1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion.  In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable.  When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest.  This prevents uncontrolled
26 * guest updates to the pagetable.  Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow.  The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use.  This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41#include <linux/sched.h>
42#include <linux/highmem.h>
43#include <linux/debugfs.h>
44#include <linux/bug.h>
45#include <linux/vmalloc.h>
46#include <linux/module.h>
47#include <linux/gfp.h>
48#include <linux/memblock.h>
49#include <linux/seq_file.h>
50#include <linux/crash_dump.h>
51
52#include <trace/events/xen.h>
53
54#include <asm/pgtable.h>
55#include <asm/tlbflush.h>
56#include <asm/fixmap.h>
57#include <asm/mmu_context.h>
58#include <asm/setup.h>
59#include <asm/paravirt.h>
60#include <asm/e820.h>
61#include <asm/linkage.h>
62#include <asm/page.h>
63#include <asm/init.h>
64#include <asm/pat.h>
65#include <asm/smp.h>
66
67#include <asm/xen/hypercall.h>
68#include <asm/xen/hypervisor.h>
69
70#include <xen/xen.h>
71#include <xen/page.h>
72#include <xen/interface/xen.h>
73#include <xen/interface/hvm/hvm_op.h>
74#include <xen/interface/version.h>
75#include <xen/interface/memory.h>
76#include <xen/hvc-console.h>
77
78#include "multicalls.h"
79#include "mmu.h"
80#include "debugfs.h"
81
82/*
83 * Protects atomic reservation decrease/increase against concurrent increases.
84 * Also protects non-atomic updates of current_pages and balloon lists.
85 */
86DEFINE_SPINLOCK(xen_reservation_lock);
87
88#ifdef CONFIG_X86_32
89/*
90 * Identity map, in addition to plain kernel map.  This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
93 */
94#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96#endif
97#ifdef CONFIG_X86_64
98/* l3 pud for userspace vsyscall mapping */
99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100#endif /* CONFIG_X86_64 */
101
102/*
103 * Note about cr3 (pagetable base) values:
104 *
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3.  This may not be the current effective cr3, because
107 * its update may be being lazily deferred.  However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
110 *
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early).  If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
115 */
116DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118
119
120/*
121 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
122 * redzone above it, so round it up to a PGD boundary.
123 */
124#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125
126unsigned long arbitrary_virt_to_mfn(void *vaddr)
127{
128	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129
130	return PFN_DOWN(maddr.maddr);
131}
132
133xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134{
135	unsigned long address = (unsigned long)vaddr;
136	unsigned int level;
137	pte_t *pte;
138	unsigned offset;
139
140	/*
141	 * if the PFN is in the linear mapped vaddr range, we can just use
142	 * the (quick) virt_to_machine() p2m lookup
143	 */
144	if (virt_addr_valid(vaddr))
145		return virt_to_machine(vaddr);
146
147	/* otherwise we have to do a (slower) full page-table walk */
148
149	pte = lookup_address(address, &level);
150	BUG_ON(pte == NULL);
151	offset = address & ~PAGE_MASK;
152	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153}
154EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155
156void make_lowmem_page_readonly(void *vaddr)
157{
158	pte_t *pte, ptev;
159	unsigned long address = (unsigned long)vaddr;
160	unsigned int level;
161
162	pte = lookup_address(address, &level);
163	if (pte == NULL)
164		return;		/* vaddr missing */
165
166	ptev = pte_wrprotect(*pte);
167
168	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169		BUG();
170}
171
172void make_lowmem_page_readwrite(void *vaddr)
173{
174	pte_t *pte, ptev;
175	unsigned long address = (unsigned long)vaddr;
176	unsigned int level;
177
178	pte = lookup_address(address, &level);
179	if (pte == NULL)
180		return;		/* vaddr missing */
181
182	ptev = pte_mkwrite(*pte);
183
184	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185		BUG();
186}
187
188
189static bool xen_page_pinned(void *ptr)
190{
191	struct page *page = virt_to_page(ptr);
192
193	return PagePinned(page);
194}
195
196void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197{
198	struct multicall_space mcs;
199	struct mmu_update *u;
200
201	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202
203	mcs = xen_mc_entry(sizeof(*u));
204	u = mcs.args;
205
206	/* ptep might be kmapped when using 32-bit HIGHPTE */
207	u->ptr = virt_to_machine(ptep).maddr;
208	u->val = pte_val_ma(pteval);
209
210	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211
212	xen_mc_issue(PARAVIRT_LAZY_MMU);
213}
214EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215
216static void xen_extend_mmu_update(const struct mmu_update *update)
217{
218	struct multicall_space mcs;
219	struct mmu_update *u;
220
221	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222
223	if (mcs.mc != NULL) {
224		mcs.mc->args[1]++;
225	} else {
226		mcs = __xen_mc_entry(sizeof(*u));
227		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228	}
229
230	u = mcs.args;
231	*u = *update;
232}
233
234static void xen_extend_mmuext_op(const struct mmuext_op *op)
235{
236	struct multicall_space mcs;
237	struct mmuext_op *u;
238
239	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240
241	if (mcs.mc != NULL) {
242		mcs.mc->args[1]++;
243	} else {
244		mcs = __xen_mc_entry(sizeof(*u));
245		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246	}
247
248	u = mcs.args;
249	*u = *op;
250}
251
252static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253{
254	struct mmu_update u;
255
256	preempt_disable();
257
258	xen_mc_batch();
259
260	/* ptr may be ioremapped for 64-bit pagetable setup */
261	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262	u.val = pmd_val_ma(val);
263	xen_extend_mmu_update(&u);
264
265	xen_mc_issue(PARAVIRT_LAZY_MMU);
266
267	preempt_enable();
268}
269
270static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271{
272	trace_xen_mmu_set_pmd(ptr, val);
273
274	/* If page is not pinned, we can just update the entry
275	   directly */
276	if (!xen_page_pinned(ptr)) {
277		*ptr = val;
278		return;
279	}
280
281	xen_set_pmd_hyper(ptr, val);
282}
283
284/*
285 * Associate a virtual page frame with a given physical page frame
286 * and protection flags for that frame.
287 */
288void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289{
290	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291}
292
293static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294{
295	struct mmu_update u;
296
297	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298		return false;
299
300	xen_mc_batch();
301
302	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303	u.val = pte_val_ma(pteval);
304	xen_extend_mmu_update(&u);
305
306	xen_mc_issue(PARAVIRT_LAZY_MMU);
307
308	return true;
309}
310
311static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312{
313	if (!xen_batched_set_pte(ptep, pteval)) {
314		/*
315		 * Could call native_set_pte() here and trap and
316		 * emulate the PTE write but with 32-bit guests this
317		 * needs two traps (one for each of the two 32-bit
318		 * words in the PTE) so do one hypercall directly
319		 * instead.
320		 */
321		struct mmu_update u;
322
323		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324		u.val = pte_val_ma(pteval);
325		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326	}
327}
328
329static void xen_set_pte(pte_t *ptep, pte_t pteval)
330{
331	trace_xen_mmu_set_pte(ptep, pteval);
332	__xen_set_pte(ptep, pteval);
333}
334
335static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336		    pte_t *ptep, pte_t pteval)
337{
338	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339	__xen_set_pte(ptep, pteval);
340}
341
342pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343				 unsigned long addr, pte_t *ptep)
344{
345	/* Just return the pte as-is.  We preserve the bits on commit */
346	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347	return *ptep;
348}
349
350void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351				 pte_t *ptep, pte_t pte)
352{
353	struct mmu_update u;
354
355	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356	xen_mc_batch();
357
358	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359	u.val = pte_val_ma(pte);
360	xen_extend_mmu_update(&u);
361
362	xen_mc_issue(PARAVIRT_LAZY_MMU);
363}
364
365/* Assume pteval_t is equivalent to all the other *val_t types. */
366static pteval_t pte_mfn_to_pfn(pteval_t val)
367{
368	if (val & _PAGE_PRESENT) {
369		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370		unsigned long pfn = mfn_to_pfn(mfn);
371
372		pteval_t flags = val & PTE_FLAGS_MASK;
373		if (unlikely(pfn == ~0))
374			val = flags & ~_PAGE_PRESENT;
375		else
376			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377	}
378
379	return val;
380}
381
382static pteval_t pte_pfn_to_mfn(pteval_t val)
383{
384	if (val & _PAGE_PRESENT) {
385		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386		pteval_t flags = val & PTE_FLAGS_MASK;
387		unsigned long mfn;
388
389		if (!xen_feature(XENFEAT_auto_translated_physmap))
390			mfn = __pfn_to_mfn(pfn);
391		else
392			mfn = pfn;
393		/*
394		 * If there's no mfn for the pfn, then just create an
395		 * empty non-present pte.  Unfortunately this loses
396		 * information about the original pfn, so
397		 * pte_mfn_to_pfn is asymmetric.
