1/*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/uio.h>
23#include <linux/iocontext.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
27#include <linux/export.h>
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
30#include <linux/cgroup.h>
31
32#include <trace/events/block.h>
33
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS		4
39
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55struct bio_set *fs_bio_set;
56EXPORT_SYMBOL(fs_bio_set);
57
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62	struct kmem_cache *slab;
63	unsigned int slab_ref;
64	unsigned int slab_size;
65	char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73	unsigned int sz = sizeof(struct bio) + extra_size;
74	struct kmem_cache *slab = NULL;
75	struct bio_slab *bslab, *new_bio_slabs;
76	unsigned int new_bio_slab_max;
77	unsigned int i, entry = -1;
78
79	mutex_lock(&bio_slab_lock);
80
81	i = 0;
82	while (i < bio_slab_nr) {
83		bslab = &bio_slabs[i];
84
85		if (!bslab->slab && entry == -1)
86			entry = i;
87		else if (bslab->slab_size == sz) {
88			slab = bslab->slab;
89			bslab->slab_ref++;
90			break;
91		}
92		i++;
93	}
94
95	if (slab)
96		goto out_unlock;
97
98	if (bio_slab_nr == bio_slab_max && entry == -1) {
99		new_bio_slab_max = bio_slab_max << 1;
100		new_bio_slabs = krealloc(bio_slabs,
101					 new_bio_slab_max * sizeof(struct bio_slab),
102					 GFP_KERNEL);
103		if (!new_bio_slabs)
104			goto out_unlock;
105		bio_slab_max = new_bio_slab_max;
106		bio_slabs = new_bio_slabs;
107	}
108	if (entry == -1)
109		entry = bio_slab_nr++;
110
111	bslab = &bio_slabs[entry];
112
113	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115				 SLAB_HWCACHE_ALIGN, NULL);
116	if (!slab)
117		goto out_unlock;
118
119	bslab->slab = slab;
120	bslab->slab_ref = 1;
121	bslab->slab_size = sz;
122out_unlock:
123	mutex_unlock(&bio_slab_lock);
124	return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129	struct bio_slab *bslab = NULL;
130	unsigned int i;
131
132	mutex_lock(&bio_slab_lock);
133
134	for (i = 0; i < bio_slab_nr; i++) {
135		if (bs->bio_slab == bio_slabs[i].slab) {
136			bslab = &bio_slabs[i];
137			break;
138		}
139	}
140
141	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142		goto out;
143
144	WARN_ON(!bslab->slab_ref);
145
146	if (--bslab->slab_ref)
147		goto out;
148
149	kmem_cache_destroy(bslab->slab);
150	bslab->slab = NULL;
151
152out:
153	mutex_unlock(&bio_slab_lock);
154}
155
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158	return bvec_slabs[idx].nr_vecs;
159}
160
161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162{
163	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165	if (idx == BIOVEC_MAX_IDX)
166		mempool_free(bv, pool);
167	else {
168		struct biovec_slab *bvs = bvec_slabs + idx;
169
170		kmem_cache_free(bvs->slab, bv);
171	}
172}
173
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175			   mempool_t *pool)
176{
177	struct bio_vec *bvl;
178
179	/*
180	 * see comment near bvec_array define!
181	 */
182	switch (nr) {
183	case 1:
184		*idx = 0;
185		break;
186	case 2 ... 4:
187		*idx = 1;
188		break;
189	case 5 ... 16:
190		*idx = 2;
191		break;
192	case 17 ... 64:
193		*idx = 3;
194		break;
195	case 65 ... 128:
196		*idx = 4;
197		break;
198	case 129 ... BIO_MAX_PAGES:
199		*idx = 5;
200		break;
201	default:
202		return NULL;
203	}
204
205	/*
206	 * idx now points to the pool we want to allocate from. only the
207	 * 1-vec entry pool is mempool backed.
208	 */
209	if (*idx == BIOVEC_MAX_IDX) {
210fallback:
211		bvl = mempool_alloc(pool, gfp_mask);
212	} else {
213		struct biovec_slab *bvs = bvec_slabs + *idx;
214		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
216		/*
217		 * Make this allocation restricted and don't dump info on
218		 * allocation failures, since we'll fallback to the mempool
219		 * in case of failure.
220		 */
221		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223		/*
224		 * Try a slab allocation. If this fails and __GFP_WAIT
225		 * is set, retry with the 1-entry mempool
226		 */
227		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229			*idx = BIOVEC_MAX_IDX;
230			goto fallback;
231		}
232	}
233
234	return bvl;
235}
236
237static void __bio_free(struct bio *bio)
238{
239	bio_disassociate_task(bio);
240
241	if (bio_integrity(bio))
242		bio_integrity_free(bio);
243}
244
245static void bio_free(struct bio *bio)
246{
247	struct bio_set *bs = bio->bi_pool;
248	void *p;
249
250	__bio_free(bio);
251
252	if (bs) {
253		if (bio_flagged(bio, BIO_OWNS_VEC))
254			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256		/*
257		 * If we have front padding, adjust the bio pointer before freeing
258		 */
259		p = bio;
260		p -= bs->front_pad;
261
262		mempool_free(p, bs->bio_pool);
263	} else {
264		/* Bio was allocated by bio_kmalloc() */
265		kfree(bio);
266	}
267}
268
269void bio_init(struct bio *bio)
270{
271	memset(bio, 0, sizeof(*bio));
272	bio->bi_flags = 1 << BIO_UPTODATE;
273	atomic_set(&bio->bi_remaining, 1);
274	atomic_set(&bio->bi_cnt, 1);
275}
276EXPORT_SYMBOL(bio_init);
277
278/**
279 * bio_reset - reinitialize a bio
280 * @bio:	bio to reset
281 *
282 * Description:
283 *   After calling bio_reset(), @bio will be in the same state as a freshly
284 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
286 *   comment in struct bio.
287 */
288void bio_reset(struct bio *bio)
289{
290	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
292	__bio_free(bio);
293
294	memset(bio, 0, BIO_RESET_BYTES);
295	bio->bi_flags = flags|(1 << BIO_UPTODATE);
296	atomic_set(&bio->bi_remaining, 1);
297}
298EXPORT_SYMBOL(bio_reset);
299
300static void bio_chain_endio(struct bio *bio, int error)
301{
302	bio_endio(bio->bi_private, error);
303	bio_put(bio);
304}
305
306/**
307 * bio_chain - chain bio completions
308 * @bio: the target bio
309 * @parent: the @bio's parent bio
310 *
311 * The caller won't have a bi_end_io called when @bio completes - instead,
312 * @parent's bi_end_io won't be called until both @parent and @bio have
313 * completed; the chained bio will also be freed when it completes.
314 *
315 * The caller must not set bi_private or bi_end_io in @bio.
316 */
317void bio_chain(struct bio *bio, struct bio *parent)
318{
319	BUG_ON(bio->bi_private || bio->bi_end_io);
320
321	bio->bi_private = parent;
322	bio->bi_end_io	= bio_chain_endio;
323	atomic_inc(&parent->bi_remaining);
324}
325EXPORT_SYMBOL(bio_chain);
326
327static void bio_alloc_rescue(struct work_struct *work)
328{
329	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330	struct bio *bio;
331
332	while (1) {
333		spin_lock(&bs->rescue_lock);
334		bio = bio_list_pop(&bs->rescue_list);
335		spin_unlock(&bs->rescue_lock);
336
337		if (!bio)
338			break;
339
340		generic_make_request(bio);
341	}
342}
343
344static void punt_bios_to_rescuer(struct bio_set *bs)
345{
346	struct bio_list punt, nopunt;
347	struct bio *bio;
348
349	/*
350	 * In order to guarantee forward progress we must punt only bios that
351	 * were allocated from this bio_set; otherwise, if there was a bio on
352	 * there for a stacking driver higher up in the stack, processing it
353	 * could require allocating bios from this bio_set, and doing that from
354	 * our own rescuer would be bad.
