1/*
2 * Functions related to setting various queue properties from drivers
3 */
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/init.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10#include <linux/gcd.h>
11#include <linux/lcm.h>
12#include <linux/jiffies.h>
13#include <linux/gfp.h>
14
15#include "blk.h"
16
17unsigned long blk_max_low_pfn;
18EXPORT_SYMBOL(blk_max_low_pfn);
19
20unsigned long blk_max_pfn;
21
22/**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q:		queue
25 * @pfn:	prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34{
35	q->prep_rq_fn = pfn;
36}
37EXPORT_SYMBOL(blk_queue_prep_rq);
38
39/**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q:		queue
42 * @ufn:	unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51{
52	q->unprep_rq_fn = ufn;
53}
54EXPORT_SYMBOL(blk_queue_unprep_rq);
55
56/**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q:		queue
59 * @mbfn:	merge_bvec_fn
60 *
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
71 */
72void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73{
74	q->merge_bvec_fn = mbfn;
75}
76EXPORT_SYMBOL(blk_queue_merge_bvec);
77
78void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79{
80	q->softirq_done_fn = fn;
81}
82EXPORT_SYMBOL(blk_queue_softirq_done);
83
84void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85{
86	q->rq_timeout = timeout;
87}
88EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89
90void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91{
92	q->rq_timed_out_fn = fn;
93}
94EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95
96void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97{
98	q->lld_busy_fn = fn;
99}
100EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102/**
103 * blk_set_default_limits - reset limits to default values
104 * @lim:  the queue_limits structure to reset
105 *
106 * Description:
107 *   Returns a queue_limit struct to its default state.
108 */
109void blk_set_default_limits(struct queue_limits *lim)
110{
111	lim->max_segments = BLK_MAX_SEGMENTS;
112	lim->max_integrity_segments = 0;
113	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116	lim->chunk_sectors = 0;
117	lim->max_write_same_sectors = 0;
118	lim->max_discard_sectors = 0;
119	lim->discard_granularity = 0;
120	lim->discard_alignment = 0;
121	lim->discard_misaligned = 0;
122	lim->discard_zeroes_data = 0;
123	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
124	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
125	lim->alignment_offset = 0;
126	lim->io_opt = 0;
127	lim->misaligned = 0;
128	lim->cluster = 1;
129}
130EXPORT_SYMBOL(blk_set_default_limits);
131
132/**
133 * blk_set_stacking_limits - set default limits for stacking devices
134 * @lim:  the queue_limits structure to reset
135 *
136 * Description:
137 *   Returns a queue_limit struct to its default state. Should be used
138 *   by stacking drivers like DM that have no internal limits.
139 */
140void blk_set_stacking_limits(struct queue_limits *lim)
141{
142	blk_set_default_limits(lim);
143
144	/* Inherit limits from component devices */
145	lim->discard_zeroes_data = 1;
146	lim->max_segments = USHRT_MAX;
147	lim->max_hw_sectors = UINT_MAX;
148	lim->max_segment_size = UINT_MAX;
149	lim->max_sectors = UINT_MAX;
150	lim->max_write_same_sectors = UINT_MAX;
151}
152EXPORT_SYMBOL(blk_set_stacking_limits);
153
154/**
155 * blk_queue_make_request - define an alternate make_request function for a device
156 * @q:  the request queue for the device to be affected
157 * @mfn: the alternate make_request function
158 *
159 * Description:
160 *    The normal way for &struct bios to be passed to a device
161 *    driver is for them to be collected into requests on a request
162 *    queue, and then to allow the device driver to select requests
163 *    off that queue when it is ready.  This works well for many block
164 *    devices. However some block devices (typically virtual devices
165 *    such as md or lvm) do not benefit from the processing on the
166 *    request queue, and are served best by having the requests passed
167 *    directly to them.  This can be achieved by providing a function
168 *    to blk_queue_make_request().
169 *
170 * Caveat:
171 *    The driver that does this *must* be able to deal appropriately
172 *    with buffers in "highmemory". This can be accomplished by either calling
173 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
174 *    blk_queue_bounce() to create a buffer in normal memory.