398		 */
399		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400			mfn = 0;
401			flags = 0;
402		} else
403			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
404		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
405	}
406
407	return val;
408}
409
410__visible pteval_t xen_pte_val(pte_t pte)
411{
412	pteval_t pteval = pte.pte;
413
414	return pte_mfn_to_pfn(pteval);
415}
416PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
417
418__visible pgdval_t xen_pgd_val(pgd_t pgd)
419{
420	return pte_mfn_to_pfn(pgd.pgd);
421}
422PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
423
424__visible pte_t xen_make_pte(pteval_t pte)
425{
426	pte = pte_pfn_to_mfn(pte);
427
428	return native_make_pte(pte);
429}
430PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
431
432__visible pgd_t xen_make_pgd(pgdval_t pgd)
433{
434	pgd = pte_pfn_to_mfn(pgd);
435	return native_make_pgd(pgd);
436}
437PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
438
439__visible pmdval_t xen_pmd_val(pmd_t pmd)
440{
441	return pte_mfn_to_pfn(pmd.pmd);
442}
443PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
444
445static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
446{
447	struct mmu_update u;
448
449	preempt_disable();
450
451	xen_mc_batch();
452
453	/* ptr may be ioremapped for 64-bit pagetable setup */
454	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
455	u.val = pud_val_ma(val);
456	xen_extend_mmu_update(&u);
457
458	xen_mc_issue(PARAVIRT_LAZY_MMU);
459
460	preempt_enable();
461}
462
463static void xen_set_pud(pud_t *ptr, pud_t val)
464{
465	trace_xen_mmu_set_pud(ptr, val);
466
467	/* If page is not pinned, we can just update the entry
468	   directly */
469	if (!xen_page_pinned(ptr)) {
470		*ptr = val;
471		return;
472	}
473
474	xen_set_pud_hyper(ptr, val);
475}
476
477#ifdef CONFIG_X86_PAE
478static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
479{
480	trace_xen_mmu_set_pte_atomic(ptep, pte);
481	set_64bit((u64 *)ptep, native_pte_val(pte));
482}
483
484static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
485{
486	trace_xen_mmu_pte_clear(mm, addr, ptep);
487	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
488		native_pte_clear(mm, addr, ptep);
489}
490
491static void xen_pmd_clear(pmd_t *pmdp)
492{
493	trace_xen_mmu_pmd_clear(pmdp);
494	set_pmd(pmdp, __pmd(0));
495}
496#endif	/* CONFIG_X86_PAE */
497
498__visible pmd_t xen_make_pmd(pmdval_t pmd)
499{
500	pmd = pte_pfn_to_mfn(pmd);
501	return native_make_pmd(pmd);
502}
503PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
504
505#if CONFIG_PGTABLE_LEVELS == 4
506__visible pudval_t xen_pud_val(pud_t pud)
507{
508	return pte_mfn_to_pfn(pud.pud);
509}
510PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
511
512__visible pud_t xen_make_pud(pudval_t pud)
513{
514	pud = pte_pfn_to_mfn(pud);
515
516	return native_make_pud(pud);
517}
518PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
519
520static pgd_t *xen_get_user_pgd(pgd_t *pgd)
521{
522	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
523	unsigned offset = pgd - pgd_page;
524	pgd_t *user_ptr = NULL;
525
526	if (offset < pgd_index(USER_LIMIT)) {
527		struct page *page = virt_to_page(pgd_page);
528		user_ptr = (pgd_t *)page->private;
529		if (user_ptr)
530			user_ptr += offset;
531	}
532
533	return user_ptr;
534}
535
536static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
537{
538	struct mmu_update u;
539
540	u.ptr = virt_to_machine(ptr).maddr;
541	u.val = pgd_val_ma(val);
542	xen_extend_mmu_update(&u);
543}
544
545/*
546 * Raw hypercall-based set_pgd, intended for in early boot before
547 * there's a page structure.  This implies:
548 *  1. The only existing pagetable is the kernel's
549 *  2. It is always pinned
550 *  3. It has no user pagetable attached to it
551 */
552static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
553{
554	preempt_disable();
555
556	xen_mc_batch();
557
558	__xen_set_pgd_hyper(ptr, val);
559
560	xen_mc_issue(PARAVIRT_LAZY_MMU);
561
562	preempt_enable();
563}
564
565static void xen_set_pgd(pgd_t *ptr, pgd_t val)
566{
567	pgd_t *user_ptr = xen_get_user_pgd(ptr);
568
569	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
570
571	/* If page is not pinned, we can just update the entry
572	   directly */
573	if (!xen_page_pinned(ptr)) {
574		*ptr = val;
575		if (user_ptr) {
576			WARN_ON(xen_page_pinned(user_ptr));
577			*user_ptr = val;
578		}
579		return;
580	}
581
582	/* If it's pinned, then we can at least batch the kernel and
583	   user updates together. */
584	xen_mc_batch();
585
586	__xen_set_pgd_hyper(ptr, val);
587	if (user_ptr)
588		__xen_set_pgd_hyper(user_ptr, val);
589
590	xen_mc_issue(PARAVIRT_LAZY_MMU);
591}
592#endif	/* CONFIG_PGTABLE_LEVELS == 4 */
593
594/*
595 * (Yet another) pagetable walker.  This one is intended for pinning a
596 * pagetable.  This means that it walks a pagetable and calls the
597 * callback function on each page it finds making up the page table,
598 * at every level.  It walks the entire pagetable, but it only bothers
599 * pinning pte pages which are below limit.  In the normal case this
600 * will be STACK_TOP_MAX, but at boot we need to pin up to
601 * FIXADDR_TOP.
602 *
603 * For 32-bit the important bit is that we don't pin beyond there,
604 * because then we start getting into Xen's ptes.
605 *
606 * For 64-bit, we must skip the Xen hole in the middle of the address
607 * space, just after the big x86-64 virtual hole.
608 */
609static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
610			  int (*func)(struct mm_struct *mm, struct page *,
611				      enum pt_level),
612			  unsigned long limit)
613{
614	int flush = 0;
615	unsigned hole_low, hole_high;
616	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
617	unsigned pgdidx, pudidx, pmdidx;
618
619	/* The limit is the last byte to be touched */
620	limit--;
621	BUG_ON(limit >= FIXADDR_TOP);
622
623	if (xen_feature(XENFEAT_auto_translated_physmap))
624		return 0;
625
626	/*
627	 * 64-bit has a great big hole in the middle of the address
628	 * space, which contains the Xen mappings.  On 32-bit these
629	 * will end up making a zero-sized hole and so is a no-op.
630	 */
631	hole_low = pgd_index(USER_LIMIT);
632	hole_high = pgd_index(PAGE_OFFSET);
633
634	pgdidx_limit = pgd_index(limit);
635#if PTRS_PER_PUD > 1
636	pudidx_limit = pud_index(limit);
637#else
638	pudidx_limit = 0;
639#endif
640#if PTRS_PER_PMD > 1
641	pmdidx_limit = pmd_index(limit);
642#else
643	pmdidx_limit = 0;
644#endif
645
646	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
647		pud_t *pud;
648
649		if (pgdidx >= hole_low && pgdidx < hole_high)
650			continue;
651
652		if (!pgd_val(pgd[pgdidx]))
653			continue;
654
655		pud = pud_offset(&pgd[pgdidx], 0);
656
657		if (PTRS_PER_PUD > 1) /* not folded */
658			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
659
660		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
661			pmd_t *pmd;
662
663			if (pgdidx == pgdidx_limit &&
664			    pudidx > pudidx_limit)
665				goto out;
666
667			if (pud_none(pud[pudidx]))
668				continue;
669
670			pmd = pmd_offset(&pud[pudidx], 0);
671
672			if (PTRS_PER_PMD > 1) /* not folded */
673				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
674
675			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
676				struct page *pte;
677
678				if (pgdidx == pgdidx_limit &&
679				    pudidx == pudidx_limit &&
680				    pmdidx > pmdidx_limit)
681					goto out;
682
683				if (pmd_none(pmd[pmdidx]))
684					continue;
685
686				pte = pmd_page(pmd[pmdidx]);
687				flush |= (*func)(mm, pte, PT_PTE);
688			}
689		}
690	}
691
692out:
693	/* Do the top level last, so that the callbacks can use it as
694	   a cue to do final things like tlb flushes. */
695	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
696
697	return flush;
698}
699
700static int xen_pgd_walk(struct mm_struct *mm,
701			int (*func)(struct mm_struct *mm, struct page *,
702				    enum pt_level),
703			unsigned long limit)
704{
705	return __xen_pgd_walk(mm, mm->pgd, func, limit);
706}
707
708/* If we're using split pte locks, then take the page's lock and
709   return a pointer to it.  Otherwise return NULL. */
710static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
711{
712	spinlock_t *ptl = NULL;
713
714#if USE_SPLIT_PTE_PTLOCKS
715	ptl = ptlock_ptr(page);
716	spin_lock_nest_lock(ptl, &mm->page_table_lock);
717#endif
718
719	return ptl;
720}
721
722static void xen_pte_unlock(void *v)
723{
724	spinlock_t *ptl = v;
725	spin_unlock(ptl);
726}
727
728static void xen_do_pin(unsigned level, unsigned long pfn)
729{
730	struct mmuext_op op;
731
732	op.cmd = level;
733	op.arg1.mfn = pfn_to_mfn(pfn);
734
735	xen_extend_mmuext_op(&op);
736}
737
738static int xen_pin_page(struct mm_struct *mm, struct page *page,
739			enum pt_level level)
740{
741	unsigned pgfl = TestSetPagePinned(page);
742	int flush;
743
744	if (pgfl)
745		flush = 0;		/* already pinned */
746	else if (PageHighMem(page))
747		/* kmaps need flushing if we found an unpinned
748		   highpage */
749		flush = 1;
750	else {
751		void *pt = lowmem_page_address(page);
752		unsigned long pfn = page_to_pfn(page);
753		struct multicall_space mcs = __xen_mc_entry(0);
754		spinlock_t *ptl;
755
756		flush = 0;
757
758		/*
759		 * We need to hold the pagetable lock between the time
760		 * we make the pagetable RO and when we actually pin
761		 * it.  If we don't, then other users may come in and
762		 * attempt to update the pagetable by writing it,
763		 * which will fail because the memory is RO but not
764		 * pinned, so Xen won't do the trap'n'emulate.