355	 *
356	 * Since bio lists are singly linked, pop them all instead of trying to
357	 * remove from the middle of the list:
358	 */
359
360	bio_list_init(&punt);
361	bio_list_init(&nopunt);
362
363	while ((bio = bio_list_pop(current->bio_list)))
364		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365
366	*current->bio_list = nopunt;
367
368	spin_lock(&bs->rescue_lock);
369	bio_list_merge(&bs->rescue_list, &punt);
370	spin_unlock(&bs->rescue_lock);
371
372	queue_work(bs->rescue_workqueue, &bs->rescue_work);
373}
374
375/**
376 * bio_alloc_bioset - allocate a bio for I/O
377 * @gfp_mask:   the GFP_ mask given to the slab allocator
378 * @nr_iovecs:	number of iovecs to pre-allocate
379 * @bs:		the bio_set to allocate from.
380 *
381 * Description:
382 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383 *   backed by the @bs's mempool.
384 *
385 *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386 *   able to allocate a bio. This is due to the mempool guarantees. To make this
387 *   work, callers must never allocate more than 1 bio at a time from this pool.
388 *   Callers that need to allocate more than 1 bio must always submit the
389 *   previously allocated bio for IO before attempting to allocate a new one.
390 *   Failure to do so can cause deadlocks under memory pressure.
391 *
392 *   Note that when running under generic_make_request() (i.e. any block
393 *   driver), bios are not submitted until after you return - see the code in
394 *   generic_make_request() that converts recursion into iteration, to prevent
395 *   stack overflows.
396 *
397 *   This would normally mean allocating multiple bios under
398 *   generic_make_request() would be susceptible to deadlocks, but we have
399 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
400 *   thread.
401 *
402 *   However, we do not guarantee forward progress for allocations from other
403 *   mempools. Doing multiple allocations from the same mempool under
404 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
405 *   for per bio allocations.
406 *
407 *   RETURNS:
408 *   Pointer to new bio on success, NULL on failure.
409 */
410struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
411{
412	gfp_t saved_gfp = gfp_mask;
413	unsigned front_pad;
414	unsigned inline_vecs;
415	unsigned long idx = BIO_POOL_NONE;
416	struct bio_vec *bvl = NULL;
417	struct bio *bio;
418	void *p;
419
420	if (!bs) {
421		if (nr_iovecs > UIO_MAXIOV)
422			return NULL;
423
424		p = kmalloc(sizeof(struct bio) +
425			    nr_iovecs * sizeof(struct bio_vec),
426			    gfp_mask);
427		front_pad = 0;
428		inline_vecs = nr_iovecs;
429	} else {
430		/* should not use nobvec bioset for nr_iovecs > 0 */
431		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
432			return NULL;
433		/*
434		 * generic_make_request() converts recursion to iteration; this
435		 * means if we're running beneath it, any bios we allocate and
436		 * submit will not be submitted (and thus freed) until after we
437		 * return.
438		 *
439		 * This exposes us to a potential deadlock if we allocate
440		 * multiple bios from the same bio_set() while running
441		 * underneath generic_make_request(). If we were to allocate
442		 * multiple bios (say a stacking block driver that was splitting
443		 * bios), we would deadlock if we exhausted the mempool's
444		 * reserve.
445		 *
446		 * We solve this, and guarantee forward progress, with a rescuer
447		 * workqueue per bio_set. If we go to allocate and there are
448		 * bios on current->bio_list, we first try the allocation
449		 * without __GFP_WAIT; if that fails, we punt those bios we
450		 * would be blocking to the rescuer workqueue before we retry
451		 * with the original gfp_flags.
452		 */
453
454		if (current->bio_list && !bio_list_empty(current->bio_list))
455			gfp_mask &= ~__GFP_WAIT;
456
457		p = mempool_alloc(bs->bio_pool, gfp_mask);
458		if (!p && gfp_mask != saved_gfp) {
459			punt_bios_to_rescuer(bs);
460			gfp_mask = saved_gfp;
461			p = mempool_alloc(bs->bio_pool, gfp_mask);
462		}
463
464		front_pad = bs->front_pad;
465		inline_vecs = BIO_INLINE_VECS;
466	}
467
468	if (unlikely(!p))
469		return NULL;
470
471	bio = p + front_pad;
472	bio_init(bio);
473
474	if (nr_iovecs > inline_vecs) {
475		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
476		if (!bvl && gfp_mask != saved_gfp) {
477			punt_bios_to_rescuer(bs);
478			gfp_mask = saved_gfp;
479			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
480		}
481
482		if (unlikely(!bvl))
483			goto err_free;
484
485		bio->bi_flags |= 1 << BIO_OWNS_VEC;
486	} else if (nr_iovecs) {
487		bvl = bio->bi_inline_vecs;
488	}
489
490	bio->bi_pool = bs;
491	bio->bi_flags |= idx << BIO_POOL_OFFSET;
492	bio->bi_max_vecs = nr_iovecs;
493	bio->bi_io_vec = bvl;
494	return bio;
495
496err_free:
497	mempool_free(p, bs->bio_pool);
498	return NULL;
499}
500EXPORT_SYMBOL(bio_alloc_bioset);
501
502void zero_fill_bio(struct bio *bio)
503{
504	unsigned long flags;
505	struct bio_vec bv;
506	struct bvec_iter iter;
507
508	bio_for_each_segment(bv, bio, iter) {
509		char *data = bvec_kmap_irq(&bv, &flags);
510		memset(data, 0, bv.bv_len);
511		flush_dcache_page(bv.bv_page);
512		bvec_kunmap_irq(data, &flags);
513	}
514}
515EXPORT_SYMBOL(zero_fill_bio);
516
517/**
518 * bio_put - release a reference to a bio
519 * @bio:   bio to release reference to
520 *
521 * Description:
522 *   Put a reference to a &struct bio, either one you have gotten with
523 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
524 **/
525void bio_put(struct bio *bio)
526{
527	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
528
529	/*
530	 * last put frees it
531	 */
532	if (atomic_dec_and_test(&bio->bi_cnt))
533		bio_free(bio);
534}
535EXPORT_SYMBOL(bio_put);
536
537inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
538{
539	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
540		blk_recount_segments(q, bio);
541
542	return bio->bi_phys_segments;
543}
544EXPORT_SYMBOL(bio_phys_segments);
545
546/**
547 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
548 * 	@bio: destination bio
549 * 	@bio_src: bio to clone
550 *
551 *	Clone a &bio. Caller will own the returned bio, but not
552 *	the actual data it points to. Reference count of returned
553 * 	bio will be one.
554 *
555 * 	Caller must ensure that @bio_src is not freed before @bio.