175 **/
176void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
177{
178	/*
179	 * set defaults
180	 */
181	q->nr_requests = BLKDEV_MAX_RQ;
182
183	q->make_request_fn = mfn;
184	blk_queue_dma_alignment(q, 511);
185	blk_queue_congestion_threshold(q);
186	q->nr_batching = BLK_BATCH_REQ;
187
188	blk_set_default_limits(&q->limits);
189
190	/*
191	 * by default assume old behaviour and bounce for any highmem page
192	 */
193	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
194}
195EXPORT_SYMBOL(blk_queue_make_request);
196
197/**
198 * blk_queue_bounce_limit - set bounce buffer limit for queue
199 * @q: the request queue for the device
200 * @max_addr: the maximum address the device can handle
201 *
202 * Description:
203 *    Different hardware can have different requirements as to what pages
204 *    it can do I/O directly to. A low level driver can call
205 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
206 *    buffers for doing I/O to pages residing above @max_addr.
207 **/
208void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
209{
210	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
211	int dma = 0;
212
213	q->bounce_gfp = GFP_NOIO;
214#if BITS_PER_LONG == 64
215	/*
216	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
217	 * some IOMMUs can handle everything, but I don't know of a
218	 * way to test this here.
219	 */
220	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
221		dma = 1;
222	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
223#else
224	if (b_pfn < blk_max_low_pfn)
225		dma = 1;
226	q->limits.bounce_pfn = b_pfn;
227#endif
228	if (dma) {
229		init_emergency_isa_pool();
230		q->bounce_gfp = GFP_NOIO | GFP_DMA;
231		q->limits.bounce_pfn = b_pfn;
232	}
233}
234EXPORT_SYMBOL(blk_queue_bounce_limit);
235
236/**
237 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
238 * @limits: the queue limits
239 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
240 *
241 * Description:
242 *    Enables a low level driver to set a hard upper limit,
243 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
244 *    the device driver based upon the capabilities of the I/O
245 *    controller.
246 *
247 *    max_sectors is a soft limit imposed by the block layer for
248 *    filesystem type requests.  This value can be overridden on a
249 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
250 *    The soft limit can not exceed max_hw_sectors.
251 **/
252void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
253{
254	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
255		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
256		printk(KERN_INFO "%s: set to minimum %d\n",
257		       __func__, max_hw_sectors);
258	}
259
260	limits->max_sectors = limits->max_hw_sectors = max_hw_sectors;
261}
262EXPORT_SYMBOL(blk_limits_max_hw_sectors);
263
264/**
265 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
266 * @q:  the request queue for the device
267 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
268 *
269 * Description:
270 *    See description for blk_limits_max_hw_sectors().
271 **/
272void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
273{
274	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
275}
276EXPORT_SYMBOL(blk_queue_max_hw_sectors);
277
278/**
279 * blk_queue_chunk_sectors - set size of the chunk for this queue
280 * @q:  the request queue for the device
281 * @chunk_sectors:  chunk sectors in the usual 512b unit
282 *
283 * Description:
284 *    If a driver doesn't want IOs to cross a given chunk size, it can set
285 *    this limit and prevent merging across chunks. Note that the chunk size
286 *    must currently be a power-of-2 in sectors. Also note that the block
287 *    layer must accept a page worth of data at any offset. So if the
288 *    crossing of chunks is a hard limitation in the driver, it must still be
289 *    prepared to split single page bios.
290 **/
291void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
292{
293	BUG_ON(!is_power_of_2(chunk_sectors));
294	q->limits.chunk_sectors = chunk_sectors;
295}
296EXPORT_SYMBOL(blk_queue_chunk_sectors);
297
298/**
299 * blk_queue_max_discard_sectors - set max sectors for a single discard
300 * @q:  the request queue for the device
301 * @max_discard_sectors: maximum number of sectors to discard
302 **/
303void blk_queue_max_discard_sectors(struct request_queue *q,
304		unsigned int max_discard_sectors)
305{
306	q->limits.max_discard_sectors = max_discard_sectors;
307}
308EXPORT_SYMBOL(blk_queue_max_discard_sectors);
309
310/**
311 * blk_queue_max_write_same_sectors - set max sectors for a single write same
312 * @q:  the request queue for the device
313 * @max_write_same_sectors: maximum number of sectors to write per command
314 **/
315void blk_queue_max_write_same_sectors(struct request_queue *q,
316				      unsigned int max_write_same_sectors)
317{
318	q->limits.max_write_same_sectors = max_write_same_sectors;
319}
320EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
321
322/**
323 * blk_queue_max_segments - set max hw segments for a request for this queue
324 * @q:  the request queue for the device
325 * @max_segments:  max number of segments
326 *
327 * Description:
328 *    Enables a low level driver to set an upper limit on the number of
329 *    hw data segments in a request.