765		 *
766		 * If we're using split pte locks, we can't hold the
767		 * entire pagetable's worth of locks during the
768		 * traverse, because we may wrap the preempt count (8
769		 * bits).  The solution is to mark RO and pin each PTE
770		 * page while holding the lock.  This means the number
771		 * of locks we end up holding is never more than a
772		 * batch size (~32 entries, at present).
773		 *
774		 * If we're not using split pte locks, we needn't pin
775		 * the PTE pages independently, because we're
776		 * protected by the overall pagetable lock.
777		 */
778		ptl = NULL;
779		if (level == PT_PTE)
780			ptl = xen_pte_lock(page, mm);
781
782		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
783					pfn_pte(pfn, PAGE_KERNEL_RO),
784					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
785
786		if (ptl) {
787			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
788
789			/* Queue a deferred unlock for when this batch
790			   is completed. */
791			xen_mc_callback(xen_pte_unlock, ptl);
792		}
793	}
794
795	return flush;
796}
797
798/* This is called just after a mm has been created, but it has not
799   been used yet.  We need to make sure that its pagetable is all
800   read-only, and can be pinned. */
801static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
802{
803	trace_xen_mmu_pgd_pin(mm, pgd);
804
805	xen_mc_batch();
806
807	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
808		/* re-enable interrupts for flushing */
809		xen_mc_issue(0);
810
811		kmap_flush_unused();
812
813		xen_mc_batch();
814	}
815
816#ifdef CONFIG_X86_64
817	{
818		pgd_t *user_pgd = xen_get_user_pgd(pgd);
819
820		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
821
822		if (user_pgd) {
823			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
824			xen_do_pin(MMUEXT_PIN_L4_TABLE,
825				   PFN_DOWN(__pa(user_pgd)));
826		}
827	}
828#else /* CONFIG_X86_32 */
829#ifdef CONFIG_X86_PAE
830	/* Need to make sure unshared kernel PMD is pinnable */
831	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
832		     PT_PMD);
833#endif
834	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
835#endif /* CONFIG_X86_64 */
836	xen_mc_issue(0);
837}
838
839static void xen_pgd_pin(struct mm_struct *mm)
840{
841	__xen_pgd_pin(mm, mm->pgd);
842}
843
844/*
845 * On save, we need to pin all pagetables to make sure they get their
846 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
847 * them (unpinned pgds are not currently in use, probably because the
848 * process is under construction or destruction).
849 *
850 * Expected to be called in stop_machine() ("equivalent to taking
851 * every spinlock in the system"), so the locking doesn't really
852 * matter all that much.
853 */
854void xen_mm_pin_all(void)
855{
856	struct page *page;
857
858	spin_lock(&pgd_lock);
859
860	list_for_each_entry(page, &pgd_list, lru) {
861		if (!PagePinned(page)) {
862			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
863			SetPageSavePinned(page);
864		}
865	}
866
867	spin_unlock(&pgd_lock);
868}
869
870/*
871 * The init_mm pagetable is really pinned as soon as its created, but
872 * that's before we have page structures to store the bits.  So do all
873 * the book-keeping now.
874 */
875static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
876				  enum pt_level level)
877{
878	SetPagePinned(page);
879	return 0;
880}
881
882static void __init xen_mark_init_mm_pinned(void)
883{
884	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
885}
886
887static int xen_unpin_page(struct mm_struct *mm, struct page *page,
888			  enum pt_level level)
889{
890	unsigned pgfl = TestClearPagePinned(page);
891
892	if (pgfl && !PageHighMem(page)) {
893		void *pt = lowmem_page_address(page);
894		unsigned long pfn = page_to_pfn(page);
895		spinlock_t *ptl = NULL;
896		struct multicall_space mcs;
897
898		/*
899		 * Do the converse to pin_page.  If we're using split
900		 * pte locks, we must be holding the lock for while
901		 * the pte page is unpinned but still RO to prevent
902		 * concurrent updates from seeing it in this
903		 * partially-pinned state.
904		 */
905		if (level == PT_PTE) {
906			ptl = xen_pte_lock(page, mm);
907
908			if (ptl)
909				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
910		}
911
912		mcs = __xen_mc_entry(0);
913
914		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
915					pfn_pte(pfn, PAGE_KERNEL),
916					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
917
918		if (ptl) {
919			/* unlock when batch completed */
920			xen_mc_callback(xen_pte_unlock, ptl);
921		}
922	}
923
924	return 0;		/* never need to flush on unpin */
925}
926
927/* Release a pagetables pages back as normal RW */
928static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
929{
930	trace_xen_mmu_pgd_unpin(mm, pgd);
931
932	xen_mc_batch();
933
934	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
935
936#ifdef CONFIG_X86_64
937	{
938		pgd_t *user_pgd = xen_get_user_pgd(pgd);
939
940		if (user_pgd) {
941			xen_do_pin(MMUEXT_UNPIN_TABLE,
942				   PFN_DOWN(__pa(user_pgd)));
943			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
944		}
945	}
946#endif
947
948#ifdef CONFIG_X86_PAE
949	/* Need to make sure unshared kernel PMD is unpinned */
950	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
951		       PT_PMD);
952#endif
953
954	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
955
956	xen_mc_issue(0);
957}
958
959static void xen_pgd_unpin(struct mm_struct *mm)
960{
961	__xen_pgd_unpin(mm, mm->pgd);
962}
963
964/*
965 * On resume, undo any pinning done at save, so that the rest of the
966 * kernel doesn't see any unexpected pinned pagetables.
967 */
968void xen_mm_unpin_all(void)
969{
970	struct page *page;
971
972	spin_lock(&pgd_lock);
973
974	list_for_each_entry(page, &pgd_list, lru) {
975		if (PageSavePinned(page)) {
976			BUG_ON(!PagePinned(page));
977			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
978			ClearPageSavePinned(page);
979		}
980	}
981
982	spin_unlock(&pgd_lock);
983}
984
985static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
986{
987	spin_lock(&next->page_table_lock);
988	xen_pgd_pin(next);
989	spin_unlock(&next->page_table_lock);
990}
991
992static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
993{
994	spin_lock(&mm->page_table_lock);
995	xen_pgd_pin(mm);
996	spin_unlock(&mm->page_table_lock);
997}
998
999
1000#ifdef CONFIG_SMP
1001/* Another cpu may still have their %cr3 pointing at the pagetable, so
1002   we need to repoint it somewhere else before we can unpin it. */
1003static void drop_other_mm_ref(void *info)
1004{
1005	struct mm_struct *mm = info;
1006	struct mm_struct *active_mm;
1007
1008	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1009
1010	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1011		leave_mm(smp_processor_id());
1012
1013	/* If this cpu still has a stale cr3 reference, then make sure
1014	   it has been flushed. */
1015	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1016		load_cr3(swapper_pg_dir);
1017}
1018
1019static void xen_drop_mm_ref(struct mm_struct *mm)
1020{
1021	cpumask_var_t mask;
1022	unsigned cpu;
1023
1024	if (current->active_mm == mm) {
1025		if (current->mm == mm)
1026			load_cr3(swapper_pg_dir);
1027		else
1028			leave_mm(smp_processor_id());
1029	}
1030
1031	/* Get the "official" set of cpus referring to our pagetable. */
1032	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1033		for_each_online_cpu(cpu) {
1034			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1035			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1036				continue;
1037			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1038		}
1039		return;
1040	}
1041	cpumask_copy(mask, mm_cpumask(mm));
1042
1043	/* It's possible that a vcpu may have a stale reference to our
1044	   cr3, because its in lazy mode, and it hasn't yet flushed
1045	   its set of pending hypercalls yet.  In this case, we can
1046	   look at its actual current cr3 value, and force it to flush
1047	   if needed. */
1048	for_each_online_cpu(cpu) {
1049		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1050			cpumask_set_cpu(cpu, mask);
1051	}
1052
1053	if (!cpumask_empty(mask))
1054		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1055	free_cpumask_var(mask);
1056}
1057#else
1058static void xen_drop_mm_ref(struct mm_struct *mm)
1059{
1060	if (current->active_mm == mm)
1061		load_cr3(swapper_pg_dir);
1062}
1063#endif
1064
1065/*
1066 * While a process runs, Xen pins its pagetables, which means that the
1067 * hypervisor forces it to be read-only, and it controls all updates
1068 * to it.  This means that all pagetable updates have to go via the
1069 * hypervisor, which is moderately expensive.
