1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 *	-  July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/blk-mq.h>
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
29#include <linux/task_io_accounting_ops.h>
30#include <linux/fault-inject.h>
31#include <linux/list_sort.h>
32#include <linux/delay.h>
33#include <linux/ratelimit.h>
34#include <linux/pm_runtime.h>
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
38
39#include "blk.h"
40#include "blk-cgroup.h"
41#include "blk-mq.h"
42
43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49DEFINE_IDA(blk_queue_ida);
50
51/*
52 * For the allocated request tables
53 */
54struct kmem_cache *request_cachep = NULL;
55
56/*
57 * For queue allocation
58 */
59struct kmem_cache *blk_requestq_cachep;
60
61/*
62 * Controlling structure to kblockd
63 */
64static struct workqueue_struct *kblockd_workqueue;
65
66void blk_queue_congestion_threshold(struct request_queue *q)
67{
68	int nr;
69
70	nr = q->nr_requests - (q->nr_requests / 8) + 1;
71	if (nr > q->nr_requests)
72		nr = q->nr_requests;
73	q->nr_congestion_on = nr;
74
75	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76	if (nr < 1)
77		nr = 1;
78	q->nr_congestion_off = nr;
79}
80
81/**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev:	device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info.  This function can only be called if @bdev is opened
87 * and the return value is never NULL.
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
91	struct request_queue *q = bdev_get_queue(bdev);
92
93	return &q->backing_dev_info;
94}
95EXPORT_SYMBOL(blk_get_backing_dev_info);
96
97void blk_rq_init(struct request_queue *q, struct request *rq)
98{
99	memset(rq, 0, sizeof(*rq));
100
101	INIT_LIST_HEAD(&rq->queuelist);
102	INIT_LIST_HEAD(&rq->timeout_list);
103	rq->cpu = -1;
104	rq->q = q;
105	rq->__sector = (sector_t) -1;
106	INIT_HLIST_NODE(&rq->hash);
107	RB_CLEAR_NODE(&rq->rb_node);
108	rq->cmd = rq->__cmd;
109	rq->cmd_len = BLK_MAX_CDB;
110	rq->tag = -1;
111	rq->start_time = jiffies;
112	set_start_time_ns(rq);
113	rq->part = NULL;
114}
115EXPORT_SYMBOL(blk_rq_init);
116
117static void req_bio_endio(struct request *rq, struct bio *bio,
118			  unsigned int nbytes, int error)
119{
120	if (error)
121		clear_bit(BIO_UPTODATE, &bio->bi_flags);
122	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123		error = -EIO;
124
125	if (unlikely(rq->cmd_flags & REQ_QUIET))
126		set_bit(BIO_QUIET, &bio->bi_flags);
127
128	bio_advance(bio, nbytes);
129
130	/* don't actually finish bio if it's part of flush sequence */
131	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132		bio_endio(bio, error);
133}
134
135void blk_dump_rq_flags(struct request *rq, char *msg)
136{
137	int bit;
138
139	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141		(unsigned long long) rq->cmd_flags);
142
143	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
144	       (unsigned long long)blk_rq_pos(rq),
145	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
147	       rq->bio, rq->biotail, blk_rq_bytes(rq));
148
149	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150		printk(KERN_INFO "  cdb: ");
151		for (bit = 0; bit < BLK_MAX_CDB; bit++)
152			printk("%02x ", rq->cmd[bit]);
153		printk("\n");
154	}
155}
156EXPORT_SYMBOL(blk_dump_rq_flags);
157
158static void blk_delay_work(struct work_struct *work)
159{
160	struct request_queue *q;
161
162	q = container_of(work, struct request_queue, delay_work.work);
163	spin_lock_irq(q->queue_lock);
164	__blk_run_queue(q);
165	spin_unlock_irq(q->queue_lock);
166}
167
168/**
169 * blk_delay_queue - restart queueing after defined interval
170 * @q:		The &struct request_queue in question
171 * @msecs:	Delay in msecs
172 *
173 * Description:
174 *   Sometimes queueing needs to be postponed for a little while, to allow
175 *   resources to come back. This function will make sure that queueing is
176 *   restarted around the specified time. Queue lock must be held.
177 */
178void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179{
180	if (likely(!blk_queue_dead(q)))
181		queue_delayed_work(kblockd_workqueue, &q->delay_work,
182				   msecs_to_jiffies(msecs));
183}
184EXPORT_SYMBOL(blk_delay_queue);
185
186/**
187 * blk_start_queue - restart a previously stopped queue
188 * @q:    The &struct request_queue in question
189 *
190 * Description:
191 *   blk_start_queue() will clear the stop flag on the queue, and call
192 *   the request_fn for the queue if it was in a stopped state when
193 *   entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
195void blk_start_queue(struct request_queue *q)
196{
197	WARN_ON(!irqs_disabled());
198
199	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200	__blk_run_queue(q);
201}
202EXPORT_SYMBOL(blk_start_queue);
203
204/**
205 * blk_stop_queue - stop a queue
206 * @q:    The &struct request_queue in question
207 *
208 * Description:
209 *   The Linux block layer assumes that a block driver will consume all
210 *   entries on the request queue when the request_fn strategy is called.
211 *   Often this will not happen, because of hardware limitations (queue
212 *   depth settings). If a device driver gets a 'queue full' response,
213 *   or if it simply chooses not to queue more I/O at one point, it can
214 *   call this function to prevent the request_fn from being called until
215 *   the driver has signalled it's ready to go again. This happens by calling
216 *   blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
218void blk_stop_queue(struct request_queue *q)
219{
220	cancel_delayed_work(&q->delay_work);
221	queue_flag_set(QUEUE_FLAG_STOPPED, q);
222}
223EXPORT_SYMBOL(blk_stop_queue);
224
225/**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 *     The block layer may perform asynchronous callback activity
231 *     on a queue, such as calling the unplug function after a timeout.
232 *     A block device may call blk_sync_queue to ensure that any
233 *     such activity is cancelled, thus allowing it to release resources
234 *     that the callbacks might use. The caller must already have made sure
235 *     that its ->make_request_fn will not re-add plugging prior to calling
236 *     this function.
237 *
238 *     This function does not cancel any asynchronous activity arising
239 *     out of elevator or throttling code. That would require elevator_exit()
240 *     and blkcg_exit_queue() to be called with queue lock initialized.
241 *
242 */
243void blk_sync_queue(struct request_queue *q)
244{
245	del_timer_sync(&q->timeout);
246
247	if (q->mq_ops) {
248		struct blk_mq_hw_ctx *hctx;
249		int i;
250
251		queue_for_each_hw_ctx(q, hctx, i) {
252			cancel_delayed_work_sync(&hctx->run_work);
253			cancel_delayed_work_sync(&hctx->delay_work);
254		}
255	} else {
256		cancel_delayed_work_sync(&q->delay_work);
257	}
258}
259EXPORT_SYMBOL(blk_sync_queue);
260
261/**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q:	The queue to run
264 *
265 * Description:
266 *    Invoke request handling on a queue if there are any pending requests.
267 *    May be used to restart request handling after a request has completed.
268 *    This variant runs the queue whether or not the queue has been
269 *    stopped. Must be called with the queue lock held and interrupts
270 *    disabled. See also @blk_run_queue.
271 */
272inline void __blk_run_queue_uncond(struct request_queue *q)
273{
274	if (unlikely(blk_queue_dead(q)))
275		return;
276
277	/*
278	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279	 * the queue lock internally. As a result multiple threads may be
280	 * running such a request function concurrently. Keep track of the
281	 * number of active request_fn invocations such that blk_drain_queue()
282	 * can wait until all these request_fn calls have finished.
283	 */
284	q->request_fn_active++;
285	q->request_fn(q);
286	q->request_fn_active--;
287}
288
289/**
290 * __blk_run_queue - run a single device queue
291 * @q:	The queue to run
292 *
293 * Description:
294 *    See @blk_run_queue. This variant must be called with the queue lock
295 *    held and interrupts disabled.
296 */
297void __blk_run_queue(struct request_queue *q)
298{
299	if (unlikely(blk_queue_stopped(q)))
300		return;
301
302	__blk_run_queue_uncond(q);
303}
304EXPORT_SYMBOL(__blk_run_queue);
305
306/**
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q:	The queue to run
309 *
310 * Description:
311 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312 *    of us. The caller must hold the queue lock.
313 */
314void blk_run_queue_async(struct request_queue *q)
315{
316	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
318}
319EXPORT_SYMBOL(blk_run_queue_async);
320
321/**
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
324 *
325 * Description:
326 *    Invoke request handling on this queue, if it has pending work to do.
327 *    May be used to restart queueing when a request has completed.
328 */
329void blk_run_queue(struct request_queue *q)
330{
331	unsigned long flags;
332
333	spin_lock_irqsave(q->queue_lock, flags);
334	__blk_run_queue(q);
335	spin_unlock_irqrestore(q->queue_lock, flags);
336}
337EXPORT_SYMBOL(blk_run_queue);
338
339void blk_put_queue(struct request_queue *q)
340{
341	kobject_put(&q->kobj);
342}
343EXPORT_SYMBOL(blk_put_queue);
344
345/**
346 * __blk_drain_queue - drain requests from request_queue
347 * @q: queue to drain
348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
349 *
350 * Drain requests from @q.  If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained.  The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
353 */
354static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355	__releases(q->queue_lock)
356	__acquires(q->queue_lock)
357{
358	int i;
359
360	lockdep_assert_held(q->queue_lock);
361
362	while (true) {
363		bool drain = false;
364
365		/*
366		 * The caller might be trying to drain @q before its
367		 * elevator is initialized.
368		 */
369		if (q->elevator)
370			elv_drain_elevator(q);
371
372		blkcg_drain_queue(q);
373
374		/*
375		 * This function might be called on a queue which failed
376		 * driver init after queue creation or is not yet fully
377		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
378		 * in such cases.  Kick queue iff dispatch queue has
379		 * something on it and @q has request_fn set.
380		 */
381		if (!list_empty(&q->queue_head) && q->request_fn)
382			__blk_run_queue(q);
383
384		drain |= q->nr_rqs_elvpriv;
385		drain |= q->request_fn_active;
386
387		/*
388		 * Unfortunately, requests are queued at and tracked from
389		 * multiple places and there's no single counter which can
390		 * be drained.  Check all the queues and counters.
391		 */
392		if (drain_all) {
393			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394			drain |= !list_empty(&q->queue_head);
395			for (i = 0; i < 2; i++) {
396				drain |= q->nr_rqs[i];
397				drain |= q->in_flight[i];
398				if (fq)
399				    drain |= !list_empty(&fq->flush_queue[i]);
400			}
401		}
402
403		if (!drain)
404			break;
405
406		spin_unlock_irq(q->queue_lock);
407
408		msleep(10);
409
410		spin_lock_irq(q->queue_lock);
411	}
412
413	/*
414	 * With queue marked dead, any woken up waiter will fail the
415	 * allocation path, so the wakeup chaining is lost and we're
416	 * left with hung waiters. We need to wake up those waiters.
417	 */
418	if (q->request_fn) {
419		struct request_list *rl;
420
421		blk_queue_for_each_rl(rl, q)
422			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423				wake_up_all(&rl->wait[i]);
424	}
425}
426
427/**
428 * blk_queue_bypass_start - enter queue bypass mode
429 * @q: queue of interest
430 *
431 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
432 * function makes @q enter bypass mode and drains all requests which were
433 * throttled or issued before.  On return, it's guaranteed that no request
434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435 * inside queue or RCU read lock.
436 */
437void blk_queue_bypass_start(struct request_queue *q)
438{
439	spin_lock_irq(q->queue_lock);
440	q->bypass_depth++;
441	queue_flag_set(QUEUE_FLAG_BYPASS, q);
442	spin_unlock_irq(q->queue_lock);
443
444	/*
445	 * Queues start drained.  Skip actual draining till init is
446	 * complete.  This avoids lenghty delays during queue init which
447	 * can happen many times during boot.
448	 */
449	if (blk_queue_init_done(q)) {
450		spin_lock_irq(q->queue_lock);
451		__blk_drain_queue(q, false);
452		spin_unlock_irq(q->queue_lock);
453
454		/* ensure blk_queue_bypass() is %true inside RCU read lock */
455		synchronize_rcu();
456	}
457}
458EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459
460/**
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
463 *
464 * Leave bypass mode and restore the normal queueing behavior.
