1548		 * Climb up the ladder.  If we''re already at the top, it
1549		 * can be executed directly.
1550		 */
1551		qn = &tg->qnode_on_parent[rw];
1552		sq = sq->parent_sq;
1553		tg = sq_to_tg(sq);
1554		if (!tg)
1555			goto out_unlock;
1556	}
1557
1558	/* out-of-limit, queue to @tg */
1559	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1560		   rw == READ ? 'R' : 'W',
1561		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1562		   tg->io_disp[rw], tg->iops[rw],
1563		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1564
1565	bio_associate_current(bio);
1566	tg->td->nr_queued[rw]++;
1567	throtl_add_bio_tg(bio, qn, tg);
1568	throttled = true;
1569
1570	/*
1571	 * Update @tg's dispatch time and force schedule dispatch if @tg
1572	 * was empty before @bio.  The forced scheduling isn't likely to
1573	 * cause undue delay as @bio is likely to be dispatched directly if
1574	 * its @tg's disptime is not in the future.
1575	 */
1576	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1577		tg_update_disptime(tg);
1578		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1579	}
1580
1581out_unlock:
1582	spin_unlock_irq(q->queue_lock);
1583out_unlock_rcu:
1584	rcu_read_unlock();
1585out:
1586	/*
1587	 * As multiple blk-throtls may stack in the same issue path, we
1588	 * don't want bios to leave with the flag set.  Clear the flag if
1589	 * being issued.
1590	 */
1591	if (!throttled)
1592		bio->bi_rw &= ~REQ_THROTTLED;
1593	return throttled;
1594}
1595
1596/*
1597 * Dispatch all bios from all children tg's queued on @parent_sq.  On
1598 * return, @parent_sq is guaranteed to not have any active children tg's
1599 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1600 */
1601static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1602{
1603	struct throtl_grp *tg;
1604
1605	while ((tg = throtl_rb_first(parent_sq))) {
1606		struct throtl_service_queue *sq = &tg->service_queue;
1607		struct bio *bio;
1608
1609		throtl_dequeue_tg(tg);
1610
1611		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1612			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1613		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1614			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1615	}
1616}
1617
1618/**
1619 * blk_throtl_drain - drain throttled bios
1620 * @q: request_queue to drain throttled bios for
1621 *
1622 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1623 */
1624void blk_throtl_drain(struct request_queue *q)
1625	__releases(q->queue_lock) __acquires(q->queue_lock)
1626{
1627	struct throtl_data *td = q->td;
1628	struct blkcg_gq *blkg;
1629	struct cgroup_subsys_state *pos_css;
1630	struct bio *bio;
1631	int rw;
1632
1633	queue_lockdep_assert_held(q);
1634	rcu_read_lock();
1635
1636	/*
1637	 * Drain each tg while doing post-order walk on the blkg tree, so
1638	 * that all bios are propagated to td->service_queue.  It'd be
1639	 * better to walk service_queue tree directly but blkg walk is
1640	 * easier.
1641	 */
1642	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1643		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1644
1645	/* finally, transfer bios from top-level tg's into the td */
1646	tg_drain_bios(&td->service_queue);
1647
1648	rcu_read_unlock();
1649	spin_unlock_irq(q->queue_lock);
1650
1651	/* all bios now should be in td->service_queue, issue them */
1652	for (rw = READ; rw <= WRITE; rw++)
1653		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1654						NULL)))
1655			generic_make_request(bio);
1656
1657	spin_lock_irq(q->queue_lock);
1658}
1659
1660int blk_throtl_init(struct request_queue *q)
1661{
1662	struct throtl_data *td;
1663	int ret;
1664
1665	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1666	if (!td)
1667		return -ENOMEM;
1668
1669	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1670	throtl_service_queue_init(&td->service_queue, NULL);
1671
1672	q->td = td;
1673	td->queue = q;
1674
1675	/* activate policy */
1676	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1677	if (ret)
1678		kfree(td);
1679	return ret;
1680}
1681
1682void blk_throtl_exit(struct request_queue *q)
1683{
1684	BUG_ON(!q->td);
1685	throtl_shutdown_wq(q);
1686	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1687	kfree(q->td);
1688}
1689
1690static int __init throtl_init(void)
1691{
1692	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1693	if (!kthrotld_workqueue)
1694		panic("Failed to create kthrotld\n");
1695
1696	return blkcg_policy_register(&blkcg_policy_throtl);
1697}
1698
1699module_init(throtl_init);
1700