1070 *
1071 * Since we're pulling the pagetable down, we switch to use init_mm,
1072 * unpin old process pagetable and mark it all read-write, which
1073 * allows further operations on it to be simple memory accesses.
1074 *
1075 * The only subtle point is that another CPU may be still using the
1076 * pagetable because of lazy tlb flushing.  This means we need need to
1077 * switch all CPUs off this pagetable before we can unpin it.
1078 */
1079static void xen_exit_mmap(struct mm_struct *mm)
1080{
1081	get_cpu();		/* make sure we don't move around */
1082	xen_drop_mm_ref(mm);
1083	put_cpu();
1084
1085	spin_lock(&mm->page_table_lock);
1086
1087	/* pgd may not be pinned in the error exit path of execve */
1088	if (xen_page_pinned(mm->pgd))
1089		xen_pgd_unpin(mm);
1090
1091	spin_unlock(&mm->page_table_lock);
1092}
1093
1094static void xen_post_allocator_init(void);
1095
1096#ifdef CONFIG_X86_64
1097static void __init xen_cleanhighmap(unsigned long vaddr,
1098				    unsigned long vaddr_end)
1099{
1100	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1101	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1102
1103	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1104	 * We include the PMD passed in on _both_ boundaries. */
1105	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1106			pmd++, vaddr += PMD_SIZE) {
1107		if (pmd_none(*pmd))
1108			continue;
1109		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1110			set_pmd(pmd, __pmd(0));
1111	}
1112	/* In case we did something silly, we should crash in this function
1113	 * instead of somewhere later and be confusing. */
1114	xen_mc_flush();
1115}
1116
1117static void __init xen_pagetable_p2m_free(void)
1118{
1119	unsigned long size;
1120	unsigned long addr;
1121
1122	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1123
1124	/* No memory or already called. */
1125	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1126		return;
1127
1128	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1129	memset((void *)xen_start_info->mfn_list, 0xff, size);
1130
1131	/* We should be in __ka space. */
1132	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1133	addr = xen_start_info->mfn_list;
1134	/* We roundup to the PMD, which means that if anybody at this stage is
1135	 * using the __ka address of xen_start_info or xen_start_info->shared_info
1136	 * they are in going to crash. Fortunatly we have already revectored
1137	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1138	size = roundup(size, PMD_SIZE);
1139	xen_cleanhighmap(addr, addr + size);
1140
1141	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1142	memblock_free(__pa(xen_start_info->mfn_list), size);
1143
1144	/* At this stage, cleanup_highmap has already cleaned __ka space
1145	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1146	 * the ramdisk). We continue on, erasing PMD entries that point to page
1147	 * tables - do note that they are accessible at this stage via __va.
1148	 * For good measure we also round up to the PMD - which means that if
1149	 * anybody is using __ka address to the initial boot-stack - and try
1150	 * to use it - they are going to crash. The xen_start_info has been
1151	 * taken care of already in xen_setup_kernel_pagetable. */
1152	addr = xen_start_info->pt_base;
1153	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1154
1155	xen_cleanhighmap(addr, addr + size);
1156	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1157#ifdef DEBUG
1158	/* This is superflous and is not neccessary, but you know what
1159	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1160	 * anything at this stage. */
1161	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1162#endif
1163}
1164#endif
1165
1166static void __init xen_pagetable_p2m_setup(void)
1167{
1168	if (xen_feature(XENFEAT_auto_translated_physmap))
1169		return;
1170
1171	xen_vmalloc_p2m_tree();
1172
1173#ifdef CONFIG_X86_64
1174	xen_pagetable_p2m_free();
1175#endif
1176	/* And revector! Bye bye old array */
1177	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1178}
1179
1180static void __init xen_pagetable_init(void)
1181{
1182	paging_init();
1183	xen_post_allocator_init();
1184
1185	xen_pagetable_p2m_setup();
1186
1187	/* Allocate and initialize top and mid mfn levels for p2m structure */
1188	xen_build_mfn_list_list();
1189
1190	/* Remap memory freed due to conflicts with E820 map */
1191	if (!xen_feature(XENFEAT_auto_translated_physmap))
1192		xen_remap_memory();
1193
1194	xen_setup_shared_info();
1195}
1196static void xen_write_cr2(unsigned long cr2)
1197{
1198	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1199}
1200
1201static unsigned long xen_read_cr2(void)
1202{
1203	return this_cpu_read(xen_vcpu)->arch.cr2;
1204}
1205
1206unsigned long xen_read_cr2_direct(void)
1207{
1208	return this_cpu_read(xen_vcpu_info.arch.cr2);
1209}
1210
1211void xen_flush_tlb_all(void)
1212{
1213	struct mmuext_op *op;
1214	struct multicall_space mcs;
1215
1216	trace_xen_mmu_flush_tlb_all(0);
1217
1218	preempt_disable();
1219
1220	mcs = xen_mc_entry(sizeof(*op));
1221
1222	op = mcs.args;
1223	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1224	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1225
1226	xen_mc_issue(PARAVIRT_LAZY_MMU);
1227
1228	preempt_enable();
1229}
1230static void xen_flush_tlb(void)
1231{
1232	struct mmuext_op *op;
1233	struct multicall_space mcs;
1234
1235	trace_xen_mmu_flush_tlb(0);
1236
1237	preempt_disable();
1238
1239	mcs = xen_mc_entry(sizeof(*op));
1240
1241	op = mcs.args;
1242	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1243	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1244
1245	xen_mc_issue(PARAVIRT_LAZY_MMU);
1246
1247	preempt_enable();
1248}
1249
1250static void xen_flush_tlb_single(unsigned long addr)
1251{
1252	struct mmuext_op *op;
1253	struct multicall_space mcs;
1254
1255	trace_xen_mmu_flush_tlb_single(addr);
1256
1257	preempt_disable();
1258
1259	mcs = xen_mc_entry(sizeof(*op));
1260	op = mcs.args;
1261	op->cmd = MMUEXT_INVLPG_LOCAL;
1262	op->arg1.linear_addr = addr & PAGE_MASK;
1263	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1264
1265	xen_mc_issue(PARAVIRT_LAZY_MMU);
1266
1267	preempt_enable();
1268}
1269
1270static void xen_flush_tlb_others(const struct cpumask *cpus,
1271				 struct mm_struct *mm, unsigned long start,
1272				 unsigned long end)
1273{
1274	struct {
1275		struct mmuext_op op;
1276#ifdef CONFIG_SMP
1277		DECLARE_BITMAP(mask, num_processors);
1278#else
1279		DECLARE_BITMAP(mask, NR_CPUS);
1280#endif
1281	} *args;
1282	struct multicall_space mcs;
1283
1284	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1285
1286	if (cpumask_empty(cpus))
1287		return;		/* nothing to do */
1288
1289	mcs = xen_mc_entry(sizeof(*args));
1290	args = mcs.args;
1291	args->op.arg2.vcpumask = to_cpumask(args->mask);
1292
1293	/* Remove us, and any offline CPUS. */
1294	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1295	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1296
1297	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1298	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1299		args->op.cmd = MMUEXT_INVLPG_MULTI;
1300		args->op.arg1.linear_addr = start;
1301	}
1302
1303	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1304
1305	xen_mc_issue(PARAVIRT_LAZY_MMU);
1306}
1307
1308static unsigned long xen_read_cr3(void)
1309{
1310	return this_cpu_read(xen_cr3);
1311}
1312
1313static void set_current_cr3(void *v)
1314{
1315	this_cpu_write(xen_current_cr3, (unsigned long)v);
1316}
1317
1318static void __xen_write_cr3(bool kernel, unsigned long cr3)
1319{
1320	struct mmuext_op op;
1321	unsigned long mfn;
1322
1323	trace_xen_mmu_write_cr3(kernel, cr3);
1324
1325	if (cr3)
1326		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1327	else
1328		mfn = 0;
1329
1330	WARN_ON(mfn == 0 && kernel);
1331
1332	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1333	op.arg1.mfn = mfn;
1334
1335	xen_extend_mmuext_op(&op);
1336
1337	if (kernel) {
1338		this_cpu_write(xen_cr3, cr3);
1339
1340		/* Update xen_current_cr3 once the batch has actually
1341		   been submitted. */
1342		xen_mc_callback(set_current_cr3, (void *)cr3);
1343	}
1344}
1345static void xen_write_cr3(unsigned long cr3)
1346{
1347	BUG_ON(preemptible());
1348
1349	xen_mc_batch();  /* disables interrupts */
1350
1351	/* Update while interrupts are disabled, so its atomic with
1352	   respect to ipis */
1353	this_cpu_write(xen_cr3, cr3);
1354
1355	__xen_write_cr3(true, cr3);
1356
1357#ifdef CONFIG_X86_64
1358	{
1359		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1360		if (user_pgd)
1361			__xen_write_cr3(false, __pa(user_pgd));
1362		else
1363			__xen_write_cr3(false, 0);
1364	}
1365#endif
1366
1367	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1368}
1369
1370#ifdef CONFIG_X86_64
1371/*
1372 * At the start of the day - when Xen launches a guest, it has already
1373 * built pagetables for the guest. We diligently look over them
1374 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1375 * init_level4_pgt and its friends. Then when we are happy we load
1376 * the new init_level4_pgt - and continue on.