465 */
466void blk_queue_bypass_end(struct request_queue *q)
467{
468	spin_lock_irq(q->queue_lock);
469	if (!--q->bypass_depth)
470		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471	WARN_ON_ONCE(q->bypass_depth < 0);
472	spin_unlock_irq(q->queue_lock);
473}
474EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475
476void blk_set_queue_dying(struct request_queue *q)
477{
478	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479
480	if (q->mq_ops)
481		blk_mq_wake_waiters(q);
482	else {
483		struct request_list *rl;
484
485		blk_queue_for_each_rl(rl, q) {
486			if (rl->rq_pool) {
487				wake_up(&rl->wait[BLK_RW_SYNC]);
488				wake_up(&rl->wait[BLK_RW_ASYNC]);
489			}
490		}
491	}
492}
493EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494
495/**
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
498 *
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it.  All future requests will be failed immediately with -ENODEV.
501 */
502void blk_cleanup_queue(struct request_queue *q)
503{
504	spinlock_t *lock = q->queue_lock;
505
506	/* mark @q DYING, no new request or merges will be allowed afterwards */
507	mutex_lock(&q->sysfs_lock);
508	blk_set_queue_dying(q);
509	spin_lock_irq(lock);
510
511	/*
512	 * A dying queue is permanently in bypass mode till released.  Note
513	 * that, unlike blk_queue_bypass_start(), we aren't performing
514	 * synchronize_rcu() after entering bypass mode to avoid the delay
515	 * as some drivers create and destroy a lot of queues while
516	 * probing.  This is still safe because blk_release_queue() will be
517	 * called only after the queue refcnt drops to zero and nothing,
518	 * RCU or not, would be traversing the queue by then.
519	 */
520	q->bypass_depth++;
521	queue_flag_set(QUEUE_FLAG_BYPASS, q);
522
523	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525	queue_flag_set(QUEUE_FLAG_DYING, q);
526	spin_unlock_irq(lock);
527	mutex_unlock(&q->sysfs_lock);
528
529	/*
530	 * Drain all requests queued before DYING marking. Set DEAD flag to
531	 * prevent that q->request_fn() gets invoked after draining finished.
532	 */
533	if (q->mq_ops) {
534		blk_mq_freeze_queue(q);
535		spin_lock_irq(lock);
536	} else {
537		spin_lock_irq(lock);
538		__blk_drain_queue(q, true);
539	}
540	queue_flag_set(QUEUE_FLAG_DEAD, q);
541	spin_unlock_irq(lock);
542
543	/* @q won't process any more request, flush async actions */
544	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545	blk_sync_queue(q);
546
547	if (q->mq_ops)
548		blk_mq_free_queue(q);
549
550	spin_lock_irq(lock);
551	if (q->queue_lock != &q->__queue_lock)
552		q->queue_lock = &q->__queue_lock;
553	spin_unlock_irq(lock);
554
555	bdi_destroy(&q->backing_dev_info);
556
557	/* @q is and will stay empty, shutdown and put */
558	blk_put_queue(q);
559}
560EXPORT_SYMBOL(blk_cleanup_queue);
561
562/* Allocate memory local to the request queue */
563static void *alloc_request_struct(gfp_t gfp_mask, void *data)
564{
565	int nid = (int)(long)data;
566	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
567}
568
569static void free_request_struct(void *element, void *unused)
570{
571	kmem_cache_free(request_cachep, element);
572}
573
574int blk_init_rl(struct request_list *rl, struct request_queue *q,
575		gfp_t gfp_mask)
576{
577	if (unlikely(rl->rq_pool))
578		return 0;
579
580	rl->q = q;
581	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
582	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
583	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
584	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
585
586	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
587					  free_request_struct,
588					  (void *)(long)q->node, gfp_mask,
589					  q->node);
590	if (!rl->rq_pool)
591		return -ENOMEM;
592
593	return 0;
594}
595
596void blk_exit_rl(struct request_list *rl)
597{
598	if (rl->rq_pool)
599		mempool_destroy(rl->rq_pool);
600}
601
602struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
603{
604	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
605}
606EXPORT_SYMBOL(blk_alloc_queue);
607
608struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
609{
610	struct request_queue *q;
611	int err;
612
613	q = kmem_cache_alloc_node(blk_requestq_cachep,
614				gfp_mask | __GFP_ZERO, node_id);
615	if (!q)
616		return NULL;
617
618	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
619	if (q->id < 0)
620		goto fail_q;
621
622	q->backing_dev_info.ra_pages =
623			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
624	q->backing_dev_info.state = 0;
625	q->backing_dev_info.capabilities = 0;
626	q->backing_dev_info.name = "block";
627	q->node = node_id;
628
629	err = bdi_init(&q->backing_dev_info);
630	if (err)
631		goto fail_id;
632
633	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
634		    laptop_mode_timer_fn, (unsigned long) q);
635	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
636	INIT_LIST_HEAD(&q->queue_head);
637	INIT_LIST_HEAD(&q->timeout_list);
638	INIT_LIST_HEAD(&q->icq_list);
639#ifdef CONFIG_BLK_CGROUP
640	INIT_LIST_HEAD(&q->blkg_list);
641#endif
642	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
643
644	kobject_init(&q->kobj, &blk_queue_ktype);
645
646	mutex_init(&q->sysfs_lock);
647	spin_lock_init(&q->__queue_lock);
648
649	/*
650	 * By default initialize queue_lock to internal lock and driver can
651	 * override it later if need be.
652	 */
653	q->queue_lock = &q->__queue_lock;
654
655	/*
656	 * A queue starts its life with bypass turned on to avoid
657	 * unnecessary bypass on/off overhead and nasty surprises during
658	 * init.  The initial bypass will be finished when the queue is
659	 * registered by blk_register_queue().
660	 */
661	q->bypass_depth = 1;
662	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
663
664	init_waitqueue_head(&q->mq_freeze_wq);
665
666	if (blkcg_init_queue(q))
667		goto fail_bdi;
668
669	return q;
670
671fail_bdi:
672	bdi_destroy(&q->backing_dev_info);
673fail_id:
674	ida_simple_remove(&blk_queue_ida, q->id);
675fail_q:
676	kmem_cache_free(blk_requestq_cachep, q);
677	return NULL;
678}
679EXPORT_SYMBOL(blk_alloc_queue_node);
680
681/**
682 * blk_init_queue  - prepare a request queue for use with a block device
683 * @rfn:  The function to be called to process requests that have been
684 *        placed on the queue.
685 * @lock: Request queue spin lock
686 *
687 * Description:
688 *    If a block device wishes to use the standard request handling procedures,
689 *    which sorts requests and coalesces adjacent requests, then it must
690 *    call blk_init_queue().  The function @rfn will be called when there
691 *    are requests on the queue that need to be processed.  If the device
692 *    supports plugging, then @rfn may not be called immediately when requests
693 *    are available on the queue, but may be called at some time later instead.
694 *    Plugged queues are generally unplugged when a buffer belonging to one
695 *    of the requests on the queue is needed, or due to memory pressure.
696 *
697 *    @rfn is not required, or even expected, to remove all requests off the
698 *    queue, but only as many as it can handle at a time.  If it does leave
699 *    requests on the queue, it is responsible for arranging that the requests
700 *    get dealt with eventually.
701 *
702 *    The queue spin lock must be held while manipulating the requests on the
703 *    request queue; this lock will be taken also from interrupt context, so irq
704 *    disabling is needed for it.
705 *
706 *    Function returns a pointer to the initialized request queue, or %NULL if
707 *    it didn't succeed.
708 *
709 * Note:
710 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
711 *    when the block device is deactivated (such as at module unload).
712 **/
713
714struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
715{
716	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
717}
718EXPORT_SYMBOL(blk_init_queue);
719
720struct request_queue *
721blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
722{
723	struct request_queue *uninit_q, *q;
724
725	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
726	if (!uninit_q)
727		return NULL;
728
729	q = blk_init_allocated_queue(uninit_q, rfn, lock);
730	if (!q)
731		blk_cleanup_queue(uninit_q);
732
733	return q;
734}
735EXPORT_SYMBOL(blk_init_queue_node);
736
737static void blk_queue_bio(struct request_queue *q, struct bio *bio);
738
739struct request_queue *
740blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
741			 spinlock_t *lock)
742{
743	if (!q)
744		return NULL;
745
746	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
747	if (!q->fq)
748		return NULL;
749
750	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
751		goto fail;
752
753	q->request_fn		= rfn;
754	q->prep_rq_fn		= NULL;
755	q->unprep_rq_fn		= NULL;
756	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
757
758	/* Override internal queue lock with supplied lock pointer */
759	if (lock)
760		q->queue_lock		= lock;
761
762	/*
763	 * This also sets hw/phys segments, boundary and size
764	 */
765	blk_queue_make_request(q, blk_queue_bio);
766
767	q->sg_reserved_size = INT_MAX;
768
769	/* Protect q->elevator from elevator_change */
770	mutex_lock(&q->sysfs_lock);
771
772	/* init elevator */
773	if (elevator_init(q, NULL)) {
774		mutex_unlock(&q->sysfs_lock);
775		goto fail;
776	}
777
778	mutex_unlock(&q->sysfs_lock);
779
780	return q;
781
782fail:
783	blk_free_flush_queue(q->fq);
784	return NULL;
785}
786EXPORT_SYMBOL(blk_init_allocated_queue);
787
788bool blk_get_queue(struct request_queue *q)
789{
790	if (likely(!blk_queue_dying(q))) {
791		__blk_get_queue(q);
792		return true;
793	}
794
795	return false;
796}
797EXPORT_SYMBOL(blk_get_queue);
798
799static inline void blk_free_request(struct request_list *rl, struct request *rq)
800{
801	if (rq->cmd_flags & REQ_ELVPRIV) {
802		elv_put_request(rl->q, rq);
803		if (rq->elv.icq)
804			put_io_context(rq->elv.icq->ioc);
805	}
806
807	mempool_free(rq, rl->rq_pool);
808}
809
810/*
811 * ioc_batching returns true if the ioc is a valid batching request and
812 * should be given priority access to a request.
813 */
814static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
815{
816	if (!ioc)
817		return 0;
818
819	/*
820	 * Make sure the process is able to allocate at least 1 request
821	 * even if the batch times out, otherwise we could theoretically
822	 * lose wakeups.
823	 */
824	return ioc->nr_batch_requests == q->nr_batching ||
825		(ioc->nr_batch_requests > 0
826		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
827}
828
829/*
830 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
831 * will cause the process to be a "batcher" on all queues in the system. This
832 * is the behaviour we want though - once it gets a wakeup it should be given
833 * a nice run.
834 */
835static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
836{
837	if (!ioc || ioc_batching(q, ioc))
838		return;
839
840	ioc->nr_batch_requests = q->nr_batching;
841	ioc->last_waited = jiffies;
842}
843
844static void __freed_request(struct request_list *rl, int sync)
845{
846	struct request_queue *q = rl->q;
847
848	/*
849	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
850	 * blkcg anyway, just use root blkcg state.
851	 */
852	if (rl == &q->root_rl &&
853	    rl->count[sync] < queue_congestion_off_threshold(q))
854		blk_clear_queue_congested(q, sync);
855
856	if (rl->count[sync] + 1 <= q->nr_requests) {
857		if (waitqueue_active(&rl->wait[sync]))
858			wake_up(&rl->wait[sync]);
859
860		blk_clear_rl_full(rl, sync);
861	}
862}
863
864/*
865 * A request has just been released.  Account for it, update the full and
866 * congestion status, wake up any waiters.   Called under q->queue_lock.
867 */
868static void freed_request(struct request_list *rl, unsigned int flags)
869{
870	struct request_queue *q = rl->q;
871	int sync = rw_is_sync(flags);
872
873	q->nr_rqs[sync]--;
874	rl->count[sync]--;
875	if (flags & REQ_ELVPRIV)
876		q->nr_rqs_elvpriv--;
877
878	__freed_request(rl, sync);
879
880	if (unlikely(rl->starved[sync ^ 1]))
881		__freed_request(rl, sync ^ 1);
882}
883
884int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
885{
886	struct request_list *rl;
887
888	spin_lock_irq(q->queue_lock);
889	q->nr_requests = nr;
890	blk_queue_congestion_threshold(q);
891
892	/* congestion isn't cgroup aware and follows root blkcg for now */
893	rl = &q->root_rl;
894
895	if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
896		blk_set_queue_congested(q, BLK_RW_SYNC);
897	else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
898		blk_clear_queue_congested(q, BLK_RW_SYNC);
899
900	if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
901		blk_set_queue_congested(q, BLK_RW_ASYNC);
902	else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
903		blk_clear_queue_congested(q, BLK_RW_ASYNC);
904
905	blk_queue_for_each_rl(rl, q) {
906		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
907			blk_set_rl_full(rl, BLK_RW_SYNC);
908		} else {
909			blk_clear_rl_full(rl, BLK_RW_SYNC);
910			wake_up(&rl->wait[BLK_RW_SYNC]);
911		}
912
913		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
914			blk_set_rl_full(rl, BLK_RW_ASYNC);
915		} else {
916			blk_clear_rl_full(rl, BLK_RW_ASYNC);
917			wake_up(&rl->wait[BLK_RW_ASYNC]);
918		}
919	}
920
921	spin_unlock_irq(q->queue_lock);
922	return 0;
923}
924
925/*
926 * Determine if elevator data should be initialized when allocating the
927 * request associated with @bio.