556 */
557void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
558{
559	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
560
561	/*
562	 * most users will be overriding ->bi_bdev with a new target,
563	 * so we don't set nor calculate new physical/hw segment counts here
564	 */
565	bio->bi_bdev = bio_src->bi_bdev;
566	bio->bi_flags |= 1 << BIO_CLONED;
567	bio->bi_rw = bio_src->bi_rw;
568	bio->bi_iter = bio_src->bi_iter;
569	bio->bi_io_vec = bio_src->bi_io_vec;
570}
571EXPORT_SYMBOL(__bio_clone_fast);
572
573/**
574 *	bio_clone_fast - clone a bio that shares the original bio's biovec
575 *	@bio: bio to clone
576 *	@gfp_mask: allocation priority
577 *	@bs: bio_set to allocate from
578 *
579 * 	Like __bio_clone_fast, only also allocates the returned bio
580 */
581struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
582{
583	struct bio *b;
584
585	b = bio_alloc_bioset(gfp_mask, 0, bs);
586	if (!b)
587		return NULL;
588
589	__bio_clone_fast(b, bio);
590
591	if (bio_integrity(bio)) {
592		int ret;
593
594		ret = bio_integrity_clone(b, bio, gfp_mask);
595
596		if (ret < 0) {
597			bio_put(b);
598			return NULL;
599		}
600	}
601
602	return b;
603}
604EXPORT_SYMBOL(bio_clone_fast);
605
606/**
607 * 	bio_clone_bioset - clone a bio
608 * 	@bio_src: bio to clone
609 *	@gfp_mask: allocation priority
610 *	@bs: bio_set to allocate from
611 *
612 *	Clone bio. Caller will own the returned bio, but not the actual data it
613 *	points to. Reference count of returned bio will be one.
614 */
615struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
616			     struct bio_set *bs)
617{
618	struct bvec_iter iter;
619	struct bio_vec bv;
620	struct bio *bio;
621
622	/*
623	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
624	 * bio_src->bi_io_vec to bio->bi_io_vec.
625	 *
626	 * We can't do that anymore, because:
627	 *
628	 *  - The point of cloning the biovec is to produce a bio with a biovec
629	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
630	 *
631	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
632	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
633	 *    But the clone should succeed as long as the number of biovecs we
634	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
635	 *
636	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
637	 *    that does not own the bio - reason being drivers don't use it for
638	 *    iterating over the biovec anymore, so expecting it to be kept up
639	 *    to date (i.e. for clones that share the parent biovec) is just
640	 *    asking for trouble and would force extra work on
641	 *    __bio_clone_fast() anyways.
642	 */
643
644	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
645	if (!bio)
646		return NULL;
647
648	bio->bi_bdev		= bio_src->bi_bdev;
649	bio->bi_rw		= bio_src->bi_rw;
650	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
651	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
652
653	if (bio->bi_rw & REQ_DISCARD)
654		goto integrity_clone;
655
656	if (bio->bi_rw & REQ_WRITE_SAME) {
657		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
658		goto integrity_clone;
659	}
660
661	bio_for_each_segment(bv, bio_src, iter)
662		bio->bi_io_vec[bio->bi_vcnt++] = bv;
663
664integrity_clone:
665	if (bio_integrity(bio_src)) {
666		int ret;
667
668		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
669		if (ret < 0) {
670			bio_put(bio);
671			return NULL;
672		}
673	}
674
675	return bio;
676}
677EXPORT_SYMBOL(bio_clone_bioset);
678
679/**
680 *	bio_get_nr_vecs		- return approx number of vecs
681 *	@bdev:  I/O target
682 *
683 *	Return the approximate number of pages we can send to this target.
684 *	There's no guarantee that you will be able to fit this number of pages
685 *	into a bio, it does not account for dynamic restrictions that vary
686 *	on offset.
687 */
688int bio_get_nr_vecs(struct block_device *bdev)
689{
690	struct request_queue *q = bdev_get_queue(bdev);
691	int nr_pages;
692
693	nr_pages = min_t(unsigned,
694		     queue_max_segments(q),
695		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
696
697	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
698
699}
700EXPORT_SYMBOL(bio_get_nr_vecs);
701
702static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
703			  *page, unsigned int len, unsigned int offset,
704			  unsigned int max_sectors)
705{
706	int retried_segments = 0;
707	struct bio_vec *bvec;
708
709	/*
710	 * cloned bio must not modify vec list
711	 */
712	if (unlikely(bio_flagged(bio, BIO_CLONED)))
713		return 0;
714
715	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
716		return 0;
717
718	/*
719	 * For filesystems with a blocksize smaller than the pagesize
720	 * we will often be called with the same page as last time and
721	 * a consecutive offset.  Optimize this special case.
722	 */
723	if (bio->bi_vcnt > 0) {
724		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
725
726		if (page == prev->bv_page &&
727		    offset == prev->bv_offset + prev->bv_len) {
728			unsigned int prev_bv_len = prev->bv_len;
729			prev->bv_len += len;
730
731			if (q->merge_bvec_fn) {
732				struct bvec_merge_data bvm = {
733					/* prev_bvec is already charged in
734					   bi_size, discharge it in order to
735					   simulate merging updated prev_bvec
736					   as new bvec. */
737					.bi_bdev = bio->bi_bdev,
738					.bi_sector = bio->bi_iter.bi_sector,
739					.bi_size = bio->bi_iter.bi_size -
740						prev_bv_len,
741					.bi_rw = bio->bi_rw,
742				};
743
744				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
745					prev->bv_len -= len;
746					return 0;
747				}
748			}
749
750			bio->bi_iter.bi_size += len;
751			goto done;
752		}
753
754		/*
755		 * If the queue doesn't support SG gaps and adding this
756		 * offset would create a gap, disallow it.
757		 */
758		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
759		    bvec_gap_to_prev(prev, offset))
760			return 0;
761	}
762
763	if (bio->bi_vcnt >= bio->bi_max_vecs)
764		return 0;
765
766	/*
767	 * setup the new entry, we might clear it again later if we
768	 * cannot add the page
769	 */
770	bvec = &bio->bi_io_vec[bio->bi_vcnt];
771	bvec->bv_page = page;
772	bvec->bv_len = len;
773	bvec->bv_offset = offset;
774	bio->bi_vcnt++;
775	bio->bi_phys_segments++;
776	bio->bi_iter.bi_size += len;
777
778	/*
779	 * Perform a recount if the number of segments is greater
780	 * than queue_max_segments(q).
781	 */
782
783	while (bio->bi_phys_segments > queue_max_segments(q)) {
784
785		if (retried_segments)
786			goto failed;
787
788		retried_segments = 1;
789		blk_recount_segments(q, bio);
790	}
791
792	/*
793	 * if queue has other restrictions (eg varying max sector size
794	 * depending on offset), it can specify a merge_bvec_fn in the
795	 * queue to get further control
796	 */
797	if (q->merge_bvec_fn) {
798		struct bvec_merge_data bvm = {
799			.bi_bdev = bio->bi_bdev,
800			.bi_sector = bio->bi_iter.bi_sector,
801			.bi_size = bio->bi_iter.bi_size - len,
802			.bi_rw = bio->bi_rw,
803		};
804
805		/*
806		 * merge_bvec_fn() returns number of bytes it can accept
807		 * at this offset
808		 */
809		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
810			goto failed;
811	}
812
813	/* If we may be able to merge these biovecs, force a recount */
814	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
815		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
816
817 done:
818	return len;
819
820 failed:
821	bvec->bv_page = NULL;
822	bvec->bv_len = 0;
823	bvec->bv_offset = 0;
824	bio->bi_vcnt--;
825	bio->bi_iter.bi_size -= len;
826	blk_recount_segments(q, bio);
827	return 0;
828}
829
830/**
831 *	bio_add_pc_page	-	attempt to add page to bio
832 *	@q: the target queue
833 *	@bio: destination bio
834 *	@page: page to add
835 *	@len: vec entry length
836 *	@offset: vec entry offset
837 *
838 *	Attempt to add a page to the bio_vec maplist. This can fail for a
839 *	number of reasons, such as the bio being full or target block device
840 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
841 *	so it is always possible to add a single page to an empty bio.