1377 *
1378 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1379 * up the rest of the pagetables. When it has completed it loads the cr3.
1380 * N.B. that baremetal would start at 'start_kernel' (and the early
1381 * #PF handler would create bootstrap pagetables) - so we are running
1382 * with the same assumptions as what to do when write_cr3 is executed
1383 * at this point.
1384 *
1385 * Since there are no user-page tables at all, we have two variants
1386 * of xen_write_cr3 - the early bootup (this one), and the late one
1387 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1388 * the Linux kernel and user-space are both in ring 3 while the
1389 * hypervisor is in ring 0.
1390 */
1391static void __init xen_write_cr3_init(unsigned long cr3)
1392{
1393	BUG_ON(preemptible());
1394
1395	xen_mc_batch();  /* disables interrupts */
1396
1397	/* Update while interrupts are disabled, so its atomic with
1398	   respect to ipis */
1399	this_cpu_write(xen_cr3, cr3);
1400
1401	__xen_write_cr3(true, cr3);
1402
1403	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1404}
1405#endif
1406
1407static int xen_pgd_alloc(struct mm_struct *mm)
1408{
1409	pgd_t *pgd = mm->pgd;
1410	int ret = 0;
1411
1412	BUG_ON(PagePinned(virt_to_page(pgd)));
1413
1414#ifdef CONFIG_X86_64
1415	{
1416		struct page *page = virt_to_page(pgd);
1417		pgd_t *user_pgd;
1418
1419		BUG_ON(page->private != 0);
1420
1421		ret = -ENOMEM;
1422
1423		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1424		page->private = (unsigned long)user_pgd;
1425
1426		if (user_pgd != NULL) {
1427#ifdef CONFIG_X86_VSYSCALL_EMULATION
1428			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1429				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1430#endif
1431			ret = 0;
1432		}
1433
1434		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1435	}
1436#endif
1437
1438	return ret;
1439}
1440
1441static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1442{
1443#ifdef CONFIG_X86_64
1444	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1445
1446	if (user_pgd)
1447		free_page((unsigned long)user_pgd);
1448#endif
1449}
1450
1451#ifdef CONFIG_X86_32
1452static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1453{
1454	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1455	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1456		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1457			       pte_val_ma(pte));
1458
1459	return pte;
1460}
1461#else /* CONFIG_X86_64 */
1462static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1463{
1464	return pte;
1465}
1466#endif /* CONFIG_X86_64 */
1467
1468/*
1469 * Init-time set_pte while constructing initial pagetables, which
1470 * doesn't allow RO page table pages to be remapped RW.
1471 *
1472 * If there is no MFN for this PFN then this page is initially
1473 * ballooned out so clear the PTE (as in decrease_reservation() in
1474 * drivers/xen/balloon.c).
1475 *
1476 * Many of these PTE updates are done on unpinned and writable pages
1477 * and doing a hypercall for these is unnecessary and expensive.  At
1478 * this point it is not possible to tell if a page is pinned or not,
1479 * so always write the PTE directly and rely on Xen trapping and
1480 * emulating any updates as necessary.
1481 */
1482static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1483{
1484	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1485		pte = mask_rw_pte(ptep, pte);
1486	else
1487		pte = __pte_ma(0);
1488
1489	native_set_pte(ptep, pte);
1490}
1491
1492static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1493{
1494	struct mmuext_op op;
1495	op.cmd = cmd;
1496	op.arg1.mfn = pfn_to_mfn(pfn);
1497	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1498		BUG();
1499}
1500
1501/* Early in boot, while setting up the initial pagetable, assume
1502   everything is pinned. */
1503static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1504{
1505#ifdef CONFIG_FLATMEM
1506	BUG_ON(mem_map);	/* should only be used early */
1507#endif
1508	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1509	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1510}
1511
1512/* Used for pmd and pud */
1513static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1514{
1515#ifdef CONFIG_FLATMEM
1516	BUG_ON(mem_map);	/* should only be used early */
1517#endif
1518	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1519}
1520
1521/* Early release_pte assumes that all pts are pinned, since there's
1522   only init_mm and anything attached to that is pinned. */
1523static void __init xen_release_pte_init(unsigned long pfn)
1524{
1525	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1526	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1527}
1528
1529static void __init xen_release_pmd_init(unsigned long pfn)
1530{
1531	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1532}
1533
1534static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1535{
1536	struct multicall_space mcs;
1537	struct mmuext_op *op;
1538
1539	mcs = __xen_mc_entry(sizeof(*op));
1540	op = mcs.args;
1541	op->cmd = cmd;
1542	op->arg1.mfn = pfn_to_mfn(pfn);
1543
1544	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1545}
1546
1547static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1548{
1549	struct multicall_space mcs;
1550	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1551
1552	mcs = __xen_mc_entry(0);
1553	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1554				pfn_pte(pfn, prot), 0);
1555}
1556
1557/* This needs to make sure the new pte page is pinned iff its being
1558   attached to a pinned pagetable. */
1559static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1560				    unsigned level)
1561{
1562	bool pinned = PagePinned(virt_to_page(mm->pgd));
1563
1564	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1565
1566	if (pinned) {
1567		struct page *page = pfn_to_page(pfn);
1568
1569		SetPagePinned(page);
1570
1571		if (!PageHighMem(page)) {
1572			xen_mc_batch();
1573
1574			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1575
1576			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1577				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1578
1579			xen_mc_issue(PARAVIRT_LAZY_MMU);
1580		} else {
1581			/* make sure there are no stray mappings of
1582			   this page */
1583			kmap_flush_unused();
1584		}
1585	}
1586}
1587
1588static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1589{
1590	xen_alloc_ptpage(mm, pfn, PT_PTE);
1591}
1592
1593static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1594{
1595	xen_alloc_ptpage(mm, pfn, PT_PMD);
1596}
1597
1598/* This should never happen until we're OK to use struct page */
1599static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1600{
1601	struct page *page = pfn_to_page(pfn);
1602	bool pinned = PagePinned(page);
1603
1604	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1605
1606	if (pinned) {
1607		if (!PageHighMem(page)) {
1608			xen_mc_batch();
1609
1610			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1611				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1612
1613			__set_pfn_prot(pfn, PAGE_KERNEL);
1614
1615			xen_mc_issue(PARAVIRT_LAZY_MMU);
1616		}
1617		ClearPagePinned(page);
1618	}
1619}
1620
1621static void xen_release_pte(unsigned long pfn)
1622{
1623	xen_release_ptpage(pfn, PT_PTE);
1624}
1625
1626static void xen_release_pmd(unsigned long pfn)
1627{
1628	xen_release_ptpage(pfn, PT_PMD);
1629}
1630
1631#if CONFIG_PGTABLE_LEVELS == 4
1632static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1633{
1634	xen_alloc_ptpage(mm, pfn, PT_PUD);
1635}
1636
1637static void xen_release_pud(unsigned long pfn)
1638{
1639	xen_release_ptpage(pfn, PT_PUD);
1640}
1641#endif
1642
1643void __init xen_reserve_top(void)
1644{
1645#ifdef CONFIG_X86_32
1646	unsigned long top = HYPERVISOR_VIRT_START;
1647	struct xen_platform_parameters pp;
1648
1649	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1650		top = pp.virt_start;
1651
1652	reserve_top_address(-top);
1653#endif	/* CONFIG_X86_32 */
1654}
1655
1656/*
1657 * Like __va(), but returns address in the kernel mapping (which is
1658 * all we have until the physical memory mapping has been set up.