928 */
929static bool blk_rq_should_init_elevator(struct bio *bio)
930{
931	if (!bio)
932		return true;
933
934	/*
935	 * Flush requests do not use the elevator so skip initialization.
936	 * This allows a request to share the flush and elevator data.
937	 */
938	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
939		return false;
940
941	return true;
942}
943
944/**
945 * rq_ioc - determine io_context for request allocation
946 * @bio: request being allocated is for this bio (can be %NULL)
947 *
948 * Determine io_context to use for request allocation for @bio.  May return
949 * %NULL if %current->io_context doesn't exist.
950 */
951static struct io_context *rq_ioc(struct bio *bio)
952{
953#ifdef CONFIG_BLK_CGROUP
954	if (bio && bio->bi_ioc)
955		return bio->bi_ioc;
956#endif
957	return current->io_context;
958}
959
960/**
961 * __get_request - get a free request
962 * @rl: request list to allocate from
963 * @rw_flags: RW and SYNC flags
964 * @bio: bio to allocate request for (can be %NULL)
965 * @gfp_mask: allocation mask
966 *
967 * Get a free request from @q.  This function may fail under memory
968 * pressure or if @q is dead.
969 *
970 * Must be called with @q->queue_lock held and,
971 * Returns ERR_PTR on failure, with @q->queue_lock held.
972 * Returns request pointer on success, with @q->queue_lock *not held*.
973 */
974static struct request *__get_request(struct request_list *rl, int rw_flags,
975				     struct bio *bio, gfp_t gfp_mask)
976{
977	struct request_queue *q = rl->q;
978	struct request *rq;
979	struct elevator_type *et = q->elevator->type;
980	struct io_context *ioc = rq_ioc(bio);
981	struct io_cq *icq = NULL;
982	const bool is_sync = rw_is_sync(rw_flags) != 0;
983	int may_queue;
984
985	if (unlikely(blk_queue_dying(q)))
986		return ERR_PTR(-ENODEV);
987
988	may_queue = elv_may_queue(q, rw_flags);
989	if (may_queue == ELV_MQUEUE_NO)
990		goto rq_starved;
991
992	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
993		if (rl->count[is_sync]+1 >= q->nr_requests) {
994			/*
995			 * The queue will fill after this allocation, so set
996			 * it as full, and mark this process as "batching".
997			 * This process will be allowed to complete a batch of
998			 * requests, others will be blocked.
999			 */
1000			if (!blk_rl_full(rl, is_sync)) {
1001				ioc_set_batching(q, ioc);
1002				blk_set_rl_full(rl, is_sync);
1003			} else {
1004				if (may_queue != ELV_MQUEUE_MUST
1005						&& !ioc_batching(q, ioc)) {
1006					/*
1007					 * The queue is full and the allocating
1008					 * process is not a "batcher", and not
1009					 * exempted by the IO scheduler
1010					 */
1011					return ERR_PTR(-ENOMEM);
1012				}
1013			}
1014		}
1015		/*
1016		 * bdi isn't aware of blkcg yet.  As all async IOs end up
1017		 * root blkcg anyway, just use root blkcg state.
1018		 */
1019		if (rl == &q->root_rl)
1020			blk_set_queue_congested(q, is_sync);
1021	}
1022
1023	/*
1024	 * Only allow batching queuers to allocate up to 50% over the defined
1025	 * limit of requests, otherwise we could have thousands of requests
1026	 * allocated with any setting of ->nr_requests
1027	 */
1028	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1029		return ERR_PTR(-ENOMEM);
1030
1031	q->nr_rqs[is_sync]++;
1032	rl->count[is_sync]++;
1033	rl->starved[is_sync] = 0;
1034
1035	/*
1036	 * Decide whether the new request will be managed by elevator.  If
1037	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1038	 * prevent the current elevator from being destroyed until the new
1039	 * request is freed.  This guarantees icq's won't be destroyed and
1040	 * makes creating new ones safe.
1041	 *
1042	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1043	 * it will be created after releasing queue_lock.
1044	 */
1045	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1046		rw_flags |= REQ_ELVPRIV;
1047		q->nr_rqs_elvpriv++;
1048		if (et->icq_cache && ioc)
1049			icq = ioc_lookup_icq(ioc, q);
1050	}
1051
1052	if (blk_queue_io_stat(q))
1053		rw_flags |= REQ_IO_STAT;
1054	spin_unlock_irq(q->queue_lock);
1055
1056	/* allocate and init request */
1057	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1058	if (!rq)
1059		goto fail_alloc;
1060
1061	blk_rq_init(q, rq);
1062	blk_rq_set_rl(rq, rl);
1063	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1064
1065	/* init elvpriv */
1066	if (rw_flags & REQ_ELVPRIV) {
1067		if (unlikely(et->icq_cache && !icq)) {
1068			if (ioc)
1069				icq = ioc_create_icq(ioc, q, gfp_mask);
1070			if (!icq)
1071				goto fail_elvpriv;
1072		}
1073
1074		rq->elv.icq = icq;
1075		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1076			goto fail_elvpriv;
1077
1078		/* @rq->elv.icq holds io_context until @rq is freed */
1079		if (icq)
1080			get_io_context(icq->ioc);
1081	}
1082out:
1083	/*
1084	 * ioc may be NULL here, and ioc_batching will be false. That's
1085	 * OK, if the queue is under the request limit then requests need
1086	 * not count toward the nr_batch_requests limit. There will always
1087	 * be some limit enforced by BLK_BATCH_TIME.
1088	 */
1089	if (ioc_batching(q, ioc))
1090		ioc->nr_batch_requests--;
1091
1092	trace_block_getrq(q, bio, rw_flags & 1);
1093	return rq;
1094
1095fail_elvpriv:
1096	/*
1097	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1098	 * and may fail indefinitely under memory pressure and thus
1099	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1100	 * disturb iosched and blkcg but weird is bettern than dead.
1101	 */
1102	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1103			   __func__, dev_name(q->backing_dev_info.dev));
1104
1105	rq->cmd_flags &= ~REQ_ELVPRIV;
1106	rq->elv.icq = NULL;
1107
1108	spin_lock_irq(q->queue_lock);
1109	q->nr_rqs_elvpriv--;
1110	spin_unlock_irq(q->queue_lock);
1111	goto out;
1112
1113fail_alloc:
1114	/*
1115	 * Allocation failed presumably due to memory. Undo anything we
1116	 * might have messed up.
1117	 *
1118	 * Allocating task should really be put onto the front of the wait
1119	 * queue, but this is pretty rare.
1120	 */
1121	spin_lock_irq(q->queue_lock);
1122	freed_request(rl, rw_flags);
1123
1124	/*
1125	 * in the very unlikely event that allocation failed and no
1126	 * requests for this direction was pending, mark us starved so that
1127	 * freeing of a request in the other direction will notice
1128	 * us. another possible fix would be to split the rq mempool into
1129	 * READ and WRITE
1130	 */
1131rq_starved:
1132	if (unlikely(rl->count[is_sync] == 0))
1133		rl->starved[is_sync] = 1;
1134	return ERR_PTR(-ENOMEM);
1135}
1136
1137/**
1138 * get_request - get a free request
1139 * @q: request_queue to allocate request from
1140 * @rw_flags: RW and SYNC flags
1141 * @bio: bio to allocate request for (can be %NULL)
1142 * @gfp_mask: allocation mask
1143 *
1144 * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1145 * function keeps retrying under memory pressure and fails iff @q is dead.
1146 *
1147 * Must be called with @q->queue_lock held and,
1148 * Returns ERR_PTR on failure, with @q->queue_lock held.
1149 * Returns request pointer on success, with @q->queue_lock *not held*.
1150 */
1151static struct request *get_request(struct request_queue *q, int rw_flags,
1152				   struct bio *bio, gfp_t gfp_mask)
1153{
1154	const bool is_sync = rw_is_sync(rw_flags) != 0;
1155	DEFINE_WAIT(wait);
1156	struct request_list *rl;
1157	struct request *rq;
1158
1159	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1160retry:
1161	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1162	if (!IS_ERR(rq))
1163		return rq;
1164
1165	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1166		blk_put_rl(rl);
1167		return rq;
1168	}
1169
1170	/* wait on @rl and retry */
1171	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1172				  TASK_UNINTERRUPTIBLE);
1173
1174	trace_block_sleeprq(q, bio, rw_flags & 1);
1175
1176	spin_unlock_irq(q->queue_lock);
1177	io_schedule();
1178
1179	/*
1180	 * After sleeping, we become a "batching" process and will be able
1181	 * to allocate at least one request, and up to a big batch of them
1182	 * for a small period time.  See ioc_batching, ioc_set_batching
1183	 */
1184	ioc_set_batching(q, current->io_context);
1185
1186	spin_lock_irq(q->queue_lock);
1187	finish_wait(&rl->wait[is_sync], &wait);
1188
1189	goto retry;
1190}
1191
1192static struct request *blk_old_get_request(struct request_queue *q, int rw,
1193		gfp_t gfp_mask)
1194{
1195	struct request *rq;
1196
1197	BUG_ON(rw != READ && rw != WRITE);
1198
1199	/* create ioc upfront */
1200	create_io_context(gfp_mask, q->node);
1201
1202	spin_lock_irq(q->queue_lock);
1203	rq = get_request(q, rw, NULL, gfp_mask);
1204	if (IS_ERR(rq))
1205		spin_unlock_irq(q->queue_lock);
1206	/* q->queue_lock is unlocked at this point */
1207
1208	return rq;
1209}
1210
1211struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1212{
1213	if (q->mq_ops)
1214		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1215	else
1216		return blk_old_get_request(q, rw, gfp_mask);
1217}
1218EXPORT_SYMBOL(blk_get_request);
1219
1220/**
1221 * blk_make_request - given a bio, allocate a corresponding struct request.
1222 * @q: target request queue
1223 * @bio:  The bio describing the memory mappings that will be submitted for IO.
1224 *        It may be a chained-bio properly constructed by block/bio layer.
1225 * @gfp_mask: gfp flags to be used for memory allocation
1226 *
1227 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1228 * type commands. Where the struct request needs to be farther initialized by
1229 * the caller. It is passed a &struct bio, which describes the memory info of
1230 * the I/O transfer.
1231 *
1232 * The caller of blk_make_request must make sure that bi_io_vec
1233 * are set to describe the memory buffers. That bio_data_dir() will return
1234 * the needed direction of the request. (And all bio's in the passed bio-chain
1235 * are properly set accordingly)
1236 *
1237 * If called under none-sleepable conditions, mapped bio buffers must not
1238 * need bouncing, by calling the appropriate masked or flagged allocator,
1239 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1240 * BUG.
1241 *
1242 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1243 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1244 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1245 * completion of a bio that hasn't been submitted yet, thus resulting in a
1246 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1247 * of bio_alloc(), as that avoids the mempool deadlock.
1248 * If possible a big IO should be split into smaller parts when allocation
1249 * fails. Partial allocation should not be an error, or you risk a live-lock.
1250 */
1251struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1252				 gfp_t gfp_mask)
1253{
1254	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1255
1256	if (IS_ERR(rq))
1257		return rq;
1258
1259	blk_rq_set_block_pc(rq);
1260
1261	for_each_bio(bio) {
1262		struct bio *bounce_bio = bio;
1263		int ret;
1264
1265		blk_queue_bounce(q, &bounce_bio);
1266		ret = blk_rq_append_bio(q, rq, bounce_bio);
1267		if (unlikely(ret)) {
1268			blk_put_request(rq);
1269			return ERR_PTR(ret);
1270		}
1271	}
1272
1273	return rq;
1274}
1275EXPORT_SYMBOL(blk_make_request);
1276
1277/**
1278 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1279 * @rq:		request to be initialized
1280 *
1281 */
1282void blk_rq_set_block_pc(struct request *rq)
1283{
1284	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1285	rq->__data_len = 0;
1286	rq->__sector = (sector_t) -1;
1287	rq->bio = rq->biotail = NULL;
1288	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1289}
1290EXPORT_SYMBOL(blk_rq_set_block_pc);
1291
1292/**
1293 * blk_requeue_request - put a request back on queue
1294 * @q:		request queue where request should be inserted
1295 * @rq:		request to be inserted
1296 *
1297 * Description:
1298 *    Drivers often keep queueing requests until the hardware cannot accept
1299 *    more, when that condition happens we need to put the request back
1300 *    on the queue. Must be called with queue lock held.