842 *
843 *	This should only be used by REQ_PC bios.
844 */
845int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
846		    unsigned int len, unsigned int offset)
847{
848	return __bio_add_page(q, bio, page, len, offset,
849			      queue_max_hw_sectors(q));
850}
851EXPORT_SYMBOL(bio_add_pc_page);
852
853/**
854 *	bio_add_page	-	attempt to add page to bio
855 *	@bio: destination bio
856 *	@page: page to add
857 *	@len: vec entry length
858 *	@offset: vec entry offset
859 *
860 *	Attempt to add a page to the bio_vec maplist. This can fail for a
861 *	number of reasons, such as the bio being full or target block device
862 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
863 *	so it is always possible to add a single page to an empty bio.
864 */
865int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
866		 unsigned int offset)
867{
868	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
869	unsigned int max_sectors;
870
871	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
872	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
873		max_sectors = len >> 9;
874
875	return __bio_add_page(q, bio, page, len, offset, max_sectors);
876}
877EXPORT_SYMBOL(bio_add_page);
878
879struct submit_bio_ret {
880	struct completion event;
881	int error;
882};
883
884static void submit_bio_wait_endio(struct bio *bio, int error)
885{
886	struct submit_bio_ret *ret = bio->bi_private;
887
888	ret->error = error;
889	complete(&ret->event);
890}
891
892/**
893 * submit_bio_wait - submit a bio, and wait until it completes
894 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
895 * @bio: The &struct bio which describes the I/O
896 *
897 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
898 * bio_endio() on failure.
899 */
900int submit_bio_wait(int rw, struct bio *bio)
901{
902	struct submit_bio_ret ret;
903
904	rw |= REQ_SYNC;
905	init_completion(&ret.event);
906	bio->bi_private = &ret;
907	bio->bi_end_io = submit_bio_wait_endio;
908	submit_bio(rw, bio);
909	wait_for_completion(&ret.event);
910
911	return ret.error;
912}
913EXPORT_SYMBOL(submit_bio_wait);
914
915/**
916 * bio_advance - increment/complete a bio by some number of bytes
917 * @bio:	bio to advance
918 * @bytes:	number of bytes to complete
919 *
920 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
921 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
922 * be updated on the last bvec as well.
923 *
924 * @bio will then represent the remaining, uncompleted portion of the io.
925 */
926void bio_advance(struct bio *bio, unsigned bytes)
927{
928	if (bio_integrity(bio))
929		bio_integrity_advance(bio, bytes);
930
931	bio_advance_iter(bio, &bio->bi_iter, bytes);
932}
933EXPORT_SYMBOL(bio_advance);
934
935/**
936 * bio_alloc_pages - allocates a single page for each bvec in a bio
937 * @bio: bio to allocate pages for
938 * @gfp_mask: flags for allocation
939 *
940 * Allocates pages up to @bio->bi_vcnt.
941 *
942 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
943 * freed.
944 */
945int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
946{
947	int i;
948	struct bio_vec *bv;
949
950	bio_for_each_segment_all(bv, bio, i) {
951		bv->bv_page = alloc_page(gfp_mask);
952		if (!bv->bv_page) {
953			while (--bv >= bio->bi_io_vec)
954				__free_page(bv->bv_page);
955			return -ENOMEM;
956		}
957	}
958
959	return 0;
960}
961EXPORT_SYMBOL(bio_alloc_pages);
962
963/**
964 * bio_copy_data - copy contents of data buffers from one chain of bios to
965 * another
966 * @src: source bio list
967 * @dst: destination bio list
968 *
969 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
970 * @src and @dst as linked lists of bios.
971 *
972 * Stops when it reaches the end of either @src or @dst - that is, copies
973 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
974 */
975void bio_copy_data(struct bio *dst, struct bio *src)
976{
977	struct bvec_iter src_iter, dst_iter;
978	struct bio_vec src_bv, dst_bv;
979	void *src_p, *dst_p;
980	unsigned bytes;
981
982	src_iter = src->bi_iter;
983	dst_iter = dst->bi_iter;
984
985	while (1) {
986		if (!src_iter.bi_size) {
987			src = src->bi_next;
988			if (!src)
989				break;
990
991			src_iter = src->bi_iter;
992		}
993
994		if (!dst_iter.bi_size) {
995			dst = dst->bi_next;
996			if (!dst)
997				break;
998
999			dst_iter = dst->bi_iter;
1000		}
1001
1002		src_bv = bio_iter_iovec(src, src_iter);
1003		dst_bv = bio_iter_iovec(dst, dst_iter);
1004
1005		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1006
1007		src_p = kmap_atomic(src_bv.bv_page);
1008		dst_p = kmap_atomic(dst_bv.bv_page);
1009
1010		memcpy(dst_p + dst_bv.bv_offset,
1011		       src_p + src_bv.bv_offset,
1012		       bytes);
1013
1014		kunmap_atomic(dst_p);
1015		kunmap_atomic(src_p);
1016
1017		bio_advance_iter(src, &src_iter, bytes);
1018		bio_advance_iter(dst, &dst_iter, bytes);
1019	}
1020}
1021EXPORT_SYMBOL(bio_copy_data);
1022
1023struct bio_map_data {
1024	int is_our_pages;
1025	struct iov_iter iter;
1026	struct iovec iov[];
1027};
1028
1029static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1030					       gfp_t gfp_mask)
1031{
1032	if (iov_count > UIO_MAXIOV)
1033		return NULL;
1034
1035	return kmalloc(sizeof(struct bio_map_data) +
1036		       sizeof(struct iovec) * iov_count, gfp_mask);
1037}
1038
1039/**
1040 * bio_copy_from_iter - copy all pages from iov_iter to bio
1041 * @bio: The &struct bio which describes the I/O as destination
1042 * @iter: iov_iter as source
1043 *
1044 * Copy all pages from iov_iter to bio.
1045 * Returns 0 on success, or error on failure.
1046 */
1047static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1048{
1049	int i;
1050	struct bio_vec *bvec;
1051
1052	bio_for_each_segment_all(bvec, bio, i) {
1053		ssize_t ret;
1054
1055		ret = copy_page_from_iter(bvec->bv_page,
1056					  bvec->bv_offset,
1057					  bvec->bv_len,
1058					  &iter);
1059
1060		if (!iov_iter_count(&iter))
1061			break;
1062
1063		if (ret < bvec->bv_len)
1064			return -EFAULT;
1065	}
1066
1067	return 0;
1068}
1069
1070/**
1071 * bio_copy_to_iter - copy all pages from bio to iov_iter
1072 * @bio: The &struct bio which describes the I/O as source
1073 * @iter: iov_iter as destination
1074 *
1075 * Copy all pages from bio to iov_iter.
1076 * Returns 0 on success, or error on failure.