330 **/
331void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
332{
333	if (!max_segments) {
334		max_segments = 1;
335		printk(KERN_INFO "%s: set to minimum %d\n",
336		       __func__, max_segments);
337	}
338
339	q->limits.max_segments = max_segments;
340}
341EXPORT_SYMBOL(blk_queue_max_segments);
342
343/**
344 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
345 * @q:  the request queue for the device
346 * @max_size:  max size of segment in bytes
347 *
348 * Description:
349 *    Enables a low level driver to set an upper limit on the size of a
350 *    coalesced segment
351 **/
352void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
353{
354	if (max_size < PAGE_CACHE_SIZE) {
355		max_size = PAGE_CACHE_SIZE;
356		printk(KERN_INFO "%s: set to minimum %d\n",
357		       __func__, max_size);
358	}
359
360	q->limits.max_segment_size = max_size;
361}
362EXPORT_SYMBOL(blk_queue_max_segment_size);
363
364/**
365 * blk_queue_logical_block_size - set logical block size for the queue
366 * @q:  the request queue for the device
367 * @size:  the logical block size, in bytes
368 *
369 * Description:
370 *   This should be set to the lowest possible block size that the
371 *   storage device can address.  The default of 512 covers most
372 *   hardware.
373 **/
374void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
375{
376	q->limits.logical_block_size = size;
377
378	if (q->limits.physical_block_size < size)
379		q->limits.physical_block_size = size;
380
381	if (q->limits.io_min < q->limits.physical_block_size)
382		q->limits.io_min = q->limits.physical_block_size;
383}
384EXPORT_SYMBOL(blk_queue_logical_block_size);
385
386/**
387 * blk_queue_physical_block_size - set physical block size for the queue
388 * @q:  the request queue for the device
389 * @size:  the physical block size, in bytes
390 *
391 * Description:
392 *   This should be set to the lowest possible sector size that the
393 *   hardware can operate on without reverting to read-modify-write
394 *   operations.
395 */
396void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
397{
398	q->limits.physical_block_size = size;
399
400	if (q->limits.physical_block_size < q->limits.logical_block_size)
401		q->limits.physical_block_size = q->limits.logical_block_size;
402
403	if (q->limits.io_min < q->limits.physical_block_size)
404		q->limits.io_min = q->limits.physical_block_size;
405}
406EXPORT_SYMBOL(blk_queue_physical_block_size);
407
408/**
409 * blk_queue_alignment_offset - set physical block alignment offset
410 * @q:	the request queue for the device
411 * @offset: alignment offset in bytes
412 *
413 * Description:
414 *   Some devices are naturally misaligned to compensate for things like
415 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
416 *   should call this function for devices whose first sector is not
417 *   naturally aligned.
418 */
419void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
420{
421	q->limits.alignment_offset =
422		offset & (q->limits.physical_block_size - 1);
423	q->limits.misaligned = 0;
424}
425EXPORT_SYMBOL(blk_queue_alignment_offset);
426
427/**
428 * blk_limits_io_min - set minimum request size for a device
429 * @limits: the queue limits
430 * @min:  smallest I/O size in bytes
431 *
432 * Description:
433 *   Some devices have an internal block size bigger than the reported
434 *   hardware sector size.  This function can be used to signal the
435 *   smallest I/O the device can perform without incurring a performance
436 *   penalty.
437 */
438void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
439{
440	limits->io_min = min;
441
442	if (limits->io_min < limits->logical_block_size)
443		limits->io_min = limits->logical_block_size;
444
445	if (limits->io_min < limits->physical_block_size)
446		limits->io_min = limits->physical_block_size;
447}
448EXPORT_SYMBOL(blk_limits_io_min);
449
450/**
451 * blk_queue_io_min - set minimum request size for the queue
452 * @q:	the request queue for the device
453 * @min:  smallest I/O size in bytes
454 *
455 * Description:
456 *   Storage devices may report a granularity or preferred minimum I/O
457 *   size which is the smallest request the device can perform without
458 *   incurring a performance penalty.  For disk drives this is often the
459 *   physical block size.  For RAID arrays it is often the stripe chunk
460 *   size.  A properly aligned multiple of minimum_io_size is the
461 *   preferred request size for workloads where a high number of I/O
462 *   operations is desired.