1301 */
1302void blk_requeue_request(struct request_queue *q, struct request *rq)
1303{
1304	blk_delete_timer(rq);
1305	blk_clear_rq_complete(rq);
1306	trace_block_rq_requeue(q, rq);
1307
1308	if (rq->cmd_flags & REQ_QUEUED)
1309		blk_queue_end_tag(q, rq);
1310
1311	BUG_ON(blk_queued_rq(rq));
1312
1313	elv_requeue_request(q, rq);
1314}
1315EXPORT_SYMBOL(blk_requeue_request);
1316
1317static void add_acct_request(struct request_queue *q, struct request *rq,
1318			     int where)
1319{
1320	blk_account_io_start(rq, true);
1321	__elv_add_request(q, rq, where);
1322}
1323
1324static void part_round_stats_single(int cpu, struct hd_struct *part,
1325				    unsigned long now)
1326{
1327	int inflight;
1328
1329	if (now == part->stamp)
1330		return;
1331
1332	inflight = part_in_flight(part);
1333	if (inflight) {
1334		__part_stat_add(cpu, part, time_in_queue,
1335				inflight * (now - part->stamp));
1336		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1337	}
1338	part->stamp = now;
1339}
1340
1341/**
1342 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1343 * @cpu: cpu number for stats access
1344 * @part: target partition
1345 *
1346 * The average IO queue length and utilisation statistics are maintained
1347 * by observing the current state of the queue length and the amount of
1348 * time it has been in this state for.
1349 *
1350 * Normally, that accounting is done on IO completion, but that can result
1351 * in more than a second's worth of IO being accounted for within any one
1352 * second, leading to >100% utilisation.  To deal with that, we call this
1353 * function to do a round-off before returning the results when reading
1354 * /proc/diskstats.  This accounts immediately for all queue usage up to
1355 * the current jiffies and restarts the counters again.
1356 */
1357void part_round_stats(int cpu, struct hd_struct *part)
1358{
1359	unsigned long now = jiffies;
1360
1361	if (part->partno)
1362		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1363	part_round_stats_single(cpu, part, now);
1364}
1365EXPORT_SYMBOL_GPL(part_round_stats);
1366
1367#ifdef CONFIG_PM
1368static void blk_pm_put_request(struct request *rq)
1369{
1370	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1371		pm_runtime_mark_last_busy(rq->q->dev);
1372}
1373#else
1374static inline void blk_pm_put_request(struct request *rq) {}
1375#endif
1376
1377/*
1378 * queue lock must be held
1379 */
1380void __blk_put_request(struct request_queue *q, struct request *req)
1381{
1382	if (unlikely(!q))
1383		return;
1384
1385	if (q->mq_ops) {
1386		blk_mq_free_request(req);
1387		return;
1388	}
1389
1390	blk_pm_put_request(req);
1391
1392	elv_completed_request(q, req);
1393
1394	/* this is a bio leak */
1395	WARN_ON(req->bio != NULL);
1396
1397	/*
1398	 * Request may not have originated from ll_rw_blk. if not,
1399	 * it didn't come out of our reserved rq pools
1400	 */
1401	if (req->cmd_flags & REQ_ALLOCED) {
1402		unsigned int flags = req->cmd_flags;
1403		struct request_list *rl = blk_rq_rl(req);
1404
1405		BUG_ON(!list_empty(&req->queuelist));
1406		BUG_ON(ELV_ON_HASH(req));
1407
1408		blk_free_request(rl, req);
1409		freed_request(rl, flags);
1410		blk_put_rl(rl);
1411	}
1412}
1413EXPORT_SYMBOL_GPL(__blk_put_request);
1414
1415void blk_put_request(struct request *req)
1416{
1417	struct request_queue *q = req->q;
1418
1419	if (q->mq_ops)
1420		blk_mq_free_request(req);
1421	else {
1422		unsigned long flags;
1423
1424		spin_lock_irqsave(q->queue_lock, flags);
1425		__blk_put_request(q, req);
1426		spin_unlock_irqrestore(q->queue_lock, flags);
1427	}
1428}
1429EXPORT_SYMBOL(blk_put_request);
1430
1431/**
1432 * blk_add_request_payload - add a payload to a request
1433 * @rq: request to update
1434 * @page: page backing the payload
1435 * @len: length of the payload.
1436 *
1437 * This allows to later add a payload to an already submitted request by
1438 * a block driver.  The driver needs to take care of freeing the payload
1439 * itself.
1440 *
1441 * Note that this is a quite horrible hack and nothing but handling of
1442 * discard requests should ever use it.
1443 */
1444void blk_add_request_payload(struct request *rq, struct page *page,
1445		unsigned int len)
1446{
1447	struct bio *bio = rq->bio;
1448
1449	bio->bi_io_vec->bv_page = page;
1450	bio->bi_io_vec->bv_offset = 0;
1451	bio->bi_io_vec->bv_len = len;
1452
1453	bio->bi_iter.bi_size = len;
1454	bio->bi_vcnt = 1;
1455	bio->bi_phys_segments = 1;
1456
1457	rq->__data_len = rq->resid_len = len;
1458	rq->nr_phys_segments = 1;
1459}
1460EXPORT_SYMBOL_GPL(blk_add_request_payload);
1461
1462bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1463			    struct bio *bio)
1464{
1465	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1466
1467	if (!ll_back_merge_fn(q, req, bio))
1468		return false;
1469
1470	trace_block_bio_backmerge(q, req, bio);
1471
1472	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1473		blk_rq_set_mixed_merge(req);
1474
1475	req->biotail->bi_next = bio;
1476	req->biotail = bio;
1477	req->__data_len += bio->bi_iter.bi_size;
1478	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1479
1480	blk_account_io_start(req, false);
1481	return true;
1482}
1483
1484bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1485			     struct bio *bio)
1486{
1487	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1488
1489	if (!ll_front_merge_fn(q, req, bio))
1490		return false;
1491
1492	trace_block_bio_frontmerge(q, req, bio);
1493
1494	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1495		blk_rq_set_mixed_merge(req);
1496
1497	bio->bi_next = req->bio;
1498	req->bio = bio;
1499
1500	req->__sector = bio->bi_iter.bi_sector;
1501	req->__data_len += bio->bi_iter.bi_size;
1502	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1503
1504	blk_account_io_start(req, false);
1505	return true;
1506}
1507
1508/**
1509 * blk_attempt_plug_merge - try to merge with %current's plugged list
1510 * @q: request_queue new bio is being queued at
1511 * @bio: new bio being queued
1512 * @request_count: out parameter for number of traversed plugged requests
1513 *
1514 * Determine whether @bio being queued on @q can be merged with a request
1515 * on %current's plugged list.  Returns %true if merge was successful,
1516 * otherwise %false.
1517 *
1518 * Plugging coalesces IOs from the same issuer for the same purpose without
1519 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1520 * than scheduling, and the request, while may have elvpriv data, is not
1521 * added on the elevator at this point.  In addition, we don't have
1522 * reliable access to the elevator outside queue lock.  Only check basic
1523 * merging parameters without querying the elevator.
1524 *
1525 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1526 */
1527bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1528			    unsigned int *request_count)
1529{
1530	struct blk_plug *plug;
1531	struct request *rq;
1532	bool ret = false;
1533	struct list_head *plug_list;
1534
1535	plug = current->plug;
1536	if (!plug)
1537		goto out;
1538	*request_count = 0;
1539
1540	if (q->mq_ops)
1541		plug_list = &plug->mq_list;
1542	else
1543		plug_list = &plug->list;
1544
1545	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1546		int el_ret;
1547
1548		if (rq->q == q)
1549			(*request_count)++;
1550
1551		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1552			continue;
1553
1554		el_ret = blk_try_merge(rq, bio);
1555		if (el_ret == ELEVATOR_BACK_MERGE) {
1556			ret = bio_attempt_back_merge(q, rq, bio);
1557			if (ret)
1558				break;
1559		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1560			ret = bio_attempt_front_merge(q, rq, bio);
1561			if (ret)
1562				break;
1563		}
1564	}
1565out:
1566	return ret;
1567}
1568
1569void init_request_from_bio(struct request *req, struct bio *bio)
1570{
1571	req->cmd_type = REQ_TYPE_FS;
1572
1573	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1574	if (bio->bi_rw & REQ_RAHEAD)
1575		req->cmd_flags |= REQ_FAILFAST_MASK;
1576
1577	req->errors = 0;
1578	req->__sector = bio->bi_iter.bi_sector;
1579	req->ioprio = bio_prio(bio);
1580	blk_rq_bio_prep(req->q, req, bio);
1581}
1582
1583static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1584{
1585	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1586	struct blk_plug *plug;
1587	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1588	struct request *req;
1589	unsigned int request_count = 0;
1590
1591	/*
1592	 * low level driver can indicate that it wants pages above a
1593	 * certain limit bounced to low memory (ie for highmem, or even
1594	 * ISA dma in theory)
1595	 */
1596	blk_queue_bounce(q, &bio);
1597
1598	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1599		bio_endio(bio, -EIO);
1600		return;
1601	}
1602
1603	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1604		spin_lock_irq(q->queue_lock);
1605		where = ELEVATOR_INSERT_FLUSH;
1606		goto get_rq;
1607	}
1608
1609	/*
1610	 * Check if we can merge with the plugged list before grabbing
1611	 * any locks.
1612	 */
1613	if (!blk_queue_nomerges(q) &&
1614	    blk_attempt_plug_merge(q, bio, &request_count))
1615		return;
1616
1617	spin_lock_irq(q->queue_lock);
1618
1619	el_ret = elv_merge(q, &req, bio);
1620	if (el_ret == ELEVATOR_BACK_MERGE) {
1621		if (bio_attempt_back_merge(q, req, bio)) {
1622			elv_bio_merged(q, req, bio);
1623			if (!attempt_back_merge(q, req))
1624				elv_merged_request(q, req, el_ret);
1625			goto out_unlock;
1626		}
1627	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1628		if (bio_attempt_front_merge(q, req, bio)) {
1629			elv_bio_merged(q, req, bio);
1630			if (!attempt_front_merge(q, req))
1631				elv_merged_request(q, req, el_ret);
1632			goto out_unlock;
1633		}
1634	}
1635
1636get_rq:
1637	/*
1638	 * This sync check and mask will be re-done in init_request_from_bio(),
1639	 * but we need to set it earlier to expose the sync flag to the
1640	 * rq allocator and io schedulers.
1641	 */
1642	rw_flags = bio_data_dir(bio);
1643	if (sync)
1644		rw_flags |= REQ_SYNC;
1645
1646	/*
1647	 * Grab a free request. This is might sleep but can not fail.
1648	 * Returns with the queue unlocked.
1649	 */
1650	req = get_request(q, rw_flags, bio, GFP_NOIO);
1651	if (IS_ERR(req)) {
1652		bio_endio(bio, PTR_ERR(req));	/* @q is dead */
1653		goto out_unlock;
1654	}
1655
1656	/*
1657	 * After dropping the lock and possibly sleeping here, our request
1658	 * may now be mergeable after it had proven unmergeable (above).
1659	 * We don't worry about that case for efficiency. It won't happen
1660	 * often, and the elevators are able to handle it.
1661	 */
1662	init_request_from_bio(req, bio);
1663
1664	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1665		req->cpu = raw_smp_processor_id();
1666
1667	plug = current->plug;
1668	if (plug) {
1669		/*
1670		 * If this is the first request added after a plug, fire
1671		 * of a plug trace.
1672		 */
1673		if (!request_count)
1674			trace_block_plug(q);
1675		else {
1676			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1677				blk_flush_plug_list(plug, false);
1678				trace_block_plug(q);
1679			}
1680		}
1681		list_add_tail(&req->queuelist, &plug->list);
1682		blk_account_io_start(req, true);
1683	} else {
1684		spin_lock_irq(q->queue_lock);
1685		add_acct_request(q, req, where);
1686		__blk_run_queue(q);
1687out_unlock:
1688		spin_unlock_irq(q->queue_lock);
1689	}
1690}
1691
1692/*
1693 * If bio->bi_dev is a partition, remap the location
1694 */
1695static inline void blk_partition_remap(struct bio *bio)
1696{
1697	struct block_device *bdev = bio->bi_bdev;
1698
1699	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1700		struct hd_struct *p = bdev->bd_part;
1701
1702		bio->bi_iter.bi_sector += p->start_sect;
1703		bio->bi_bdev = bdev->bd_contains;
1704
1705		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1706				      bdev->bd_dev,
1707				      bio->bi_iter.bi_sector - p->start_sect);
1708	}
1709}
1710
1711static void handle_bad_sector(struct bio *bio)
1712{
1713	char b[BDEVNAME_SIZE];
1714
1715	printk(KERN_INFO "attempt to access beyond end of device\n");
1716	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1717			bdevname(bio->bi_bdev, b),
1718			bio->bi_rw,
1719			(unsigned long long)bio_end_sector(bio),
1720			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1721
1722	set_bit(BIO_EOF, &bio->bi_flags);
1723}
1724
1725#ifdef CONFIG_FAIL_MAKE_REQUEST
1726
1727static DECLARE_FAULT_ATTR(fail_make_request);
1728
1729static int __init setup_fail_make_request(char *str)
1730{
1731	return setup_fault_attr(&fail_make_request, str);
1732}
1733__setup("fail_make_request=", setup_fail_make_request);
1734
1735static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1736{
1737	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1738}
1739
1740static int __init fail_make_request_debugfs(void)
1741{
1742	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1743						NULL, &fail_make_request);
1744
1745	return PTR_ERR_OR_ZERO(dir);
1746}
1747
1748late_initcall(fail_make_request_debugfs);
1749
1750#else /* CONFIG_FAIL_MAKE_REQUEST */
1751
1752static inline bool should_fail_request(struct hd_struct *part,
1753					unsigned int bytes)
1754{
1755	return false;
1756}
1757
1758#endif /* CONFIG_FAIL_MAKE_REQUEST */
1759
1760/*
1761 * Check whether this bio extends beyond the end of the device.