1077 */
1078static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1079{
1080	int i;
1081	struct bio_vec *bvec;
1082
1083	bio_for_each_segment_all(bvec, bio, i) {
1084		ssize_t ret;
1085
1086		ret = copy_page_to_iter(bvec->bv_page,
1087					bvec->bv_offset,
1088					bvec->bv_len,
1089					&iter);
1090
1091		if (!iov_iter_count(&iter))
1092			break;
1093
1094		if (ret < bvec->bv_len)
1095			return -EFAULT;
1096	}
1097
1098	return 0;
1099}
1100
1101static void bio_free_pages(struct bio *bio)
1102{
1103	struct bio_vec *bvec;
1104	int i;
1105
1106	bio_for_each_segment_all(bvec, bio, i)
1107		__free_page(bvec->bv_page);
1108}
1109
1110/**
1111 *	bio_uncopy_user	-	finish previously mapped bio
1112 *	@bio: bio being terminated
1113 *
1114 *	Free pages allocated from bio_copy_user_iov() and write back data
1115 *	to user space in case of a read.
1116 */
1117int bio_uncopy_user(struct bio *bio)
1118{
1119	struct bio_map_data *bmd = bio->bi_private;
1120	int ret = 0;
1121
1122	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1123		/*
1124		 * if we're in a workqueue, the request is orphaned, so
1125		 * don't copy into a random user address space, just free
1126		 * and return -EINTR so user space doesn't expect any data.
1127		 */
1128		if (!current->mm)
1129			ret = -EINTR;
1130		else if (bio_data_dir(bio) == READ)
1131			ret = bio_copy_to_iter(bio, bmd->iter);
1132		if (bmd->is_our_pages)
1133			bio_free_pages(bio);
1134	}
1135	kfree(bmd);
1136	bio_put(bio);
1137	return ret;
1138}
1139EXPORT_SYMBOL(bio_uncopy_user);
1140
1141/**
1142 *	bio_copy_user_iov	-	copy user data to bio
1143 *	@q:		destination block queue
1144 *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1145 *	@iter:		iovec iterator
1146 *	@gfp_mask:	memory allocation flags
1147 *
1148 *	Prepares and returns a bio for indirect user io, bouncing data
1149 *	to/from kernel pages as necessary. Must be paired with
1150 *	call bio_uncopy_user() on io completion.
1151 */
1152struct bio *bio_copy_user_iov(struct request_queue *q,
1153			      struct rq_map_data *map_data,
1154			      const struct iov_iter *iter,
1155			      gfp_t gfp_mask)
1156{
1157	struct bio_map_data *bmd;
1158	struct page *page;
1159	struct bio *bio;
1160	int i, ret;
1161	int nr_pages = 0;
1162	unsigned int len = iter->count;
1163	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1164
1165	for (i = 0; i < iter->nr_segs; i++) {
1166		unsigned long uaddr;
1167		unsigned long end;
1168		unsigned long start;
1169
1170		uaddr = (unsigned long) iter->iov[i].iov_base;
1171		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1172			>> PAGE_SHIFT;
1173		start = uaddr >> PAGE_SHIFT;
1174
1175		/*
1176		 * Overflow, abort
1177		 */
1178		if (end < start)
1179			return ERR_PTR(-EINVAL);
1180
1181		nr_pages += end - start;
1182	}
1183
1184	if (offset)
1185		nr_pages++;
1186
1187	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1188	if (!bmd)
1189		return ERR_PTR(-ENOMEM);
1190
1191	/*
1192	 * We need to do a deep copy of the iov_iter including the iovecs.
1193	 * The caller provided iov might point to an on-stack or otherwise
1194	 * shortlived one.
1195	 */
1196	bmd->is_our_pages = map_data ? 0 : 1;
1197	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1198	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1199			iter->nr_segs, iter->count);
1200
1201	ret = -ENOMEM;
1202	bio = bio_kmalloc(gfp_mask, nr_pages);
1203	if (!bio)
1204		goto out_bmd;
1205
1206	if (iter->type & WRITE)
1207		bio->bi_rw |= REQ_WRITE;
1208
1209	ret = 0;
1210
1211	if (map_data) {
1212		nr_pages = 1 << map_data->page_order;
1213		i = map_data->offset / PAGE_SIZE;
1214	}
1215	while (len) {
1216		unsigned int bytes = PAGE_SIZE;
1217
1218		bytes -= offset;
1219
1220		if (bytes > len)
1221			bytes = len;
1222
1223		if (map_data) {
1224			if (i == map_data->nr_entries * nr_pages) {
1225				ret = -ENOMEM;
1226				break;
1227			}
1228
1229			page = map_data->pages[i / nr_pages];
1230			page += (i % nr_pages);
1231
1232			i++;
1233		} else {
1234			page = alloc_page(q->bounce_gfp | gfp_mask);
1235			if (!page) {
1236				ret = -ENOMEM;
1237				break;
1238			}
1239		}
1240
1241		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1242			break;
1243
1244		len -= bytes;
1245		offset = 0;
1246	}
1247
1248	if (ret)
1249		goto cleanup;
1250
1251	/*
1252	 * success
1253	 */
1254	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1255	    (map_data && map_data->from_user)) {
1256		ret = bio_copy_from_iter(bio, *iter);
1257		if (ret)
1258			goto cleanup;
1259	}
1260
1261	bio->bi_private = bmd;
1262	return bio;
1263cleanup:
1264	if (!map_data)
1265		bio_free_pages(bio);
1266	bio_put(bio);
1267out_bmd:
1268	kfree(bmd);
1269	return ERR_PTR(ret);
1270}
1271
1272/**
1273 *	bio_map_user_iov - map user iovec into bio
1274 *	@q:		the struct request_queue for the bio
1275 *	@iter:		iovec iterator
1276 *	@gfp_mask:	memory allocation flags
1277 *
1278 *	Map the user space address into a bio suitable for io to a block
1279 *	device. Returns an error pointer in case of error.
1280 */
1281struct bio *bio_map_user_iov(struct request_queue *q,
1282			     const struct iov_iter *iter,
1283			     gfp_t gfp_mask)
1284{
1285	int j;
1286	int nr_pages = 0;
1287	struct page **pages;
1288	struct bio *bio;
1289	int cur_page = 0;
1290	int ret, offset;
1291	struct iov_iter i;
1292	struct iovec iov;
1293
1294	iov_for_each(iov, i, *iter) {
1295		unsigned long uaddr = (unsigned long) iov.iov_base;
1296		unsigned long len = iov.iov_len;
1297		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1298		unsigned long start = uaddr >> PAGE_SHIFT;
1299
1300		/*
1301		 * Overflow, abort
1302		 */
1303		if (end < start)
1304			return ERR_PTR(-EINVAL);
1305
1306		nr_pages += end - start;
1307		/*
1308		 * buffer must be aligned to at least hardsector size for now
1309		 */
1310		if (uaddr & queue_dma_alignment(q))
1311			return ERR_PTR(-EINVAL);
1312	}
1313
1314	if (!nr_pages)
1315		return ERR_PTR(-EINVAL);
1316
1317	bio = bio_kmalloc(gfp_mask, nr_pages);
1318	if (!bio)
1319		return ERR_PTR(-ENOMEM);
1320
1321	ret = -ENOMEM;
1322	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1323	if (!pages)
1324		goto out;
1325
1326	iov_for_each(iov, i, *iter) {
1327		unsigned long uaddr = (unsigned long) iov.iov_base;
1328		unsigned long len = iov.iov_len;
1329		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330		unsigned long start = uaddr >> PAGE_SHIFT;
1331		const int local_nr_pages = end - start;
1332		const int page_limit = cur_page + local_nr_pages;
1333
1334		ret = get_user_pages_fast(uaddr, local_nr_pages,
1335				(iter->type & WRITE) != WRITE,
1336				&pages[cur_page]);
1337		if (ret < local_nr_pages) {
1338			ret = -EFAULT;
1339			goto out_unmap;
1340		}
1341
1342		offset = uaddr & ~PAGE_MASK;
1343		for (j = cur_page; j < page_limit; j++) {
1344			unsigned int bytes = PAGE_SIZE - offset;
1345
1346			if (len <= 0)
1347				break;
1348
1349			if (bytes > len)
1350				bytes = len;
1351
1352			/*
1353			 * sorry...