1659 */
1660static void * __init __ka(phys_addr_t paddr)
1661{
1662#ifdef CONFIG_X86_64
1663	return (void *)(paddr + __START_KERNEL_map);
1664#else
1665	return __va(paddr);
1666#endif
1667}
1668
1669/* Convert a machine address to physical address */
1670static unsigned long __init m2p(phys_addr_t maddr)
1671{
1672	phys_addr_t paddr;
1673
1674	maddr &= PTE_PFN_MASK;
1675	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1676
1677	return paddr;
1678}
1679
1680/* Convert a machine address to kernel virtual */
1681static void * __init m2v(phys_addr_t maddr)
1682{
1683	return __ka(m2p(maddr));
1684}
1685
1686/* Set the page permissions on an identity-mapped pages */
1687static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1688				       unsigned long flags)
1689{
1690	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1691	pte_t pte = pfn_pte(pfn, prot);
1692
1693	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1694	if (xen_feature(XENFEAT_auto_translated_physmap))
1695		return;
1696
1697	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1698		BUG();
1699}
1700static void __init set_page_prot(void *addr, pgprot_t prot)
1701{
1702	return set_page_prot_flags(addr, prot, UVMF_NONE);
1703}
1704#ifdef CONFIG_X86_32
1705static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1706{
1707	unsigned pmdidx, pteidx;
1708	unsigned ident_pte;
1709	unsigned long pfn;
1710
1711	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1712				      PAGE_SIZE);
1713
1714	ident_pte = 0;
1715	pfn = 0;
1716	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1717		pte_t *pte_page;
1718
1719		/* Reuse or allocate a page of ptes */
1720		if (pmd_present(pmd[pmdidx]))
1721			pte_page = m2v(pmd[pmdidx].pmd);
1722		else {
1723			/* Check for free pte pages */
1724			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1725				break;
1726
1727			pte_page = &level1_ident_pgt[ident_pte];
1728			ident_pte += PTRS_PER_PTE;
1729
1730			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1731		}
1732
1733		/* Install mappings */
1734		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1735			pte_t pte;
1736
1737			if (pfn > max_pfn_mapped)
1738				max_pfn_mapped = pfn;
1739
1740			if (!pte_none(pte_page[pteidx]))
1741				continue;
1742
1743			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1744			pte_page[pteidx] = pte;
1745		}
1746	}
1747
1748	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1749		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1750
1751	set_page_prot(pmd, PAGE_KERNEL_RO);
1752}
1753#endif
1754void __init xen_setup_machphys_mapping(void)
1755{
1756	struct xen_machphys_mapping mapping;
1757
1758	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1759		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1760		machine_to_phys_nr = mapping.max_mfn + 1;
1761	} else {
1762		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1763	}
1764#ifdef CONFIG_X86_32
1765	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1766		< machine_to_phys_mapping);
1767#endif
1768}
1769
1770#ifdef CONFIG_X86_64
1771static void __init convert_pfn_mfn(void *v)
1772{
1773	pte_t *pte = v;
1774	int i;
1775
1776	/* All levels are converted the same way, so just treat them
1777	   as ptes. */
1778	for (i = 0; i < PTRS_PER_PTE; i++)
1779		pte[i] = xen_make_pte(pte[i].pte);
1780}
1781static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1782				 unsigned long addr)
1783{
1784	if (*pt_base == PFN_DOWN(__pa(addr))) {
1785		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1786		clear_page((void *)addr);
1787		(*pt_base)++;
1788	}
1789	if (*pt_end == PFN_DOWN(__pa(addr))) {
1790		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1791		clear_page((void *)addr);
1792		(*pt_end)--;
1793	}
1794}
1795/*
1796 * Set up the initial kernel pagetable.
1797 *
1798 * We can construct this by grafting the Xen provided pagetable into
1799 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1800 * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1801 * kernel has a physical mapping to start with - but that's enough to
1802 * get __va working.  We need to fill in the rest of the physical
1803 * mapping once some sort of allocator has been set up.  NOTE: for
1804 * PVH, the page tables are native.
1805 */
1806void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1807{
1808	pud_t *l3;
1809	pmd_t *l2;
1810	unsigned long addr[3];
1811	unsigned long pt_base, pt_end;
1812	unsigned i;
1813
1814	/* max_pfn_mapped is the last pfn mapped in the initial memory
1815	 * mappings. Considering that on Xen after the kernel mappings we
1816	 * have the mappings of some pages that don't exist in pfn space, we
1817	 * set max_pfn_mapped to the last real pfn mapped. */
1818	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1819
1820	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1821	pt_end = pt_base + xen_start_info->nr_pt_frames;
1822
1823	/* Zap identity mapping */
1824	init_level4_pgt[0] = __pgd(0);
1825
1826	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1827		/* Pre-constructed entries are in pfn, so convert to mfn */
1828		/* L4[272] -> level3_ident_pgt
1829		 * L4[511] -> level3_kernel_pgt */
1830		convert_pfn_mfn(init_level4_pgt);
1831
1832		/* L3_i[0] -> level2_ident_pgt */
1833		convert_pfn_mfn(level3_ident_pgt);
1834		/* L3_k[510] -> level2_kernel_pgt
1835		 * L3_k[511] -> level2_fixmap_pgt */
1836		convert_pfn_mfn(level3_kernel_pgt);
1837
1838		/* L3_k[511][506] -> level1_fixmap_pgt */
1839		convert_pfn_mfn(level2_fixmap_pgt);
1840	}
1841	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1842	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1843	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1844
1845	addr[0] = (unsigned long)pgd;
1846	addr[1] = (unsigned long)l3;
1847	addr[2] = (unsigned long)l2;
1848	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1849	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1850	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1851	 * it will be also modified in the __ka space! (But if you just
1852	 * modify the PMD table to point to other PTE's or none, then you
1853	 * are OK - which is what cleanup_highmap does) */
1854	copy_page(level2_ident_pgt, l2);
1855	/* Graft it onto L4[511][510] */
1856	copy_page(level2_kernel_pgt, l2);
1857
1858	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1859		/* Make pagetable pieces RO */
1860		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1861		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1862		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1863		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1864		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1865		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1866		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1867		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1868
1869		/* Pin down new L4 */
1870		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1871				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1872
1873		/* Unpin Xen-provided one */
1874		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1875
1876		/*
1877		 * At this stage there can be no user pgd, and no page
1878		 * structure to attach it to, so make sure we just set kernel
1879		 * pgd.
1880		 */
1881		xen_mc_batch();
1882		__xen_write_cr3(true, __pa(init_level4_pgt));
1883		xen_mc_issue(PARAVIRT_LAZY_CPU);
1884	} else
1885		native_write_cr3(__pa(init_level4_pgt));
1886
1887	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1888	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1889	 * the initial domain. For guests using the toolstack, they are in:
1890	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1891	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1892	 */
1893	for (i = 0; i < ARRAY_SIZE(addr); i++)
1894		check_pt_base(&pt_base, &pt_end, addr[i]);
1895
1896	/* Our (by three pages) smaller Xen pagetable that we are using */
1897	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1898	/* Revector the xen_start_info */
1899	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1900}
1901#else	/* !CONFIG_X86_64 */
1902static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1903static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1904
1905static void __init xen_write_cr3_init(unsigned long cr3)
1906{
1907	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1908
1909	BUG_ON(read_cr3() != __pa(initial_page_table));
1910	BUG_ON(cr3 != __pa(swapper_pg_dir));
1911
1912	/*
1913	 * We are switching to swapper_pg_dir for the first time (from
1914	 * initial_page_table) and therefore need to mark that page
1915	 * read-only and then pin it.
1916	 *
1917	 * Xen disallows sharing of kernel PMDs for PAE
1918	 * guests. Therefore we must copy the kernel PMD from
1919	 * initial_page_table into a new kernel PMD to be used in
1920	 * swapper_pg_dir.
1921	 */
1922	swapper_kernel_pmd =
1923		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1924	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1925	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1926		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1927	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1928
1929	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1930	xen_write_cr3(cr3);
1931	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1932
1933	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1934			  PFN_DOWN(__pa(initial_page_table)));
1935	set_page_prot(initial_page_table, PAGE_KERNEL);
1936	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1937
1938	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1939}
1940
1941void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1942{
1943	pmd_t *kernel_pmd;
1944
1945	initial_kernel_pmd =
1946		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1947
1948	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1949				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1950				  512*1024);
1951
1952	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1953	copy_page(initial_kernel_pmd, kernel_pmd);
1954
1955	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1956
1957	copy_page(initial_page_table, pgd);
1958	initial_page_table[KERNEL_PGD_BOUNDARY] =
1959		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1960
1961	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1962	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1963	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1964
1965	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1966
1967	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1968			  PFN_DOWN(__pa(initial_page_table)));
1969	xen_write_cr3(__pa(initial_page_table));
1970
1971	memblock_reserve(__pa(xen_start_info->pt_base),
1972			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1973}
1974#endif	/* CONFIG_X86_64 */
1975
1976static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1977
1978static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1979{
1980	pte_t pte;
1981
1982	phys >>= PAGE_SHIFT;
1983
1984	switch (idx) {
1985	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1986	case FIX_RO_IDT:
1987#ifdef CONFIG_X86_32
1988	case FIX_WP_TEST:
1989# ifdef CONFIG_HIGHMEM
1990	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1991# endif
1992#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
1993	case VSYSCALL_PAGE:
1994#endif
1995	case FIX_TEXT_POKE0:
1996	case FIX_TEXT_POKE1:
1997		/* All local page mappings */
1998		pte = pfn_pte(phys, prot);
1999		break;
2000
2001#ifdef CONFIG_X86_LOCAL_APIC
2002	case FIX_APIC_BASE:	/* maps dummy local APIC */
2003		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2004		break;
2005#endif
2006
2007#ifdef CONFIG_X86_IO_APIC
2008	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2009		/*
2010		 * We just don't map the IO APIC - all access is via
2011		 * hypercalls.  Keep the address in the pte for reference.