1762 */
1763static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1764{
1765	sector_t maxsector;
1766
1767	if (!nr_sectors)
1768		return 0;
1769
1770	/* Test device or partition size, when known. */
1771	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1772	if (maxsector) {
1773		sector_t sector = bio->bi_iter.bi_sector;
1774
1775		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1776			/*
1777			 * This may well happen - the kernel calls bread()
1778			 * without checking the size of the device, e.g., when
1779			 * mounting a device.
1780			 */
1781			handle_bad_sector(bio);
1782			return 1;
1783		}
1784	}
1785
1786	return 0;
1787}
1788
1789static noinline_for_stack bool
1790generic_make_request_checks(struct bio *bio)
1791{
1792	struct request_queue *q;
1793	int nr_sectors = bio_sectors(bio);
1794	int err = -EIO;
1795	char b[BDEVNAME_SIZE];
1796	struct hd_struct *part;
1797
1798	might_sleep();
1799
1800	if (bio_check_eod(bio, nr_sectors))
1801		goto end_io;
1802
1803	q = bdev_get_queue(bio->bi_bdev);
1804	if (unlikely(!q)) {
1805		printk(KERN_ERR
1806		       "generic_make_request: Trying to access "
1807			"nonexistent block-device %s (%Lu)\n",
1808			bdevname(bio->bi_bdev, b),
1809			(long long) bio->bi_iter.bi_sector);
1810		goto end_io;
1811	}
1812
1813	if (likely(bio_is_rw(bio) &&
1814		   nr_sectors > queue_max_hw_sectors(q))) {
1815		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1816		       bdevname(bio->bi_bdev, b),
1817		       bio_sectors(bio),
1818		       queue_max_hw_sectors(q));
1819		goto end_io;
1820	}
1821
1822	part = bio->bi_bdev->bd_part;
1823	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1824	    should_fail_request(&part_to_disk(part)->part0,
1825				bio->bi_iter.bi_size))
1826		goto end_io;
1827
1828	/*
1829	 * If this device has partitions, remap block n
1830	 * of partition p to block n+start(p) of the disk.
1831	 */
1832	blk_partition_remap(bio);
1833
1834	if (bio_check_eod(bio, nr_sectors))
1835		goto end_io;
1836
1837	/*
1838	 * Filter flush bio's early so that make_request based
1839	 * drivers without flush support don't have to worry
1840	 * about them.
1841	 */
1842	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1843		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1844		if (!nr_sectors) {
1845			err = 0;
1846			goto end_io;
1847		}
1848	}
1849
1850	if ((bio->bi_rw & REQ_DISCARD) &&
1851	    (!blk_queue_discard(q) ||
1852	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1853		err = -EOPNOTSUPP;
1854		goto end_io;
1855	}
1856
1857	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1858		err = -EOPNOTSUPP;
1859		goto end_io;
1860	}
1861
1862	/*
1863	 * Various block parts want %current->io_context and lazy ioc
1864	 * allocation ends up trading a lot of pain for a small amount of
1865	 * memory.  Just allocate it upfront.  This may fail and block
1866	 * layer knows how to live with it.
1867	 */
1868	create_io_context(GFP_ATOMIC, q->node);
1869
1870	if (blk_throtl_bio(q, bio))
1871		return false;	/* throttled, will be resubmitted later */
1872
1873	trace_block_bio_queue(q, bio);
1874	return true;
1875
1876end_io:
1877	bio_endio(bio, err);
1878	return false;
1879}
1880
1881/**
1882 * generic_make_request - hand a buffer to its device driver for I/O
1883 * @bio:  The bio describing the location in memory and on the device.
1884 *
1885 * generic_make_request() is used to make I/O requests of block
1886 * devices. It is passed a &struct bio, which describes the I/O that needs
1887 * to be done.
1888 *
1889 * generic_make_request() does not return any status.  The
1890 * success/failure status of the request, along with notification of
1891 * completion, is delivered asynchronously through the bio->bi_end_io
1892 * function described (one day) else where.
1893 *
1894 * The caller of generic_make_request must make sure that bi_io_vec
1895 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1896 * set to describe the device address, and the
1897 * bi_end_io and optionally bi_private are set to describe how
1898 * completion notification should be signaled.
1899 *
1900 * generic_make_request and the drivers it calls may use bi_next if this
1901 * bio happens to be merged with someone else, and may resubmit the bio to
1902 * a lower device by calling into generic_make_request recursively, which
1903 * means the bio should NOT be touched after the call to ->make_request_fn.
1904 */
1905void generic_make_request(struct bio *bio)
1906{
1907	struct bio_list bio_list_on_stack;
1908
1909	if (!generic_make_request_checks(bio))
1910		return;
1911
1912	/*
1913	 * We only want one ->make_request_fn to be active at a time, else
1914	 * stack usage with stacked devices could be a problem.  So use
1915	 * current->bio_list to keep a list of requests submited by a
1916	 * make_request_fn function.  current->bio_list is also used as a
1917	 * flag to say if generic_make_request is currently active in this
1918	 * task or not.  If it is NULL, then no make_request is active.  If
1919	 * it is non-NULL, then a make_request is active, and new requests
1920	 * should be added at the tail
1921	 */
1922	if (current->bio_list) {
1923		bio_list_add(current->bio_list, bio);
1924		return;
1925	}
1926
1927	/* following loop may be a bit non-obvious, and so deserves some
1928	 * explanation.
1929	 * Before entering the loop, bio->bi_next is NULL (as all callers
1930	 * ensure that) so we have a list with a single bio.
1931	 * We pretend that we have just taken it off a longer list, so
1932	 * we assign bio_list to a pointer to the bio_list_on_stack,
1933	 * thus initialising the bio_list of new bios to be
1934	 * added.  ->make_request() may indeed add some more bios
1935	 * through a recursive call to generic_make_request.  If it
1936	 * did, we find a non-NULL value in bio_list and re-enter the loop
1937	 * from the top.  In this case we really did just take the bio
1938	 * of the top of the list (no pretending) and so remove it from
1939	 * bio_list, and call into ->make_request() again.
1940	 */
1941	BUG_ON(bio->bi_next);
1942	bio_list_init(&bio_list_on_stack);
1943	current->bio_list = &bio_list_on_stack;
1944	do {
1945		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1946
1947		q->make_request_fn(q, bio);
1948
1949		bio = bio_list_pop(current->bio_list);
1950	} while (bio);
1951	current->bio_list = NULL; /* deactivate */
1952}
1953EXPORT_SYMBOL(generic_make_request);
1954
1955/**
1956 * submit_bio - submit a bio to the block device layer for I/O
1957 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1958 * @bio: The &struct bio which describes the I/O
1959 *
1960 * submit_bio() is very similar in purpose to generic_make_request(), and
1961 * uses that function to do most of the work. Both are fairly rough
1962 * interfaces; @bio must be presetup and ready for I/O.
1963 *
1964 */
1965void submit_bio(int rw, struct bio *bio)
1966{
1967	bio->bi_rw |= rw;
1968
1969	/*
1970	 * If it's a regular read/write or a barrier with data attached,
1971	 * go through the normal accounting stuff before submission.
1972	 */
1973	if (bio_has_data(bio)) {
1974		unsigned int count;
1975
1976		if (unlikely(rw & REQ_WRITE_SAME))
1977			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1978		else
1979			count = bio_sectors(bio);
1980
1981		if (rw & WRITE) {
1982			count_vm_events(PGPGOUT, count);
1983		} else {
1984			task_io_account_read(bio->bi_iter.bi_size);
1985			count_vm_events(PGPGIN, count);
1986		}
1987
1988		if (unlikely(block_dump)) {
1989			char b[BDEVNAME_SIZE];
1990			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1991			current->comm, task_pid_nr(current),
1992				(rw & WRITE) ? "WRITE" : "READ",
1993				(unsigned long long)bio->bi_iter.bi_sector,
1994				bdevname(bio->bi_bdev, b),
1995				count);
1996		}
1997	}
1998
1999	generic_make_request(bio);
2000}
2001EXPORT_SYMBOL(submit_bio);
2002
2003/**
2004 * blk_rq_check_limits - Helper function to check a request for the queue limit
2005 * @q:  the queue
2006 * @rq: the request being checked
2007 *
2008 * Description:
2009 *    @rq may have been made based on weaker limitations of upper-level queues
2010 *    in request stacking drivers, and it may violate the limitation of @q.
2011 *    Since the block layer and the underlying device driver trust @rq
2012 *    after it is inserted to @q, it should be checked against @q before
2013 *    the insertion using this generic function.
2014 *
2015 *    This function should also be useful for request stacking drivers
2016 *    in some cases below, so export this function.
2017 *    Request stacking drivers like request-based dm may change the queue
2018 *    limits while requests are in the queue (e.g. dm's table swapping).
2019 *    Such request stacking drivers should check those requests against
2020 *    the new queue limits again when they dispatch those requests,
2021 *    although such checkings are also done against the old queue limits
2022 *    when submitting requests.
2023 */
2024int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2025{
2026	if (!rq_mergeable(rq))
2027		return 0;
2028
2029	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2030		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2031		return -EIO;
2032	}
2033
2034	/*
2035	 * queue's settings related to segment counting like q->bounce_pfn
2036	 * may differ from that of other stacking queues.
2037	 * Recalculate it to check the request correctly on this queue's
2038	 * limitation.
2039	 */
2040	blk_recalc_rq_segments(rq);
2041	if (rq->nr_phys_segments > queue_max_segments(q)) {
2042		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2043		return -EIO;
2044	}
2045
2046	return 0;
2047}
2048EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2049
2050/**
2051 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2052 * @q:  the queue to submit the request
2053 * @rq: the request being queued
2054 */
2055int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2056{
2057	unsigned long flags;
2058	int where = ELEVATOR_INSERT_BACK;
2059
2060	if (blk_rq_check_limits(q, rq))
2061		return -EIO;
2062
2063	if (rq->rq_disk &&
2064	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2065		return -EIO;
2066
2067	if (q->mq_ops) {
2068		if (blk_queue_io_stat(q))
2069			blk_account_io_start(rq, true);
2070		blk_mq_insert_request(rq, false, true, false);
2071		return 0;
2072	}
2073
2074	spin_lock_irqsave(q->queue_lock, flags);
2075	if (unlikely(blk_queue_dying(q))) {
2076		spin_unlock_irqrestore(q->queue_lock, flags);
2077		return -ENODEV;
2078	}
2079
2080	/*
2081	 * Submitting request must be dequeued before calling this function
2082	 * because it will be linked to another request_queue
2083	 */
2084	BUG_ON(blk_queued_rq(rq));
2085
2086	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2087		where = ELEVATOR_INSERT_FLUSH;
2088
2089	add_acct_request(q, rq, where);
2090	if (where == ELEVATOR_INSERT_FLUSH)
2091		__blk_run_queue(q);
2092	spin_unlock_irqrestore(q->queue_lock, flags);
2093
2094	return 0;
2095}
2096EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2097
2098/**
2099 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2100 * @rq: request to examine
2101 *
2102 * Description:
2103 *     A request could be merge of IOs which require different failure
2104 *     handling.  This function determines the number of bytes which
2105 *     can be failed from the beginning of the request without
2106 *     crossing into area which need to be retried further.
2107 *
2108 * Return:
2109 *     The number of bytes to fail.
2110 *
2111 * Context:
2112 *     queue_lock must be held.
2113 */
2114unsigned int blk_rq_err_bytes(const struct request *rq)
2115{
2116	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2117	unsigned int bytes = 0;
2118	struct bio *bio;
2119
2120	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2121		return blk_rq_bytes(rq);
2122
2123	/*
2124	 * Currently the only 'mixing' which can happen is between
2125	 * different fastfail types.  We can safely fail portions
2126	 * which have all the failfast bits that the first one has -
2127	 * the ones which are at least as eager to fail as the first
2128	 * one.