1354			 */
1355			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1356					    bytes)
1357				break;
1358
1359			len -= bytes;
1360			offset = 0;
1361		}
1362
1363		cur_page = j;
1364		/*
1365		 * release the pages we didn't map into the bio, if any
1366		 */
1367		while (j < page_limit)
1368			page_cache_release(pages[j++]);
1369	}
1370
1371	kfree(pages);
1372
1373	/*
1374	 * set data direction, and check if mapped pages need bouncing
1375	 */
1376	if (iter->type & WRITE)
1377		bio->bi_rw |= REQ_WRITE;
1378
1379	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1380
1381	/*
1382	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1383	 * it would normally disappear when its bi_end_io is run.
1384	 * however, we need it for the unmap, so grab an extra
1385	 * reference to it
1386	 */
1387	bio_get(bio);
1388	return bio;
1389
1390 out_unmap:
1391	for (j = 0; j < nr_pages; j++) {
1392		if (!pages[j])
1393			break;
1394		page_cache_release(pages[j]);
1395	}
1396 out:
1397	kfree(pages);
1398	bio_put(bio);
1399	return ERR_PTR(ret);
1400}
1401
1402static void __bio_unmap_user(struct bio *bio)
1403{
1404	struct bio_vec *bvec;
1405	int i;
1406
1407	/*
1408	 * make sure we dirty pages we wrote to
1409	 */
1410	bio_for_each_segment_all(bvec, bio, i) {
1411		if (bio_data_dir(bio) == READ)
1412			set_page_dirty_lock(bvec->bv_page);
1413
1414		page_cache_release(bvec->bv_page);
1415	}
1416
1417	bio_put(bio);
1418}
1419
1420/**
1421 *	bio_unmap_user	-	unmap a bio
1422 *	@bio:		the bio being unmapped
1423 *
1424 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1425 *	a process context.
1426 *
1427 *	bio_unmap_user() may sleep.
1428 */
1429void bio_unmap_user(struct bio *bio)
1430{
1431	__bio_unmap_user(bio);
1432	bio_put(bio);
1433}
1434EXPORT_SYMBOL(bio_unmap_user);
1435
1436static void bio_map_kern_endio(struct bio *bio, int err)
1437{
1438	bio_put(bio);
1439}
1440
1441/**
1442 *	bio_map_kern	-	map kernel address into bio
1443 *	@q: the struct request_queue for the bio
1444 *	@data: pointer to buffer to map
1445 *	@len: length in bytes
1446 *	@gfp_mask: allocation flags for bio allocation
1447 *
1448 *	Map the kernel address into a bio suitable for io to a block
1449 *	device. Returns an error pointer in case of error.
1450 */
1451struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1452			 gfp_t gfp_mask)
1453{
1454	unsigned long kaddr = (unsigned long)data;
1455	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1456	unsigned long start = kaddr >> PAGE_SHIFT;
1457	const int nr_pages = end - start;
1458	int offset, i;
1459	struct bio *bio;
1460
1461	bio = bio_kmalloc(gfp_mask, nr_pages);
1462	if (!bio)
1463		return ERR_PTR(-ENOMEM);
1464
1465	offset = offset_in_page(kaddr);
1466	for (i = 0; i < nr_pages; i++) {
1467		unsigned int bytes = PAGE_SIZE - offset;
1468
1469		if (len <= 0)
1470			break;
1471
1472		if (bytes > len)
1473			bytes = len;
1474
1475		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1476				    offset) < bytes) {
1477			/* we don't support partial mappings */
1478			bio_put(bio);
1479			return ERR_PTR(-EINVAL);
1480		}
1481
1482		data += bytes;
1483		len -= bytes;
1484		offset = 0;
1485	}
1486
1487	bio->bi_end_io = bio_map_kern_endio;
1488	return bio;
1489}
1490EXPORT_SYMBOL(bio_map_kern);
1491
1492static void bio_copy_kern_endio(struct bio *bio, int err)
1493{
1494	bio_free_pages(bio);
1495	bio_put(bio);
1496}
1497
1498static void bio_copy_kern_endio_read(struct bio *bio, int err)
1499{
1500	char *p = bio->bi_private;
1501	struct bio_vec *bvec;
1502	int i;
1503
1504	bio_for_each_segment_all(bvec, bio, i) {
1505		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1506		p += bvec->bv_len;
1507	}
1508
1509	bio_copy_kern_endio(bio, err);
1510}
1511
1512/**
1513 *	bio_copy_kern	-	copy kernel address into bio
1514 *	@q: the struct request_queue for the bio
1515 *	@data: pointer to buffer to copy
1516 *	@len: length in bytes
1517 *	@gfp_mask: allocation flags for bio and page allocation
1518 *	@reading: data direction is READ
1519 *
1520 *	copy the kernel address into a bio suitable for io to a block
1521 *	device. Returns an error pointer in case of error.
1522 */
1523struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1524			  gfp_t gfp_mask, int reading)
1525{
1526	unsigned long kaddr = (unsigned long)data;
1527	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1528	unsigned long start = kaddr >> PAGE_SHIFT;
1529	struct bio *bio;
1530	void *p = data;
1531	int nr_pages = 0;
1532
1533	/*
1534	 * Overflow, abort
1535	 */
1536	if (end < start)
1537		return ERR_PTR(-EINVAL);
1538
1539	nr_pages = end - start;
1540	bio = bio_kmalloc(gfp_mask, nr_pages);
1541	if (!bio)
1542		return ERR_PTR(-ENOMEM);
1543
1544	while (len) {
1545		struct page *page;
1546		unsigned int bytes = PAGE_SIZE;
1547
1548		if (bytes > len)
1549			bytes = len;
1550
1551		page = alloc_page(q->bounce_gfp | gfp_mask);
1552		if (!page)
1553			goto cleanup;
1554
1555		if (!reading)
1556			memcpy(page_address(page), p, bytes);
1557
1558		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1559			break;
1560
1561		len -= bytes;
1562		p += bytes;
1563	}
1564
1565	if (reading) {
1566		bio->bi_end_io = bio_copy_kern_endio_read;
1567		bio->bi_private = data;
1568	} else {
1569		bio->bi_end_io = bio_copy_kern_endio;
1570		bio->bi_rw |= REQ_WRITE;
1571	}
1572
1573	return bio;
1574
1575cleanup:
1576	bio_free_pages(bio);
1577	bio_put(bio);
1578	return ERR_PTR(-ENOMEM);
1579}
1580EXPORT_SYMBOL(bio_copy_kern);
1581
1582/*
1583 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1584 * for performing direct-IO in BIOs.
1585 *
1586 * The problem is that we cannot run set_page_dirty() from interrupt context
1587 * because the required locks are not interrupt-safe.  So what we can do is to
1588 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1589 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1590 * in process context.