463 */
464void blk_queue_io_min(struct request_queue *q, unsigned int min)
465{
466	blk_limits_io_min(&q->limits, min);
467}
468EXPORT_SYMBOL(blk_queue_io_min);
469
470/**
471 * blk_limits_io_opt - set optimal request size for a device
472 * @limits: the queue limits
473 * @opt:  smallest I/O size in bytes
474 *
475 * Description:
476 *   Storage devices may report an optimal I/O size, which is the
477 *   device's preferred unit for sustained I/O.  This is rarely reported
478 *   for disk drives.  For RAID arrays it is usually the stripe width or
479 *   the internal track size.  A properly aligned multiple of
480 *   optimal_io_size is the preferred request size for workloads where
481 *   sustained throughput is desired.
482 */
483void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
484{
485	limits->io_opt = opt;
486}
487EXPORT_SYMBOL(blk_limits_io_opt);
488
489/**
490 * blk_queue_io_opt - set optimal request size for the queue
491 * @q:	the request queue for the device
492 * @opt:  optimal request size in bytes
493 *
494 * Description:
495 *   Storage devices may report an optimal I/O size, which is the
496 *   device's preferred unit for sustained I/O.  This is rarely reported
497 *   for disk drives.  For RAID arrays it is usually the stripe width or
498 *   the internal track size.  A properly aligned multiple of
499 *   optimal_io_size is the preferred request size for workloads where
500 *   sustained throughput is desired.
501 */
502void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
503{
504	blk_limits_io_opt(&q->limits, opt);
505}
506EXPORT_SYMBOL(blk_queue_io_opt);
507
508/**
509 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
510 * @t:	the stacking driver (top)
511 * @b:  the underlying device (bottom)
512 **/
513void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
514{
515	blk_stack_limits(&t->limits, &b->limits, 0);
516}
517EXPORT_SYMBOL(blk_queue_stack_limits);
518
519/**
520 * blk_stack_limits - adjust queue_limits for stacked devices
521 * @t:	the stacking driver limits (top device)
522 * @b:  the underlying queue limits (bottom, component device)
523 * @start:  first data sector within component device
524 *
525 * Description:
526 *    This function is used by stacking drivers like MD and DM to ensure
527 *    that all component devices have compatible block sizes and
528 *    alignments.  The stacking driver must provide a queue_limits
529 *    struct (top) and then iteratively call the stacking function for
530 *    all component (bottom) devices.  The stacking function will
531 *    attempt to combine the values and ensure proper alignment.
532 *
533 *    Returns 0 if the top and bottom queue_limits are compatible.  The
534 *    top device's block sizes and alignment offsets may be adjusted to
535 *    ensure alignment with the bottom device. If no compatible sizes
536 *    and alignments exist, -1 is returned and the resulting top
537 *    queue_limits will have the misaligned flag set to indicate that
538 *    the alignment_offset is undefined.
539 */
540int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
541		     sector_t start)
542{
543	unsigned int top, bottom, alignment, ret = 0;
544
545	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
546	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
547	t->max_write_same_sectors = min(t->max_write_same_sectors,
548					b->max_write_same_sectors);
549	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
550
551	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
552					    b->seg_boundary_mask);
553
554	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
555	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
556						 b->max_integrity_segments);
557
558	t->max_segment_size = min_not_zero(t->max_segment_size,
559					   b->max_segment_size);
560
561	t->misaligned |= b->misaligned;
562
563	alignment = queue_limit_alignment_offset(b, start);
564
565	/* Bottom device has different alignment.  Check that it is
566	 * compatible with the current top alignment.