2129	 */
2130	for (bio = rq->bio; bio; bio = bio->bi_next) {
2131		if ((bio->bi_rw & ff) != ff)
2132			break;
2133		bytes += bio->bi_iter.bi_size;
2134	}
2135
2136	/* this could lead to infinite loop */
2137	BUG_ON(blk_rq_bytes(rq) && !bytes);
2138	return bytes;
2139}
2140EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2141
2142void blk_account_io_completion(struct request *req, unsigned int bytes)
2143{
2144	if (blk_do_io_stat(req)) {
2145		const int rw = rq_data_dir(req);
2146		struct hd_struct *part;
2147		int cpu;
2148
2149		cpu = part_stat_lock();
2150		part = req->part;
2151		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2152		part_stat_unlock();
2153	}
2154}
2155
2156void blk_account_io_done(struct request *req)
2157{
2158	/*
2159	 * Account IO completion.  flush_rq isn't accounted as a
2160	 * normal IO on queueing nor completion.  Accounting the
2161	 * containing request is enough.
2162	 */
2163	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2164		unsigned long duration = jiffies - req->start_time;
2165		const int rw = rq_data_dir(req);
2166		struct hd_struct *part;
2167		int cpu;
2168
2169		cpu = part_stat_lock();
2170		part = req->part;
2171
2172		part_stat_inc(cpu, part, ios[rw]);
2173		part_stat_add(cpu, part, ticks[rw], duration);
2174		part_round_stats(cpu, part);
2175		part_dec_in_flight(part, rw);
2176
2177		hd_struct_put(part);
2178		part_stat_unlock();
2179	}
2180}
2181
2182#ifdef CONFIG_PM
2183/*
2184 * Don't process normal requests when queue is suspended
2185 * or in the process of suspending/resuming
2186 */
2187static struct request *blk_pm_peek_request(struct request_queue *q,
2188					   struct request *rq)
2189{
2190	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2191	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2192		return NULL;
2193	else
2194		return rq;
2195}
2196#else
2197static inline struct request *blk_pm_peek_request(struct request_queue *q,
2198						  struct request *rq)
2199{
2200	return rq;
2201}
2202#endif
2203
2204void blk_account_io_start(struct request *rq, bool new_io)
2205{
2206	struct hd_struct *part;
2207	int rw = rq_data_dir(rq);
2208	int cpu;
2209
2210	if (!blk_do_io_stat(rq))
2211		return;
2212
2213	cpu = part_stat_lock();
2214
2215	if (!new_io) {
2216		part = rq->part;
2217		part_stat_inc(cpu, part, merges[rw]);
2218	} else {
2219		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2220		if (!hd_struct_try_get(part)) {
2221			/*
2222			 * The partition is already being removed,
2223			 * the request will be accounted on the disk only
2224			 *
2225			 * We take a reference on disk->part0 although that
2226			 * partition will never be deleted, so we can treat
2227			 * it as any other partition.
2228			 */
2229			part = &rq->rq_disk->part0;
2230			hd_struct_get(part);
2231		}
2232		part_round_stats(cpu, part);
2233		part_inc_in_flight(part, rw);
2234		rq->part = part;
2235	}
2236
2237	part_stat_unlock();
2238}
2239
2240/**
2241 * blk_peek_request - peek at the top of a request queue
2242 * @q: request queue to peek at
2243 *
2244 * Description:
2245 *     Return the request at the top of @q.  The returned request
2246 *     should be started using blk_start_request() before LLD starts
2247 *     processing it.
2248 *
2249 * Return:
2250 *     Pointer to the request at the top of @q if available.  Null
2251 *     otherwise.
2252 *
2253 * Context:
2254 *     queue_lock must be held.
2255 */
2256struct request *blk_peek_request(struct request_queue *q)
2257{
2258	struct request *rq;
2259	int ret;
2260
2261	while ((rq = __elv_next_request(q)) != NULL) {
2262
2263		rq = blk_pm_peek_request(q, rq);
2264		if (!rq)
2265			break;
2266
2267		if (!(rq->cmd_flags & REQ_STARTED)) {
2268			/*
2269			 * This is the first time the device driver
2270			 * sees this request (possibly after
2271			 * requeueing).  Notify IO scheduler.
2272			 */
2273			if (rq->cmd_flags & REQ_SORTED)
2274				elv_activate_rq(q, rq);
2275
2276			/*
2277			 * just mark as started even if we don't start
2278			 * it, a request that has been delayed should
2279			 * not be passed by new incoming requests
2280			 */
2281			rq->cmd_flags |= REQ_STARTED;
2282			trace_block_rq_issue(q, rq);
2283		}
2284
2285		if (!q->boundary_rq || q->boundary_rq == rq) {
2286			q->end_sector = rq_end_sector(rq);
2287			q->boundary_rq = NULL;
2288		}
2289
2290		if (rq->cmd_flags & REQ_DONTPREP)
2291			break;
2292
2293		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2294			/*
2295			 * make sure space for the drain appears we
2296			 * know we can do this because max_hw_segments
2297			 * has been adjusted to be one fewer than the
2298			 * device can handle
2299			 */
2300			rq->nr_phys_segments++;
2301		}
2302
2303		if (!q->prep_rq_fn)
2304			break;
2305
2306		ret = q->prep_rq_fn(q, rq);
2307		if (ret == BLKPREP_OK) {
2308			break;
2309		} else if (ret == BLKPREP_DEFER) {
2310			/*
2311			 * the request may have been (partially) prepped.
2312			 * we need to keep this request in the front to
2313			 * avoid resource deadlock.  REQ_STARTED will
2314			 * prevent other fs requests from passing this one.
2315			 */
2316			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2317			    !(rq->cmd_flags & REQ_DONTPREP)) {
2318				/*
2319				 * remove the space for the drain we added
2320				 * so that we don't add it again
2321				 */
2322				--rq->nr_phys_segments;
2323			}
2324
2325			rq = NULL;
2326			break;
2327		} else if (ret == BLKPREP_KILL) {
2328			rq->cmd_flags |= REQ_QUIET;
2329			/*
2330			 * Mark this request as started so we don't trigger
2331			 * any debug logic in the end I/O path.
2332			 */
2333			blk_start_request(rq);
2334			__blk_end_request_all(rq, -EIO);
2335		} else {
2336			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2337			break;
2338		}
2339	}
2340
2341	return rq;
2342}
2343EXPORT_SYMBOL(blk_peek_request);
2344
2345void blk_dequeue_request(struct request *rq)
2346{
2347	struct request_queue *q = rq->q;
2348
2349	BUG_ON(list_empty(&rq->queuelist));
2350	BUG_ON(ELV_ON_HASH(rq));
2351
2352	list_del_init(&rq->queuelist);
2353
2354	/*
2355	 * the time frame between a request being removed from the lists
2356	 * and to it is freed is accounted as io that is in progress at
2357	 * the driver side.
2358	 */
2359	if (blk_account_rq(rq)) {
2360		q->in_flight[rq_is_sync(rq)]++;
2361		set_io_start_time_ns(rq);
2362	}
2363}
2364
2365/**
2366 * blk_start_request - start request processing on the driver
2367 * @req: request to dequeue
2368 *
2369 * Description:
2370 *     Dequeue @req and start timeout timer on it.  This hands off the
2371 *     request to the driver.
2372 *
2373 *     Block internal functions which don't want to start timer should
2374 *     call blk_dequeue_request().
2375 *
2376 * Context:
2377 *     queue_lock must be held.
2378 */
2379void blk_start_request(struct request *req)
2380{
2381	blk_dequeue_request(req);
2382
2383	/*
2384	 * We are now handing the request to the hardware, initialize
2385	 * resid_len to full count and add the timeout handler.
2386	 */
2387	req->resid_len = blk_rq_bytes(req);
2388	if (unlikely(blk_bidi_rq(req)))
2389		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2390
2391	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2392	blk_add_timer(req);
2393}
2394EXPORT_SYMBOL(blk_start_request);
2395
2396/**
2397 * blk_fetch_request - fetch a request from a request queue
2398 * @q: request queue to fetch a request from
2399 *
2400 * Description:
2401 *     Return the request at the top of @q.  The request is started on
2402 *     return and LLD can start processing it immediately.
2403 *
2404 * Return:
2405 *     Pointer to the request at the top of @q if available.  Null
2406 *     otherwise.
2407 *
2408 * Context:
2409 *     queue_lock must be held.
2410 */
2411struct request *blk_fetch_request(struct request_queue *q)
2412{
2413	struct request *rq;
2414
2415	rq = blk_peek_request(q);
2416	if (rq)
2417		blk_start_request(rq);
2418	return rq;
2419}
2420EXPORT_SYMBOL(blk_fetch_request);
2421
2422/**
2423 * blk_update_request - Special helper function for request stacking drivers
2424 * @req:      the request being processed
2425 * @error:    %0 for success, < %0 for error
2426 * @nr_bytes: number of bytes to complete @req
2427 *
2428 * Description:
2429 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2430 *     the request structure even if @req doesn't have leftover.
2431 *     If @req has leftover, sets it up for the next range of segments.
2432 *
2433 *     This special helper function is only for request stacking drivers
2434 *     (e.g. request-based dm) so that they can handle partial completion.
2435 *     Actual device drivers should use blk_end_request instead.
2436 *
2437 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2438 *     %false return from this function.
2439 *
2440 * Return:
2441 *     %false - this request doesn't have any more data
2442 *     %true  - this request has more data
2443 **/
2444bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2445{
2446	int total_bytes;
2447
2448	trace_block_rq_complete(req->q, req, nr_bytes);
2449
2450	if (!req->bio)
2451		return false;
2452
2453	/*
2454	 * For fs requests, rq is just carrier of independent bio's
2455	 * and each partial completion should be handled separately.
2456	 * Reset per-request error on each partial completion.
2457	 *
2458	 * TODO: tj: This is too subtle.  It would be better to let
2459	 * low level drivers do what they see fit.
2460	 */
2461	if (req->cmd_type == REQ_TYPE_FS)
2462		req->errors = 0;
2463
2464	if (error && req->cmd_type == REQ_TYPE_FS &&
2465	    !(req->cmd_flags & REQ_QUIET)) {
2466		char *error_type;
2467
2468		switch (error) {
2469		case -ENOLINK:
2470			error_type = "recoverable transport";
2471			break;
2472		case -EREMOTEIO:
2473			error_type = "critical target";
2474			break;
2475		case -EBADE:
2476			error_type = "critical nexus";
2477			break;
2478		case -ETIMEDOUT:
2479			error_type = "timeout";
2480			break;
2481		case -ENOSPC:
2482			error_type = "critical space allocation";
2483			break;
2484		case -ENODATA:
2485			error_type = "critical medium";
2486			break;
2487		case -EIO:
2488		default:
2489			error_type = "I/O";
2490			break;
2491		}
2492		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2493				   __func__, error_type, req->rq_disk ?
2494				   req->rq_disk->disk_name : "?",
2495				   (unsigned long long)blk_rq_pos(req));
2496
2497	}
2498
2499	blk_account_io_completion(req, nr_bytes);
2500
2501	total_bytes = 0;
2502	while (req->bio) {
2503		struct bio *bio = req->bio;
2504		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2505
2506		if (bio_bytes == bio->bi_iter.bi_size)
2507			req->bio = bio->bi_next;
2508
2509		req_bio_endio(req, bio, bio_bytes, error);
2510
2511		total_bytes += bio_bytes;
2512		nr_bytes -= bio_bytes;
2513
2514		if (!nr_bytes)
2515			break;
2516	}
2517
2518	/*
2519	 * completely done
2520	 */
2521	if (!req->bio) {
2522		/*
2523		 * Reset counters so that the request stacking driver
2524		 * can find how many bytes remain in the request
2525		 * later.
2526		 */
2527		req->__data_len = 0;
2528		return false;
2529	}
2530
2531	req->__data_len -= total_bytes;
2532
2533	/* update sector only for requests with clear definition of sector */
2534	if (req->cmd_type == REQ_TYPE_FS)
2535		req->__sector += total_bytes >> 9;
2536
2537	/* mixed attributes always follow the first bio */
2538	if (req->cmd_flags & REQ_MIXED_MERGE) {
2539		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2540		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2541	}
2542
2543	/*
2544	 * If total number of sectors is less than the first segment
2545	 * size, something has gone terribly wrong.