1591 *
1592 * We special-case compound pages here: normally this means reads into hugetlb
1593 * pages.  The logic in here doesn't really work right for compound pages
1594 * because the VM does not uniformly chase down the head page in all cases.
1595 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1596 * handle them at all.  So we skip compound pages here at an early stage.
1597 *
1598 * Note that this code is very hard to test under normal circumstances because
1599 * direct-io pins the pages with get_user_pages().  This makes
1600 * is_page_cache_freeable return false, and the VM will not clean the pages.
1601 * But other code (eg, flusher threads) could clean the pages if they are mapped
1602 * pagecache.
1603 *
1604 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1605 * deferred bio dirtying paths.
1606 */
1607
1608/*
1609 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1610 */
1611void bio_set_pages_dirty(struct bio *bio)
1612{
1613	struct bio_vec *bvec;
1614	int i;
1615
1616	bio_for_each_segment_all(bvec, bio, i) {
1617		struct page *page = bvec->bv_page;
1618
1619		if (page && !PageCompound(page))
1620			set_page_dirty_lock(page);
1621	}
1622}
1623
1624static void bio_release_pages(struct bio *bio)
1625{
1626	struct bio_vec *bvec;
1627	int i;
1628
1629	bio_for_each_segment_all(bvec, bio, i) {
1630		struct page *page = bvec->bv_page;
1631
1632		if (page)
1633			put_page(page);
1634	}
1635}
1636
1637/*
1638 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1639 * If they are, then fine.  If, however, some pages are clean then they must
1640 * have been written out during the direct-IO read.  So we take another ref on
1641 * the BIO and the offending pages and re-dirty the pages in process context.
1642 *
1643 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1644 * here on.  It will run one page_cache_release() against each page and will
1645 * run one bio_put() against the BIO.
1646 */
1647
1648static void bio_dirty_fn(struct work_struct *work);
1649
1650static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1651static DEFINE_SPINLOCK(bio_dirty_lock);
1652static struct bio *bio_dirty_list;
1653
1654/*
1655 * This runs in process context
1656 */
1657static void bio_dirty_fn(struct work_struct *work)
1658{
1659	unsigned long flags;
1660	struct bio *bio;
1661
1662	spin_lock_irqsave(&bio_dirty_lock, flags);
1663	bio = bio_dirty_list;
1664	bio_dirty_list = NULL;
1665	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1666
1667	while (bio) {
1668		struct bio *next = bio->bi_private;
1669
1670		bio_set_pages_dirty(bio);
1671		bio_release_pages(bio);
1672		bio_put(bio);
1673		bio = next;
1674	}
1675}
1676
1677void bio_check_pages_dirty(struct bio *bio)
1678{
1679	struct bio_vec *bvec;
1680	int nr_clean_pages = 0;
1681	int i;
1682
1683	bio_for_each_segment_all(bvec, bio, i) {
1684		struct page *page = bvec->bv_page;
1685
1686		if (PageDirty(page) || PageCompound(page)) {
1687			page_cache_release(page);
1688			bvec->bv_page = NULL;
1689		} else {
1690			nr_clean_pages++;
1691		}
1692	}
1693
1694	if (nr_clean_pages) {
1695		unsigned long flags;
1696
1697		spin_lock_irqsave(&bio_dirty_lock, flags);
1698		bio->bi_private = bio_dirty_list;
1699		bio_dirty_list = bio;
1700		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1701		schedule_work(&bio_dirty_work);
1702	} else {
1703		bio_put(bio);
1704	}
1705}
1706
1707void generic_start_io_acct(int rw, unsigned long sectors,
1708			   struct hd_struct *part)
1709{
1710	int cpu = part_stat_lock();
1711
1712	part_round_stats(cpu, part);
1713	part_stat_inc(cpu, part, ios[rw]);
1714	part_stat_add(cpu, part, sectors[rw], sectors);
1715	part_inc_in_flight(part, rw);
1716
1717	part_stat_unlock();
1718}
1719EXPORT_SYMBOL(generic_start_io_acct);
1720
1721void generic_end_io_acct(int rw, struct hd_struct *part,
1722			 unsigned long start_time)
1723{
1724	unsigned long duration = jiffies - start_time;
1725	int cpu = part_stat_lock();
1726
1727	part_stat_add(cpu, part, ticks[rw], duration);
1728	part_round_stats(cpu, part);
1729	part_dec_in_flight(part, rw);
1730
1731	part_stat_unlock();
1732}
1733EXPORT_SYMBOL(generic_end_io_acct);
1734
1735#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1736void bio_flush_dcache_pages(struct bio *bi)
1737{
1738	struct bio_vec bvec;
1739	struct bvec_iter iter;
1740
1741	bio_for_each_segment(bvec, bi, iter)
1742		flush_dcache_page(bvec.bv_page);
1743}
1744EXPORT_SYMBOL(bio_flush_dcache_pages);
1745#endif
1746
1747/**
1748 * bio_endio - end I/O on a bio
1749 * @bio:	bio
1750 * @error:	error, if any
1751 *
1752 * Description:
1753 *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1754 *   preferred way to end I/O on a bio, it takes care of clearing
1755 *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1756 *   established -Exxxx (-EIO, for instance) error values in case
1757 *   something went wrong. No one should call bi_end_io() directly on a
1758 *   bio unless they own it and thus know that it has an end_io
1759 *   function.
1760 **/
1761void bio_endio(struct bio *bio, int error)
1762{
1763	while (bio) {
1764		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1765
1766		if (error)
1767			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1768		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1769			error = -EIO;
1770
1771		if (!atomic_dec_and_test(&bio->bi_remaining))
1772			return;
1773
1774		/*
1775		 * Need to have a real endio function for chained bios,
1776		 * otherwise various corner cases will break (like stacking
1777		 * block devices that save/restore bi_end_io) - however, we want
1778		 * to avoid unbounded recursion and blowing the stack. Tail call
1779		 * optimization would handle this, but compiling with frame
1780		 * pointers also disables gcc's sibling call optimization.
1781		 */
1782		if (bio->bi_end_io == bio_chain_endio) {
1783			struct bio *parent = bio->bi_private;
1784			bio_put(bio);
1785			bio = parent;
1786		} else {
1787			if (bio->bi_end_io)
1788				bio->bi_end_io(bio, error);
1789			bio = NULL;
1790		}
1791	}
1792}
1793EXPORT_SYMBOL(bio_endio);
1794
1795/**
1796 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1797 * @bio:	bio
1798 * @error:	error, if any
1799 *
1800 * For code that has saved and restored bi_end_io; thing hard before using this
1801 * function, probably you should've cloned the entire bio.
1802 **/
1803void bio_endio_nodec(struct bio *bio, int error)
1804{
1805	atomic_inc(&bio->bi_remaining);
1806	bio_endio(bio, error);
1807}
1808EXPORT_SYMBOL(bio_endio_nodec);
1809
1810/**
1811 * bio_split - split a bio
1812 * @bio:	bio to split
1813 * @sectors:	number of sectors to split from the front of @bio
1814 * @gfp:	gfp mask
1815 * @bs:		bio set to allocate from
1816 *
1817 * Allocates and returns a new bio which represents @sectors from the start of
1818 * @bio, and updates @bio to represent the remaining sectors.
1819 *
1820 * Unless this is a discard request the newly allocated bio will point
1821 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1822 * @bio is not freed before the split.