2012		 */
2013		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2014		break;
2015#endif
2016
2017	case FIX_PARAVIRT_BOOTMAP:
2018		/* This is an MFN, but it isn't an IO mapping from the
2019		   IO domain */
2020		pte = mfn_pte(phys, prot);
2021		break;
2022
2023	default:
2024		/* By default, set_fixmap is used for hardware mappings */
2025		pte = mfn_pte(phys, prot);
2026		break;
2027	}
2028
2029	__native_set_fixmap(idx, pte);
2030
2031#ifdef CONFIG_X86_VSYSCALL_EMULATION
2032	/* Replicate changes to map the vsyscall page into the user
2033	   pagetable vsyscall mapping. */
2034	if (idx == VSYSCALL_PAGE) {
2035		unsigned long vaddr = __fix_to_virt(idx);
2036		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2037	}
2038#endif
2039}
2040
2041static void __init xen_post_allocator_init(void)
2042{
2043	if (xen_feature(XENFEAT_auto_translated_physmap))
2044		return;
2045
2046	pv_mmu_ops.set_pte = xen_set_pte;
2047	pv_mmu_ops.set_pmd = xen_set_pmd;
2048	pv_mmu_ops.set_pud = xen_set_pud;
2049#if CONFIG_PGTABLE_LEVELS == 4
2050	pv_mmu_ops.set_pgd = xen_set_pgd;
2051#endif
2052
2053	/* This will work as long as patching hasn't happened yet
2054	   (which it hasn't) */
2055	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2056	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2057	pv_mmu_ops.release_pte = xen_release_pte;
2058	pv_mmu_ops.release_pmd = xen_release_pmd;
2059#if CONFIG_PGTABLE_LEVELS == 4
2060	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2061	pv_mmu_ops.release_pud = xen_release_pud;
2062#endif
2063
2064#ifdef CONFIG_X86_64
2065	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2066	SetPagePinned(virt_to_page(level3_user_vsyscall));
2067#endif
2068	xen_mark_init_mm_pinned();
2069}
2070
2071static void xen_leave_lazy_mmu(void)
2072{
2073	preempt_disable();
2074	xen_mc_flush();
2075	paravirt_leave_lazy_mmu();
2076	preempt_enable();
2077}
2078
2079static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2080	.read_cr2 = xen_read_cr2,
2081	.write_cr2 = xen_write_cr2,
2082
2083	.read_cr3 = xen_read_cr3,
2084	.write_cr3 = xen_write_cr3_init,
2085
2086	.flush_tlb_user = xen_flush_tlb,
2087	.flush_tlb_kernel = xen_flush_tlb,
2088	.flush_tlb_single = xen_flush_tlb_single,
2089	.flush_tlb_others = xen_flush_tlb_others,
2090
2091	.pte_update = paravirt_nop,
2092	.pte_update_defer = paravirt_nop,
2093
2094	.pgd_alloc = xen_pgd_alloc,
2095	.pgd_free = xen_pgd_free,
2096
2097	.alloc_pte = xen_alloc_pte_init,
2098	.release_pte = xen_release_pte_init,
2099	.alloc_pmd = xen_alloc_pmd_init,
2100	.release_pmd = xen_release_pmd_init,
2101
2102	.set_pte = xen_set_pte_init,
2103	.set_pte_at = xen_set_pte_at,
2104	.set_pmd = xen_set_pmd_hyper,
2105
2106	.ptep_modify_prot_start = __ptep_modify_prot_start,
2107	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2108
2109	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2110	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2111
2112	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2113	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2114
2115#ifdef CONFIG_X86_PAE
2116	.set_pte_atomic = xen_set_pte_atomic,
2117	.pte_clear = xen_pte_clear,
2118	.pmd_clear = xen_pmd_clear,
2119#endif	/* CONFIG_X86_PAE */
2120	.set_pud = xen_set_pud_hyper,
2121
2122	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2123	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2124
2125#if CONFIG_PGTABLE_LEVELS == 4
2126	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2127	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2128	.set_pgd = xen_set_pgd_hyper,
2129
2130	.alloc_pud = xen_alloc_pmd_init,
2131	.release_pud = xen_release_pmd_init,
2132#endif	/* CONFIG_PGTABLE_LEVELS == 4 */
2133
2134	.activate_mm = xen_activate_mm,
2135	.dup_mmap = xen_dup_mmap,
2136	.exit_mmap = xen_exit_mmap,
2137
2138	.lazy_mode = {
2139		.enter = paravirt_enter_lazy_mmu,
2140		.leave = xen_leave_lazy_mmu,
2141		.flush = paravirt_flush_lazy_mmu,
2142	},
2143
2144	.set_fixmap = xen_set_fixmap,
2145};
2146
2147void __init xen_init_mmu_ops(void)
2148{
2149	x86_init.paging.pagetable_init = xen_pagetable_init;
2150
2151	/* Optimization - we can use the HVM one but it has no idea which
2152	 * VCPUs are descheduled - which means that it will needlessly IPI
2153	 * them. Xen knows so let it do the job.
2154	 */
2155	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2156		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2157		return;
2158	}
2159	pv_mmu_ops = xen_mmu_ops;
2160
2161	memset(dummy_mapping, 0xff, PAGE_SIZE);
2162}
2163
2164/* Protected by xen_reservation_lock. */
2165#define MAX_CONTIG_ORDER 9 /* 2MB */
2166static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2167
2168#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2169static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2170				unsigned long *in_frames,
2171				unsigned long *out_frames)
2172{
2173	int i;
2174	struct multicall_space mcs;
2175
2176	xen_mc_batch();
2177	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2178		mcs = __xen_mc_entry(0);
2179
2180		if (in_frames)
2181			in_frames[i] = virt_to_mfn(vaddr);
2182
2183		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2184		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2185
2186		if (out_frames)
2187			out_frames[i] = virt_to_pfn(vaddr);
2188	}
2189	xen_mc_issue(0);
2190}
2191
2192/*
2193 * Update the pfn-to-mfn mappings for a virtual address range, either to
2194 * point to an array of mfns, or contiguously from a single starting
2195 * mfn.
2196 */
2197static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2198				     unsigned long *mfns,
2199				     unsigned long first_mfn)
2200{
2201	unsigned i, limit;
2202	unsigned long mfn;
2203
2204	xen_mc_batch();
2205
2206	limit = 1u << order;
2207	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2208		struct multicall_space mcs;
2209		unsigned flags;
2210
2211		mcs = __xen_mc_entry(0);
2212		if (mfns)
2213			mfn = mfns[i];
2214		else
2215			mfn = first_mfn + i;
2216
2217		if (i < (limit - 1))
2218			flags = 0;
2219		else {
2220			if (order == 0)
2221				flags = UVMF_INVLPG | UVMF_ALL;
2222			else
2223				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2224		}
2225
2226		MULTI_update_va_mapping(mcs.mc, vaddr,
2227				mfn_pte(mfn, PAGE_KERNEL), flags);
2228
2229		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2230	}
2231
2232	xen_mc_issue(0);
2233}
2234
2235/*
2236 * Perform the hypercall to exchange a region of our pfns to point to
2237 * memory with the required contiguous alignment.  Takes the pfns as
2238 * input, and populates mfns as output.
2239 *
2240 * Returns a success code indicating whether the hypervisor was able to
2241 * satisfy the request or not.
2242 */
2243static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2244			       unsigned long *pfns_in,
2245			       unsigned long extents_out,
2246			       unsigned int order_out,
2247			       unsigned long *mfns_out,
2248			       unsigned int address_bits)
2249{
2250	long rc;
2251	int success;
2252
2253	struct xen_memory_exchange exchange = {
2254		.in = {
2255			.nr_extents   = extents_in,
2256			.extent_order = order_in,
2257			.extent_start = pfns_in,
2258			.domid        = DOMID_SELF
2259		},
2260		.out = {
2261			.nr_extents   = extents_out,
2262			.extent_order = order_out,
2263			.extent_start = mfns_out,
2264			.address_bits = address_bits,
2265			.domid        = DOMID_SELF
2266		}
2267	};
2268
2269	BUG_ON(extents_in << order_in != extents_out << order_out);
2270
2271	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2272	success = (exchange.nr_exchanged == extents_in);
2273
2274	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2275	BUG_ON(success && (rc != 0));
2276
2277	return success;
2278}
2279
2280int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2281				 unsigned int address_bits,
2282				 dma_addr_t *dma_handle)
2283{
2284	unsigned long *in_frames = discontig_frames, out_frame;
2285	unsigned long  flags;
2286	int            success;
2287	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2288
2289	/*
2290	 * Currently an auto-translated guest will not perform I/O, nor will
2291	 * it require PAE page directories below 4GB. Therefore any calls to
2292	 * this function are redundant and can be ignored.