567	 */
568	if (t->alignment_offset != alignment) {
569
570		top = max(t->physical_block_size, t->io_min)
571			+ t->alignment_offset;
572		bottom = max(b->physical_block_size, b->io_min) + alignment;
573
574		/* Verify that top and bottom intervals line up */
575		if (max(top, bottom) % min(top, bottom)) {
576			t->misaligned = 1;
577			ret = -1;
578		}
579	}
580
581	t->logical_block_size = max(t->logical_block_size,
582				    b->logical_block_size);
583
584	t->physical_block_size = max(t->physical_block_size,
585				     b->physical_block_size);
586
587	t->io_min = max(t->io_min, b->io_min);
588	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
589
590	t->cluster &= b->cluster;
591	t->discard_zeroes_data &= b->discard_zeroes_data;
592
593	/* Physical block size a multiple of the logical block size? */
594	if (t->physical_block_size & (t->logical_block_size - 1)) {
595		t->physical_block_size = t->logical_block_size;
596		t->misaligned = 1;
597		ret = -1;
598	}
599
600	/* Minimum I/O a multiple of the physical block size? */
601	if (t->io_min & (t->physical_block_size - 1)) {
602		t->io_min = t->physical_block_size;
603		t->misaligned = 1;
604		ret = -1;
605	}
606
607	/* Optimal I/O a multiple of the physical block size? */
608	if (t->io_opt & (t->physical_block_size - 1)) {
609		t->io_opt = 0;
610		t->misaligned = 1;
611		ret = -1;
612	}
613
614	t->raid_partial_stripes_expensive =
615		max(t->raid_partial_stripes_expensive,
616		    b->raid_partial_stripes_expensive);
617
618	/* Find lowest common alignment_offset */
619	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
620		% max(t->physical_block_size, t->io_min);
621
622	/* Verify that new alignment_offset is on a logical block boundary */
623	if (t->alignment_offset & (t->logical_block_size - 1)) {
624		t->misaligned = 1;
625		ret = -1;
626	}
627
628	/* Discard alignment and granularity */
629	if (b->discard_granularity) {
630		alignment = queue_limit_discard_alignment(b, start);
631
632		if (t->discard_granularity != 0 &&
633		    t->discard_alignment != alignment) {
634			top = t->discard_granularity + t->discard_alignment;
635			bottom = b->discard_granularity + alignment;
636
637			/* Verify that top and bottom intervals line up */
638			if ((max(top, bottom) % min(top, bottom)) != 0)
639				t->discard_misaligned = 1;
640		}
641
642		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
643						      b->max_discard_sectors);
644		t->discard_granularity = max(t->discard_granularity,
645					     b->discard_granularity);
646		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
647			t->discard_granularity;
648	}
649
650	return ret;
651}
652EXPORT_SYMBOL(blk_stack_limits);
653
654/**
655 * bdev_stack_limits - adjust queue limits for stacked drivers
656 * @t:	the stacking driver limits (top device)
657 * @bdev:  the component block_device (bottom)
658 * @start:  first data sector within component device
659 *
660 * Description:
661 *    Merges queue limits for a top device and a block_device.  Returns
662 *    0 if alignment didn't change.  Returns -1 if adding the bottom
663 *    device caused misalignment.
664 */
665int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
666		      sector_t start)
667{
668	struct request_queue *bq = bdev_get_queue(bdev);
669
670	start += get_start_sect(bdev);
671
672	return blk_stack_limits(t, &bq->limits, start);
673}
674EXPORT_SYMBOL(bdev_stack_limits);
675
676/**
677 * disk_stack_limits - adjust queue limits for stacked drivers
678 * @disk:  MD/DM gendisk (top)
679 * @bdev:  the underlying block device (bottom)
680 * @offset:  offset to beginning of data within component device
681 *
682 * Description:
683 *    Merges the limits for a top level gendisk and a bottom level
684 *    block_device.
685 */
686void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
687		       sector_t offset)
688{
689	struct request_queue *t = disk->queue;
690
691	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
692		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
693
694		disk_name(disk, 0, top);
695		bdevname(bdev, bottom);
696
697		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
698		       top, bottom);
699	}
700}
701EXPORT_SYMBOL(disk_stack_limits);
702
703/**
704 * blk_queue_dma_pad - set pad mask
705 * @q:     the request queue for the device
706 * @mask:  pad mask
707 *
708 * Set dma pad mask.
709 *
710 * Appending pad buffer to a request modifies the last entry of a
711 * scatter list such that it includes the pad buffer.
712 **/
713void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
714{
715	q->dma_pad_mask = mask;
716}
717EXPORT_SYMBOL(blk_queue_dma_pad);
718
719/**
720 * blk_queue_update_dma_pad - update pad mask
721 * @q:     the request queue for the device
722 * @mask:  pad mask
723 *
724 * Update dma pad mask.
725 *
726 * Appending pad buffer to a request modifies the last entry of a
727 * scatter list such that it includes the pad buffer.