1823 */
1824struct bio *bio_split(struct bio *bio, int sectors,
1825		      gfp_t gfp, struct bio_set *bs)
1826{
1827	struct bio *split = NULL;
1828
1829	BUG_ON(sectors <= 0);
1830	BUG_ON(sectors >= bio_sectors(bio));
1831
1832	/*
1833	 * Discards need a mutable bio_vec to accommodate the payload
1834	 * required by the DSM TRIM and UNMAP commands.
1835	 */
1836	if (bio->bi_rw & REQ_DISCARD)
1837		split = bio_clone_bioset(bio, gfp, bs);
1838	else
1839		split = bio_clone_fast(bio, gfp, bs);
1840
1841	if (!split)
1842		return NULL;
1843
1844	split->bi_iter.bi_size = sectors << 9;
1845
1846	if (bio_integrity(split))
1847		bio_integrity_trim(split, 0, sectors);
1848
1849	bio_advance(bio, split->bi_iter.bi_size);
1850
1851	return split;
1852}
1853EXPORT_SYMBOL(bio_split);
1854
1855/**
1856 * bio_trim - trim a bio
1857 * @bio:	bio to trim
1858 * @offset:	number of sectors to trim from the front of @bio
1859 * @size:	size we want to trim @bio to, in sectors
1860 */
1861void bio_trim(struct bio *bio, int offset, int size)
1862{
1863	/* 'bio' is a cloned bio which we need to trim to match
1864	 * the given offset and size.
1865	 */
1866
1867	size <<= 9;
1868	if (offset == 0 && size == bio->bi_iter.bi_size)
1869		return;
1870
1871	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1872
1873	bio_advance(bio, offset << 9);
1874
1875	bio->bi_iter.bi_size = size;
1876}
1877EXPORT_SYMBOL_GPL(bio_trim);
1878
1879/*
1880 * create memory pools for biovec's in a bio_set.
1881 * use the global biovec slabs created for general use.
1882 */
1883mempool_t *biovec_create_pool(int pool_entries)
1884{
1885	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1886
1887	return mempool_create_slab_pool(pool_entries, bp->slab);
1888}
1889
1890void bioset_free(struct bio_set *bs)
1891{
1892	if (bs->rescue_workqueue)
1893		destroy_workqueue(bs->rescue_workqueue);
1894
1895	if (bs->bio_pool)
1896		mempool_destroy(bs->bio_pool);
1897
1898	if (bs->bvec_pool)
1899		mempool_destroy(bs->bvec_pool);
1900
1901	bioset_integrity_free(bs);
1902	bio_put_slab(bs);
1903
1904	kfree(bs);
1905}
1906EXPORT_SYMBOL(bioset_free);
1907
1908static struct bio_set *__bioset_create(unsigned int pool_size,
1909				       unsigned int front_pad,
1910				       bool create_bvec_pool)
1911{
1912	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1913	struct bio_set *bs;
1914
1915	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1916	if (!bs)
1917		return NULL;
1918
1919	bs->front_pad = front_pad;
1920
1921	spin_lock_init(&bs->rescue_lock);
1922	bio_list_init(&bs->rescue_list);
1923	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1924
1925	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1926	if (!bs->bio_slab) {
1927		kfree(bs);
1928		return NULL;
1929	}
1930
1931	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1932	if (!bs->bio_pool)
1933		goto bad;
1934
1935	if (create_bvec_pool) {
1936		bs->bvec_pool = biovec_create_pool(pool_size);
1937		if (!bs->bvec_pool)
1938			goto bad;
1939	}
1940
1941	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1942	if (!bs->rescue_workqueue)
1943		goto bad;
1944
1945	return bs;
1946bad:
1947	bioset_free(bs);
1948	return NULL;
1949}
1950
1951/**
1952 * bioset_create  - Create a bio_set
1953 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1954 * @front_pad:	Number of bytes to allocate in front of the returned bio
1955 *
1956 * Description:
1957 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1958 *    to ask for a number of bytes to be allocated in front of the bio.
1959 *    Front pad allocation is useful for embedding the bio inside
1960 *    another structure, to avoid allocating extra data to go with the bio.
1961 *    Note that the bio must be embedded at the END of that structure always,
1962 *    or things will break badly.
1963 */
1964struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1965{
1966	return __bioset_create(pool_size, front_pad, true);
1967}
1968EXPORT_SYMBOL(bioset_create);
1969
1970/**
1971 * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1972 * @pool_size:	Number of bio to cache in the mempool
1973 * @front_pad:	Number of bytes to allocate in front of the returned bio
1974 *
1975 * Description:
1976 *    Same functionality as bioset_create() except that mempool is not
1977 *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1978 */
1979struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1980{
1981	return __bioset_create(pool_size, front_pad, false);
1982}
1983EXPORT_SYMBOL(bioset_create_nobvec);
1984
1985#ifdef CONFIG_BLK_CGROUP
1986/**
1987 * bio_associate_current - associate a bio with %current
1988 * @bio: target bio
1989 *
1990 * Associate @bio with %current if it hasn't been associated yet.  Block
1991 * layer will treat @bio as if it were issued by %current no matter which
1992 * task actually issues it.
1993 *
1994 * This function takes an extra reference of @task's io_context and blkcg
1995 * which will be put when @bio is released.  The caller must own @bio,
1996 * ensure %current->io_context exists, and is responsible for synchronizing
1997 * calls to this function.
1998 */
1999int bio_associate_current(struct bio *bio)
2000{
2001	struct io_context *ioc;
2002	struct cgroup_subsys_state *css;
2003
2004	if (bio->bi_ioc)
2005		return -EBUSY;
2006
2007	ioc = current->io_context;
2008	if (!ioc)
2009		return -ENOENT;
2010
2011	/* acquire active ref on @ioc and associate */
2012	get_io_context_active(ioc);
2013	bio->bi_ioc = ioc;
2014
2015	/* associate blkcg if exists */
2016	rcu_read_lock();
2017	css = task_css(current, blkio_cgrp_id);
2018	if (css && css_tryget_online(css))
2019		bio->bi_css = css;
2020	rcu_read_unlock();
2021
2022	return 0;
2023}
2024
2025/**
2026 * bio_disassociate_task - undo bio_associate_current()
2027 * @bio: target bio
2028 */
2029void bio_disassociate_task(struct bio *bio)
2030{
2031	if (bio->bi_ioc) {
2032		put_io_context(bio->bi_ioc);
2033		bio->bi_ioc = NULL;
2034	}
2035	if (bio->bi_css) {
2036		css_put(bio->bi_css);
2037		bio->bi_css = NULL;
2038	}
2039}
2040
2041#endif /* CONFIG_BLK_CGROUP */
2042
2043static void __init biovec_init_slabs(void)
2044{
2045	int i;
2046
2047	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2048		int size;
2049		struct biovec_slab *bvs = bvec_slabs + i;
2050
2051		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2052			bvs->slab = NULL;
2053			continue;
2054		}
2055
2056		size = bvs->nr_vecs * sizeof(struct bio_vec);
2057		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2058                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2059	}
2060}
2061
2062static int __init init_bio(void)
2063{
2064	bio_slab_max = 2;
2065	bio_slab_nr = 0;
2066	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2067	if (!bio_slabs)
2068		panic("bio: can't allocate bios\n");
2069
2070	bio_integrity_init();
2071	biovec_init_slabs();
2072
2073	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2074	if (!fs_bio_set)
2075		panic("bio: can't allocate bios\n");
2076
2077	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2078		panic("bio: can't create integrity pool\n");
2079
2080	return 0;
2081}
2082subsys_initcall(init_bio);
2083