2293	 */
2294
2295	if (xen_feature(XENFEAT_auto_translated_physmap))
2296		return 0;
2297
2298	if (unlikely(order > MAX_CONTIG_ORDER))
2299		return -ENOMEM;
2300
2301	memset((void *) vstart, 0, PAGE_SIZE << order);
2302
2303	spin_lock_irqsave(&xen_reservation_lock, flags);
2304
2305	/* 1. Zap current PTEs, remembering MFNs. */
2306	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2307
2308	/* 2. Get a new contiguous memory extent. */
2309	out_frame = virt_to_pfn(vstart);
2310	success = xen_exchange_memory(1UL << order, 0, in_frames,
2311				      1, order, &out_frame,
2312				      address_bits);
2313
2314	/* 3. Map the new extent in place of old pages. */
2315	if (success)
2316		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2317	else
2318		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2319
2320	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2321
2322	*dma_handle = virt_to_machine(vstart).maddr;
2323	return success ? 0 : -ENOMEM;
2324}
2325EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2326
2327void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2328{
2329	unsigned long *out_frames = discontig_frames, in_frame;
2330	unsigned long  flags;
2331	int success;
2332	unsigned long vstart;
2333
2334	if (xen_feature(XENFEAT_auto_translated_physmap))
2335		return;
2336
2337	if (unlikely(order > MAX_CONTIG_ORDER))
2338		return;
2339
2340	vstart = (unsigned long)phys_to_virt(pstart);
2341	memset((void *) vstart, 0, PAGE_SIZE << order);
2342
2343	spin_lock_irqsave(&xen_reservation_lock, flags);
2344
2345	/* 1. Find start MFN of contiguous extent. */
2346	in_frame = virt_to_mfn(vstart);
2347
2348	/* 2. Zap current PTEs. */
2349	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2350
2351	/* 3. Do the exchange for non-contiguous MFNs. */
2352	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2353					0, out_frames, 0);
2354
2355	/* 4. Map new pages in place of old pages. */
2356	if (success)
2357		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2358	else
2359		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2360
2361	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2362}
2363EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2364
2365#ifdef CONFIG_XEN_PVHVM
2366#ifdef CONFIG_PROC_VMCORE
2367/*
2368 * This function is used in two contexts:
2369 * - the kdump kernel has to check whether a pfn of the crashed kernel
2370 *   was a ballooned page. vmcore is using this function to decide
2371 *   whether to access a pfn of the crashed kernel.
2372 * - the kexec kernel has to check whether a pfn was ballooned by the
2373 *   previous kernel. If the pfn is ballooned, handle it properly.
2374 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2375 * handle the pfn special in this case.
2376 */
2377static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2378{
2379	struct xen_hvm_get_mem_type a = {
2380		.domid = DOMID_SELF,
2381		.pfn = pfn,
2382	};
2383	int ram;
2384
2385	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2386		return -ENXIO;
2387
2388	switch (a.mem_type) {
2389		case HVMMEM_mmio_dm:
2390			ram = 0;
2391			break;
2392		case HVMMEM_ram_rw:
2393		case HVMMEM_ram_ro:
2394		default:
2395			ram = 1;
2396			break;
2397	}
2398
2399	return ram;
2400}
2401#endif
2402
2403static void xen_hvm_exit_mmap(struct mm_struct *mm)
2404{
2405	struct xen_hvm_pagetable_dying a;
2406	int rc;
2407
2408	a.domid = DOMID_SELF;
2409	a.gpa = __pa(mm->pgd);
2410	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2411	WARN_ON_ONCE(rc < 0);
2412}
2413
2414static int is_pagetable_dying_supported(void)
2415{
2416	struct xen_hvm_pagetable_dying a;
2417	int rc = 0;
2418
2419	a.domid = DOMID_SELF;
2420	a.gpa = 0x00;
2421	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2422	if (rc < 0) {
2423		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2424		return 0;
2425	}
2426	return 1;
2427}
2428
2429void __init xen_hvm_init_mmu_ops(void)
2430{
2431	if (is_pagetable_dying_supported())
2432		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2433#ifdef CONFIG_PROC_VMCORE
2434	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2435#endif
2436}
2437#endif
2438
2439#define REMAP_BATCH_SIZE 16
2440
2441struct remap_data {
2442	xen_pfn_t *mfn;
2443	bool contiguous;
2444	pgprot_t prot;
2445	struct mmu_update *mmu_update;
2446};
2447
2448static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2449				 unsigned long addr, void *data)
2450{
2451	struct remap_data *rmd = data;
2452	pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2453
2454	/* If we have a contigious range, just update the mfn itself,
2455	   else update pointer to be "next mfn". */
2456	if (rmd->contiguous)
2457		(*rmd->mfn)++;
2458	else
2459		rmd->mfn++;
2460
2461	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2462	rmd->mmu_update->val = pte_val_ma(pte);
2463	rmd->mmu_update++;
2464
2465	return 0;
2466}
2467
2468static int do_remap_mfn(struct vm_area_struct *vma,
2469			unsigned long addr,
2470			xen_pfn_t *mfn, int nr,
2471			int *err_ptr, pgprot_t prot,
2472			unsigned domid,
2473			struct page **pages)
2474{
2475	int err = 0;
2476	struct remap_data rmd;
2477	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2478	unsigned long range;
2479	int mapped = 0;
2480
2481	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2482
2483	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2484#ifdef CONFIG_XEN_PVH
2485		/* We need to update the local page tables and the xen HAP */
2486		return xen_xlate_remap_gfn_array(vma, addr, mfn, nr, err_ptr,
2487						 prot, domid, pages);
2488#else
2489		return -EINVAL;
2490#endif
2491        }
2492
2493	rmd.mfn = mfn;
2494	rmd.prot = prot;
2495	/* We use the err_ptr to indicate if there we are doing a contigious
2496	 * mapping or a discontigious mapping. */
2497	rmd.contiguous = !err_ptr;
2498
2499	while (nr) {
2500		int index = 0;
2501		int done = 0;
2502		int batch = min(REMAP_BATCH_SIZE, nr);
2503		int batch_left = batch;
2504		range = (unsigned long)batch << PAGE_SHIFT;
2505
2506		rmd.mmu_update = mmu_update;
2507		err = apply_to_page_range(vma->vm_mm, addr, range,
2508					  remap_area_mfn_pte_fn, &rmd);
2509		if (err)
2510			goto out;
2511
2512		/* We record the error for each page that gives an error, but
2513		 * continue mapping until the whole set is done */
2514		do {
2515			int i;
2516
2517			err = HYPERVISOR_mmu_update(&mmu_update[index],
2518						    batch_left, &done, domid);
2519
2520			/*
2521			 * @err_ptr may be the same buffer as @mfn, so
2522			 * only clear it after each chunk of @mfn is
2523			 * used.
2524			 */
2525			if (err_ptr) {
2526				for (i = index; i < index + done; i++)
2527					err_ptr[i] = 0;
2528			}
2529			if (err < 0) {
2530				if (!err_ptr)
2531					goto out;
2532				err_ptr[i] = err;
2533				done++; /* Skip failed frame. */
2534			} else
2535				mapped += done;
2536			batch_left -= done;
2537			index += done;
2538		} while (batch_left);
2539
2540		nr -= batch;
2541		addr += range;
2542		if (err_ptr)
2543			err_ptr += batch;
2544	}
2545out:
2546
2547	xen_flush_tlb_all();
2548
2549	return err < 0 ? err : mapped;
2550}
2551
2552int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2553			       unsigned long addr,
2554			       xen_pfn_t mfn, int nr,
2555			       pgprot_t prot, unsigned domid,
2556			       struct page **pages)
2557{
2558	return do_remap_mfn(vma, addr, &mfn, nr, NULL, prot, domid, pages);
2559}
2560EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2561
2562int xen_remap_domain_mfn_array(struct vm_area_struct *vma,
2563			       unsigned long addr,
2564			       xen_pfn_t *mfn, int nr,
2565			       int *err_ptr, pgprot_t prot,
2566			       unsigned domid, struct page **pages)
2567{
2568	/* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2569	 * and the consequences later is quite hard to detect what the actual
2570	 * cause of "wrong memory was mapped in".
2571	 */
2572	BUG_ON(err_ptr == NULL);
2573	return do_remap_mfn(vma, addr, mfn, nr, err_ptr, prot, domid, pages);
2574}
2575EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_array);
2576
2577
2578/* Returns: 0 success */
2579int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2580			       int numpgs, struct page **pages)
2581{
2582	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2583		return 0;
2584
2585#ifdef CONFIG_XEN_PVH
2586	return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2587#else
2588	return -EINVAL;
2589#endif
2590}
2591EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2592