728 **/
729void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
730{
731	if (mask > q->dma_pad_mask)
732		q->dma_pad_mask = mask;
733}
734EXPORT_SYMBOL(blk_queue_update_dma_pad);
735
736/**
737 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
738 * @q:  the request queue for the device
739 * @dma_drain_needed: fn which returns non-zero if drain is necessary
740 * @buf:	physically contiguous buffer
741 * @size:	size of the buffer in bytes
742 *
743 * Some devices have excess DMA problems and can't simply discard (or
744 * zero fill) the unwanted piece of the transfer.  They have to have a
745 * real area of memory to transfer it into.  The use case for this is
746 * ATAPI devices in DMA mode.  If the packet command causes a transfer
747 * bigger than the transfer size some HBAs will lock up if there
748 * aren't DMA elements to contain the excess transfer.  What this API
749 * does is adjust the queue so that the buf is always appended
750 * silently to the scatterlist.
751 *
752 * Note: This routine adjusts max_hw_segments to make room for appending
753 * the drain buffer.  If you call blk_queue_max_segments() after calling
754 * this routine, you must set the limit to one fewer than your device
755 * can support otherwise there won't be room for the drain buffer.
756 */
757int blk_queue_dma_drain(struct request_queue *q,
758			       dma_drain_needed_fn *dma_drain_needed,
759			       void *buf, unsigned int size)
760{
761	if (queue_max_segments(q) < 2)
762		return -EINVAL;
763	/* make room for appending the drain */
764	blk_queue_max_segments(q, queue_max_segments(q) - 1);
765	q->dma_drain_needed = dma_drain_needed;
766	q->dma_drain_buffer = buf;
767	q->dma_drain_size = size;
768
769	return 0;
770}
771EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
772
773/**
774 * blk_queue_segment_boundary - set boundary rules for segment merging
775 * @q:  the request queue for the device
776 * @mask:  the memory boundary mask
777 **/
778void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
779{
780	if (mask < PAGE_CACHE_SIZE - 1) {
781		mask = PAGE_CACHE_SIZE - 1;
782		printk(KERN_INFO "%s: set to minimum %lx\n",
783		       __func__, mask);
784	}
785
786	q->limits.seg_boundary_mask = mask;
787}
788EXPORT_SYMBOL(blk_queue_segment_boundary);
789
790/**
791 * blk_queue_dma_alignment - set dma length and memory alignment
792 * @q:     the request queue for the device
793 * @mask:  alignment mask
794 *
795 * description:
796 *    set required memory and length alignment for direct dma transactions.
797 *    this is used when building direct io requests for the queue.
798 *
799 **/
800void blk_queue_dma_alignment(struct request_queue *q, int mask)
801{
802	q->dma_alignment = mask;
803}
804EXPORT_SYMBOL(blk_queue_dma_alignment);
805
806/**
807 * blk_queue_update_dma_alignment - update dma length and memory alignment
808 * @q:     the request queue for the device
809 * @mask:  alignment mask
810 *
811 * description:
812 *    update required memory and length alignment for direct dma transactions.
813 *    If the requested alignment is larger than the current alignment, then
814 *    the current queue alignment is updated to the new value, otherwise it
815 *    is left alone.  The design of this is to allow multiple objects
816 *    (driver, device, transport etc) to set their respective
817 *    alignments without having them interfere.
818 *
819 **/
820void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
821{
822	BUG_ON(mask > PAGE_SIZE);
823
824	if (mask > q->dma_alignment)
825		q->dma_alignment = mask;
826}
827EXPORT_SYMBOL(blk_queue_update_dma_alignment);
828
829/**
830 * blk_queue_flush - configure queue's cache flush capability
831 * @q:		the request queue for the device
832 * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
833 *
834 * Tell block layer cache flush capability of @q.  If it supports
835 * flushing, REQ_FLUSH should be set.  If it supports bypassing
836 * write cache for individual writes, REQ_FUA should be set.
837 */
838void blk_queue_flush(struct request_queue *q, unsigned int flush)
839{
840	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
841
842	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
843		flush &= ~REQ_FUA;
844
845	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
846}
847EXPORT_SYMBOL_GPL(blk_queue_flush);
848
849void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
850{
851	q->flush_not_queueable = !queueable;
852}
853EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
854
855static int __init blk_settings_init(void)
856{
857	blk_max_low_pfn = max_low_pfn - 1;
858	blk_max_pfn = max_pfn - 1;
859	return 0;
860}
861subsys_initcall(blk_settings_init);
862