2546	 */
2547	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2548		blk_dump_rq_flags(req, "request botched");
2549		req->__data_len = blk_rq_cur_bytes(req);
2550	}
2551
2552	/* recalculate the number of segments */
2553	blk_recalc_rq_segments(req);
2554
2555	return true;
2556}
2557EXPORT_SYMBOL_GPL(blk_update_request);
2558
2559static bool blk_update_bidi_request(struct request *rq, int error,
2560				    unsigned int nr_bytes,
2561				    unsigned int bidi_bytes)
2562{
2563	if (blk_update_request(rq, error, nr_bytes))
2564		return true;
2565
2566	/* Bidi request must be completed as a whole */
2567	if (unlikely(blk_bidi_rq(rq)) &&
2568	    blk_update_request(rq->next_rq, error, bidi_bytes))
2569		return true;
2570
2571	if (blk_queue_add_random(rq->q))
2572		add_disk_randomness(rq->rq_disk);
2573
2574	return false;
2575}
2576
2577/**
2578 * blk_unprep_request - unprepare a request
2579 * @req:	the request
2580 *
2581 * This function makes a request ready for complete resubmission (or
2582 * completion).  It happens only after all error handling is complete,
2583 * so represents the appropriate moment to deallocate any resources
2584 * that were allocated to the request in the prep_rq_fn.  The queue
2585 * lock is held when calling this.
2586 */
2587void blk_unprep_request(struct request *req)
2588{
2589	struct request_queue *q = req->q;
2590
2591	req->cmd_flags &= ~REQ_DONTPREP;
2592	if (q->unprep_rq_fn)
2593		q->unprep_rq_fn(q, req);
2594}
2595EXPORT_SYMBOL_GPL(blk_unprep_request);
2596
2597/*
2598 * queue lock must be held
2599 */
2600void blk_finish_request(struct request *req, int error)
2601{
2602	if (req->cmd_flags & REQ_QUEUED)
2603		blk_queue_end_tag(req->q, req);
2604
2605	BUG_ON(blk_queued_rq(req));
2606
2607	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2608		laptop_io_completion(&req->q->backing_dev_info);
2609
2610	blk_delete_timer(req);
2611
2612	if (req->cmd_flags & REQ_DONTPREP)
2613		blk_unprep_request(req);
2614
2615	blk_account_io_done(req);
2616
2617	if (req->end_io)
2618		req->end_io(req, error);
2619	else {
2620		if (blk_bidi_rq(req))
2621			__blk_put_request(req->next_rq->q, req->next_rq);
2622
2623		__blk_put_request(req->q, req);
2624	}
2625}
2626EXPORT_SYMBOL(blk_finish_request);
2627
2628/**
2629 * blk_end_bidi_request - Complete a bidi request
2630 * @rq:         the request to complete
2631 * @error:      %0 for success, < %0 for error
2632 * @nr_bytes:   number of bytes to complete @rq
2633 * @bidi_bytes: number of bytes to complete @rq->next_rq
2634 *
2635 * Description:
2636 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2637 *     Drivers that supports bidi can safely call this member for any
2638 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2639 *     just ignored.
2640 *
2641 * Return:
2642 *     %false - we are done with this request
2643 *     %true  - still buffers pending for this request
2644 **/
2645static bool blk_end_bidi_request(struct request *rq, int error,
2646				 unsigned int nr_bytes, unsigned int bidi_bytes)
2647{
2648	struct request_queue *q = rq->q;
2649	unsigned long flags;
2650
2651	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2652		return true;
2653
2654	spin_lock_irqsave(q->queue_lock, flags);
2655	blk_finish_request(rq, error);
2656	spin_unlock_irqrestore(q->queue_lock, flags);
2657
2658	return false;
2659}
2660
2661/**
2662 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2663 * @rq:         the request to complete
2664 * @error:      %0 for success, < %0 for error
2665 * @nr_bytes:   number of bytes to complete @rq
2666 * @bidi_bytes: number of bytes to complete @rq->next_rq
2667 *
2668 * Description:
2669 *     Identical to blk_end_bidi_request() except that queue lock is
2670 *     assumed to be locked on entry and remains so on return.
2671 *
2672 * Return:
2673 *     %false - we are done with this request
2674 *     %true  - still buffers pending for this request
2675 **/
2676bool __blk_end_bidi_request(struct request *rq, int error,
2677				   unsigned int nr_bytes, unsigned int bidi_bytes)
2678{
2679	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2680		return true;
2681
2682	blk_finish_request(rq, error);
2683
2684	return false;
2685}
2686
2687/**
2688 * blk_end_request - Helper function for drivers to complete the request.
2689 * @rq:       the request being processed
2690 * @error:    %0 for success, < %0 for error
2691 * @nr_bytes: number of bytes to complete
2692 *
2693 * Description:
2694 *     Ends I/O on a number of bytes attached to @rq.
2695 *     If @rq has leftover, sets it up for the next range of segments.
2696 *
2697 * Return:
2698 *     %false - we are done with this request
2699 *     %true  - still buffers pending for this request
2700 **/
2701bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2702{
2703	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2704}
2705EXPORT_SYMBOL(blk_end_request);
2706
2707/**
2708 * blk_end_request_all - Helper function for drives to finish the request.
2709 * @rq: the request to finish
2710 * @error: %0 for success, < %0 for error
2711 *
2712 * Description:
2713 *     Completely finish @rq.
2714 */
2715void blk_end_request_all(struct request *rq, int error)
2716{
2717	bool pending;
2718	unsigned int bidi_bytes = 0;
2719
2720	if (unlikely(blk_bidi_rq(rq)))
2721		bidi_bytes = blk_rq_bytes(rq->next_rq);
2722
2723	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2724	BUG_ON(pending);
2725}
2726EXPORT_SYMBOL(blk_end_request_all);
2727
2728/**
2729 * blk_end_request_cur - Helper function to finish the current request chunk.
2730 * @rq: the request to finish the current chunk for
2731 * @error: %0 for success, < %0 for error
2732 *
2733 * Description:
2734 *     Complete the current consecutively mapped chunk from @rq.
2735 *
2736 * Return:
2737 *     %false - we are done with this request
2738 *     %true  - still buffers pending for this request
2739 */
2740bool blk_end_request_cur(struct request *rq, int error)
2741{
2742	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2743}
2744EXPORT_SYMBOL(blk_end_request_cur);
2745
2746/**
2747 * blk_end_request_err - Finish a request till the next failure boundary.
2748 * @rq: the request to finish till the next failure boundary for
2749 * @error: must be negative errno
2750 *
2751 * Description:
2752 *     Complete @rq till the next failure boundary.
2753 *
2754 * Return:
2755 *     %false - we are done with this request
2756 *     %true  - still buffers pending for this request
2757 */
2758bool blk_end_request_err(struct request *rq, int error)
2759{
2760	WARN_ON(error >= 0);
2761	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2762}
2763EXPORT_SYMBOL_GPL(blk_end_request_err);
2764
2765/**
2766 * __blk_end_request - Helper function for drivers to complete the request.
2767 * @rq:       the request being processed
2768 * @error:    %0 for success, < %0 for error
2769 * @nr_bytes: number of bytes to complete
2770 *
2771 * Description:
2772 *     Must be called with queue lock held unlike blk_end_request().
2773 *
2774 * Return:
2775 *     %false - we are done with this request
2776 *     %true  - still buffers pending for this request
2777 **/
2778bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2779{
2780	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2781}
2782EXPORT_SYMBOL(__blk_end_request);
2783
2784/**
2785 * __blk_end_request_all - Helper function for drives to finish the request.
2786 * @rq: the request to finish
2787 * @error: %0 for success, < %0 for error
2788 *
2789 * Description:
2790 *     Completely finish @rq.  Must be called with queue lock held.
2791 */
2792void __blk_end_request_all(struct request *rq, int error)
2793{
2794	bool pending;
2795	unsigned int bidi_bytes = 0;
2796
2797	if (unlikely(blk_bidi_rq(rq)))
2798		bidi_bytes = blk_rq_bytes(rq->next_rq);
2799
2800	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2801	BUG_ON(pending);
2802}
2803EXPORT_SYMBOL(__blk_end_request_all);
2804
2805/**
2806 * __blk_end_request_cur - Helper function to finish the current request chunk.
2807 * @rq: the request to finish the current chunk for
2808 * @error: %0 for success, < %0 for error
2809 *
2810 * Description:
2811 *     Complete the current consecutively mapped chunk from @rq.  Must
2812 *     be called with queue lock held.
2813 *
2814 * Return:
2815 *     %false - we are done with this request
2816 *     %true  - still buffers pending for this request
2817 */
2818bool __blk_end_request_cur(struct request *rq, int error)
2819{
2820	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2821}
2822EXPORT_SYMBOL(__blk_end_request_cur);
2823
2824/**
2825 * __blk_end_request_err - Finish a request till the next failure boundary.
2826 * @rq: the request to finish till the next failure boundary for
2827 * @error: must be negative errno
2828 *
2829 * Description:
2830 *     Complete @rq till the next failure boundary.  Must be called
2831 *     with queue lock held.
2832 *
2833 * Return:
2834 *     %false - we are done with this request
2835 *     %true  - still buffers pending for this request
2836 */
2837bool __blk_end_request_err(struct request *rq, int error)
2838{
2839	WARN_ON(error >= 0);
2840	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2841}
2842EXPORT_SYMBOL_GPL(__blk_end_request_err);
2843
2844void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2845		     struct bio *bio)
2846{
2847	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2848	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2849
2850	if (bio_has_data(bio))
2851		rq->nr_phys_segments = bio_phys_segments(q, bio);
2852
2853	rq->__data_len = bio->bi_iter.bi_size;
2854	rq->bio = rq->biotail = bio;
2855
2856	if (bio->bi_bdev)
2857		rq->rq_disk = bio->bi_bdev->bd_disk;
2858}
2859
2860#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2861/**
2862 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2863 * @rq: the request to be flushed
2864 *
2865 * Description:
2866 *     Flush all pages in @rq.
2867 */
2868void rq_flush_dcache_pages(struct request *rq)
2869{
2870	struct req_iterator iter;
2871	struct bio_vec bvec;
2872
2873	rq_for_each_segment(bvec, rq, iter)
2874		flush_dcache_page(bvec.bv_page);
2875}
2876EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2877#endif
2878
2879/**
2880 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2881 * @q : the queue of the device being checked
2882 *
2883 * Description:
2884 *    Check if underlying low-level drivers of a device are busy.
2885 *    If the drivers want to export their busy state, they must set own
2886 *    exporting function using blk_queue_lld_busy() first.
2887 *
2888 *    Basically, this function is used only by request stacking drivers
2889 *    to stop dispatching requests to underlying devices when underlying
2890 *    devices are busy.  This behavior helps more I/O merging on the queue
2891 *    of the request stacking driver and prevents I/O throughput regression
2892 *    on burst I/O load.
2893 *
2894 * Return:
2895 *    0 - Not busy (The request stacking driver should dispatch request)
2896 *    1 - Busy (The request stacking driver should stop dispatching request)
2897 */
2898int blk_lld_busy(struct request_queue *q)
2899{
2900	if (q->lld_busy_fn)
2901		return q->lld_busy_fn(q);
2902
2903	return 0;
2904}
2905EXPORT_SYMBOL_GPL(blk_lld_busy);
2906
2907/**
2908 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2909 * @rq: the clone request to be cleaned up
2910 *
2911 * Description:
2912 *     Free all bios in @rq for a cloned request.
2913 */
2914void blk_rq_unprep_clone(struct request *rq)
2915{
2916	struct bio *bio;
2917
2918	while ((bio = rq->bio) != NULL) {
2919		rq->bio = bio->bi_next;
2920
2921		bio_put(bio);
2922	}
2923}
2924EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2925
2926/*
2927 * Copy attributes of the original request to the clone request.
2928 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2929 */
2930static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2931{
2932	dst->cpu = src->cpu;
2933	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2934	dst->cmd_type = src->cmd_type;
2935	dst->__sector = blk_rq_pos(src);
2936	dst->__data_len = blk_rq_bytes(src);
2937	dst->nr_phys_segments = src->nr_phys_segments;
2938	dst->ioprio = src->ioprio;
2939	dst->extra_len = src->extra_len;
2940}
2941
2942/**
2943 * blk_rq_prep_clone - Helper function to setup clone request
2944 * @rq: the request to be setup
2945 * @rq_src: original request to be cloned
2946 * @bs: bio_set that bios for clone are allocated from
2947 * @gfp_mask: memory allocation mask for bio
2948 * @bio_ctr: setup function to be called for each clone bio.
2949 *           Returns %0 for success, non %0 for failure.
2950 * @data: private data to be passed to @bio_ctr
2951 *
2952 * Description:
2953 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2954 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2955 *     are not copied, and copying such parts is the caller's responsibility.
2956 *     Also, pages which the original bios are pointing to are not copied
2957 *     and the cloned bios just point same pages.
2958 *     So cloned bios must be completed before original bios, which means
2959 *     the caller must complete @rq before @rq_src.
2960 */
2961int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2962		      struct bio_set *bs, gfp_t gfp_mask,
2963		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2964		      void *data)
2965{
2966	struct bio *bio, *bio_src;
2967
2968	if (!bs)
2969		bs = fs_bio_set;
2970
2971	__rq_for_each_bio(bio_src, rq_src) {
2972		bio = bio_clone_fast(bio_src, gfp_mask, bs);
2973		if (!bio)
2974			goto free_and_out;
2975
2976		if (bio_ctr && bio_ctr(bio, bio_src, data))
2977			goto free_and_out;
2978
2979		if (rq->bio) {
2980			rq->biotail->bi_next = bio;
2981			rq->biotail = bio;
2982		} else
2983			rq->bio = rq->biotail = bio;
2984	}
2985
2986	__blk_rq_prep_clone(rq, rq_src);
2987
2988	return 0;
2989
2990free_and_out:
2991	if (bio)
2992		bio_put(bio);
2993	blk_rq_unprep_clone(rq);
2994
2995	return -ENOMEM;
2996}
2997EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2998
2999int kblockd_schedule_work(struct work_struct *work)
3000{
3001	return queue_work(kblockd_workqueue, work);
3002}
3003EXPORT_SYMBOL(kblockd_schedule_work);
3004
3005int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3006				  unsigned long delay)
3007{
3008	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3009}
3010EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3011
3012int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3013				     unsigned long delay)
3014{
3015	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3016}
3017EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3018
3019/**
3020 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3021 * @plug:	The &struct blk_plug that needs to be initialized
3022 *
3023 * Description:
3024 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3025 *   pending I/O should the task end up blocking between blk_start_plug() and
3026 *   blk_finish_plug(). This is important from a performance perspective, but
3027 *   also ensures that we don't deadlock. For instance, if the task is blocking
3028 *   for a memory allocation, memory reclaim could end up wanting to free a
3029 *   page belonging to that request that is currently residing in our private
3030 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3031 *   this kind of deadlock.
3032 */
3033void blk_start_plug(struct blk_plug *plug)
3034{
3035	struct task_struct *tsk = current;
3036
3037	INIT_LIST_HEAD(&plug->list);
3038	INIT_LIST_HEAD(&plug->mq_list);
3039	INIT_LIST_HEAD(&plug->cb_list);
3040
3041	/*
3042	 * If this is a nested plug, don't actually assign it. It will be
3043	 * flushed on its own.
3044	 */
3045	if (!tsk->plug) {
3046		/*
3047		 * Store ordering should not be needed here, since a potential
3048		 * preempt will imply a full memory barrier
3049		 */
3050		tsk->plug = plug;
3051	}
3052}
3053EXPORT_SYMBOL(blk_start_plug);
3054
3055static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3056{
3057	struct request *rqa = container_of(a, struct request, queuelist);
3058	struct request *rqb = container_of(b, struct request, queuelist);
3059
3060	return !(rqa->q < rqb->q ||
3061		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3062}
3063
3064/*
3065 * If 'from_schedule' is true, then postpone the dispatch of requests
3066 * until a safe kblockd context. We due this to avoid accidental big
3067 * additional stack usage in driver dispatch, in places where the originally
3068 * plugger did not intend it.
3069 */
3070static void queue_unplugged(struct request_queue *q, unsigned int depth,
3071			    bool from_schedule)
3072	__releases(q->queue_lock)
3073{
3074	trace_block_unplug(q, depth, !from_schedule);
3075
3076	if (from_schedule)
3077		blk_run_queue_async(q);
3078	else
3079		__blk_run_queue(q);
3080	spin_unlock(q->queue_lock);
3081}
3082
3083static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3084{
3085	LIST_HEAD(callbacks);
3086
3087	while (!list_empty(&plug->cb_list)) {
3088		list_splice_init(&plug->cb_list, &callbacks);
3089
3090		while (!list_empty(&callbacks)) {
3091			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3092							  struct blk_plug_cb,
3093							  list);
3094			list_del(&cb->list);
3095			cb->callback(cb, from_schedule);
3096		}
3097	}
3098}
3099
3100struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3101				      int size)
3102{
3103	struct blk_plug *plug = current->plug;
3104	struct blk_plug_cb *cb;
3105
3106	if (!plug)
3107		return NULL;
3108
3109	list_for_each_entry(cb, &plug->cb_list, list)
3110		if (cb->callback == unplug && cb->data == data)
3111			return cb;
3112
3113	/* Not currently on the callback list */
3114	BUG_ON(size < sizeof(*cb));
3115	cb = kzalloc(size, GFP_ATOMIC);
3116	if (cb) {
3117		cb->data = data;
3118		cb->callback = unplug;
3119		list_add(&cb->list, &plug->cb_list);
3120	}
3121	return cb;
3122}
3123EXPORT_SYMBOL(blk_check_plugged);
3124
3125void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3126{
3127	struct request_queue *q;
3128	unsigned long flags;
3129	struct request *rq;
3130	LIST_HEAD(list);
3131	unsigned int depth;
3132
3133	flush_plug_callbacks(plug, from_schedule);
3134
3135	if (!list_empty(&plug->mq_list))
3136		blk_mq_flush_plug_list(plug, from_schedule);
3137
3138	if (list_empty(&plug->list))
3139		return;
3140
3141	list_splice_init(&plug->list, &list);
3142
3143	list_sort(NULL, &list, plug_rq_cmp);
3144
3145	q = NULL;
3146	depth = 0;
3147
3148	/*
3149	 * Save and disable interrupts here, to avoid doing it for every
3150	 * queue lock we have to take.
3151	 */
3152	local_irq_save(flags);
3153	while (!list_empty(&list)) {
3154		rq = list_entry_rq(list.next);
3155		list_del_init(&rq->queuelist);
3156		BUG_ON(!rq->q);
3157		if (rq->q != q) {
3158			/*
3159			 * This drops the queue lock
3160			 */
3161			if (q)
3162				queue_unplugged(q, depth, from_schedule);
3163			q = rq->q;
3164			depth = 0;
3165			spin_lock(q->queue_lock);
3166		}
3167
3168		/*
3169		 * Short-circuit if @q is dead
3170		 */
3171		if (unlikely(blk_queue_dying(q))) {
3172			__blk_end_request_all(rq, -ENODEV);
3173			continue;
3174		}
3175
3176		/*
3177		 * rq is already accounted, so use raw insert
3178		 */
3179		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3180			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3181		else
3182			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3183
3184		depth++;
3185	}
3186
3187	/*
3188	 * This drops the queue lock
3189	 */
3190	if (q)
3191		queue_unplugged(q, depth, from_schedule);
3192
3193	local_irq_restore(flags);
3194}
3195
3196void blk_finish_plug(struct blk_plug *plug)
3197{
3198	blk_flush_plug_list(plug, false);
3199
3200	if (plug == current->plug)
3201		current->plug = NULL;
3202}
3203EXPORT_SYMBOL(blk_finish_plug);
3204
3205#ifdef CONFIG_PM
3206/**
3207 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3208 * @q: the queue of the device
3209 * @dev: the device the queue belongs to
3210 *
3211 * Description:
3212 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3213 *    @dev. Drivers that want to take advantage of request-based runtime PM
3214 *    should call this function after @dev has been initialized, and its
3215 *    request queue @q has been allocated, and runtime PM for it can not happen
3216 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3217 *    cases, driver should call this function before any I/O has taken place.
3218 *
3219 *    This function takes care of setting up using auto suspend for the device,
3220 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3221 *    until an updated value is either set by user or by driver. Drivers do
3222 *    not need to touch other autosuspend settings.
3223 *
3224 *    The block layer runtime PM is request based, so only works for drivers
3225 *    that use request as their IO unit instead of those directly use bio's.
3226 */
3227void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3228{
3229	q->dev = dev;
3230	q->rpm_status = RPM_ACTIVE;
3231	pm_runtime_set_autosuspend_delay(q->dev, -1);
3232	pm_runtime_use_autosuspend(q->dev);
3233}
3234EXPORT_SYMBOL(blk_pm_runtime_init);
3235
3236/**
3237 * blk_pre_runtime_suspend - Pre runtime suspend check
3238 * @q: the queue of the device
3239 *
3240 * Description:
3241 *    This function will check if runtime suspend is allowed for the device
3242 *    by examining if there are any requests pending in the queue. If there
3243 *    are requests pending, the device can not be runtime suspended; otherwise,
3244 *    the queue's status will be updated to SUSPENDING and the driver can
3245 *    proceed to suspend the device.
3246 *
3247 *    For the not allowed case, we mark last busy for the device so that
3248 *    runtime PM core will try to autosuspend it some time later.
3249 *
3250 *    This function should be called near the start of the device's
3251 *    runtime_suspend callback.
3252 *
3253 * Return:
3254 *    0		- OK to runtime suspend the device
3255 *    -EBUSY	- Device should not be runtime suspended
3256 */
3257int blk_pre_runtime_suspend(struct request_queue *q)
3258{
3259	int ret = 0;
3260
3261	spin_lock_irq(q->queue_lock);
3262	if (q->nr_pending) {
3263		ret = -EBUSY;
3264		pm_runtime_mark_last_busy(q->dev);
3265	} else {
3266		q->rpm_status = RPM_SUSPENDING;
3267	}
3268	spin_unlock_irq(q->queue_lock);
3269	return ret;
3270}
3271EXPORT_SYMBOL(blk_pre_runtime_suspend);
3272
3273/**
3274 * blk_post_runtime_suspend - Post runtime suspend processing
3275 * @q: the queue of the device
3276 * @err: return value of the device's runtime_suspend function
3277 *
3278 * Description:
3279 *    Update the queue's runtime status according to the return value of the
3280 *    device's runtime suspend function and mark last busy for the device so
3281 *    that PM core will try to auto suspend the device at a later time.
3282 *
3283 *    This function should be called near the end of the device's
3284 *    runtime_suspend callback.
3285 */
3286void blk_post_runtime_suspend(struct request_queue *q, int err)
3287{
3288	spin_lock_irq(q->queue_lock);
3289	if (!err) {
3290		q->rpm_status = RPM_SUSPENDED;
3291	} else {
3292		q->rpm_status = RPM_ACTIVE;
3293		pm_runtime_mark_last_busy(q->dev);
3294	}
3295	spin_unlock_irq(q->queue_lock);
3296}
3297EXPORT_SYMBOL(blk_post_runtime_suspend);
3298
3299/**
3300 * blk_pre_runtime_resume - Pre runtime resume processing
3301 * @q: the queue of the device
3302 *
3303 * Description:
3304 *    Update the queue's runtime status to RESUMING in preparation for the
3305 *    runtime resume of the device.
3306 *
3307 *    This function should be called near the start of the device's
3308 *    runtime_resume callback.
3309 */
3310void blk_pre_runtime_resume(struct request_queue *q)
3311{
3312	spin_lock_irq(q->queue_lock);
3313	q->rpm_status = RPM_RESUMING;
3314	spin_unlock_irq(q->queue_lock);
3315}
3316EXPORT_SYMBOL(blk_pre_runtime_resume);
3317
3318/**
3319 * blk_post_runtime_resume - Post runtime resume processing
3320 * @q: the queue of the device
3321 * @err: return value of the device's runtime_resume function
3322 *
3323 * Description:
3324 *    Update the queue's runtime status according to the return value of the
3325 *    device's runtime_resume function. If it is successfully resumed, process
3326 *    the requests that are queued into the device's queue when it is resuming
3327 *    and then mark last busy and initiate autosuspend for it.
3328 *
3329 *    This function should be called near the end of the device's
3330 *    runtime_resume callback.
3331 */
3332void blk_post_runtime_resume(struct request_queue *q, int err)
3333{
3334	spin_lock_irq(q->queue_lock);
3335	if (!err) {
3336		q->rpm_status = RPM_ACTIVE;
3337		__blk_run_queue(q);
3338		pm_runtime_mark_last_busy(q->dev);
3339		pm_request_autosuspend(q->dev);
3340	} else {
3341		q->rpm_status = RPM_SUSPENDED;
3342	}
3343	spin_unlock_irq(q->queue_lock);
3344}
3345EXPORT_SYMBOL(blk_post_runtime_resume);
3346#endif
3347
3348int __init blk_dev_init(void)
3349{
3350	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3351			sizeof(((struct request *)0)->cmd_flags));
3352
3353	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3354	kblockd_workqueue = alloc_workqueue("kblockd",
3355					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3356	if (!kblockd_workqueue)
3357		panic("Failed to create kblockd\n");
3358
3359	request_cachep = kmem_cache_create("blkdev_requests",
3360			sizeof(struct request), 0, SLAB_PANIC, NULL);
3361
3362	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3363			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3364
3365	return 0;
3366}
3367