1/* 2 * SGI NMI support routines 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved. 19 * Copyright (c) Mike Travis 20 */ 21 22#include <linux/cpu.h> 23#include <linux/delay.h> 24#include <linux/kdb.h> 25#include <linux/kexec.h> 26#include <linux/kgdb.h> 27#include <linux/module.h> 28#include <linux/nmi.h> 29#include <linux/sched.h> 30#include <linux/slab.h> 31 32#include <asm/apic.h> 33#include <asm/current.h> 34#include <asm/kdebug.h> 35#include <asm/local64.h> 36#include <asm/nmi.h> 37#include <asm/traps.h> 38#include <asm/uv/uv.h> 39#include <asm/uv/uv_hub.h> 40#include <asm/uv/uv_mmrs.h> 41 42/* 43 * UV handler for NMI 44 * 45 * Handle system-wide NMI events generated by the global 'power nmi' command. 46 * 47 * Basic operation is to field the NMI interrupt on each cpu and wait 48 * until all cpus have arrived into the nmi handler. If some cpus do not 49 * make it into the handler, try and force them in with the IPI(NMI) signal. 50 * 51 * We also have to lessen UV Hub MMR accesses as much as possible as this 52 * disrupts the UV Hub's primary mission of directing NumaLink traffic and 53 * can cause system problems to occur. 54 * 55 * To do this we register our primary NMI notifier on the NMI_UNKNOWN 56 * chain. This reduces the number of false NMI calls when the perf 57 * tools are running which generate an enormous number of NMIs per 58 * second (~4M/s for 1024 cpu threads). Our secondary NMI handler is 59 * very short as it only checks that if it has been "pinged" with the 60 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR. 61 * 62 */ 63 64static struct uv_hub_nmi_s **uv_hub_nmi_list; 65 66DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); 67EXPORT_PER_CPU_SYMBOL_GPL(uv_cpu_nmi); 68 69static unsigned long nmi_mmr; 70static unsigned long nmi_mmr_clear; 71static unsigned long nmi_mmr_pending; 72 73static atomic_t uv_in_nmi; 74static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1); 75static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1); 76static atomic_t uv_nmi_slave_continue; 77static cpumask_var_t uv_nmi_cpu_mask; 78 79/* Values for uv_nmi_slave_continue */ 80#define SLAVE_CLEAR 0 81#define SLAVE_CONTINUE 1 82#define SLAVE_EXIT 2 83 84/* 85 * Default is all stack dumps go to the console and buffer. 86 * Lower level to send to log buffer only. 87 */ 88static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; 89module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644); 90 91/* 92 * The following values show statistics on how perf events are affecting 93 * this system. 94 */ 95static int param_get_local64(char *buffer, const struct kernel_param *kp) 96{ 97 return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg)); 98} 99 100static int param_set_local64(const char *val, const struct kernel_param *kp) 101{ 102 /* clear on any write */ 103 local64_set((local64_t *)kp->arg, 0); 104 return 0; 105} 106 107static struct kernel_param_ops param_ops_local64 = { 108 .get = param_get_local64, 109 .set = param_set_local64, 110}; 111#define param_check_local64(name, p) __param_check(name, p, local64_t) 112 113static local64_t uv_nmi_count; 114module_param_named(nmi_count, uv_nmi_count, local64, 0644); 115 116static local64_t uv_nmi_misses; 117module_param_named(nmi_misses, uv_nmi_misses, local64, 0644); 118 119static local64_t uv_nmi_ping_count; 120module_param_named(ping_count, uv_nmi_ping_count, local64, 0644); 121 122static local64_t uv_nmi_ping_misses; 123module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644); 124 125/* 126 * Following values allow tuning for large systems under heavy loading 127 */ 128static int uv_nmi_initial_delay = 100; 129module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644); 130 131static int uv_nmi_slave_delay = 100; 132module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644); 133 134static int uv_nmi_loop_delay = 100; 135module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644); 136 137static int uv_nmi_trigger_delay = 10000; 138module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644); 139 140static int uv_nmi_wait_count = 100; 141module_param_named(wait_count, uv_nmi_wait_count, int, 0644); 142 143static int uv_nmi_retry_count = 500; 144module_param_named(retry_count, uv_nmi_retry_count, int, 0644); 145 146/* 147 * Valid NMI Actions: 148 * "dump" - dump process stack for each cpu 149 * "ips" - dump IP info for each cpu 150 * "kdump" - do crash dump 151 * "kdb" - enter KDB (default) 152 * "kgdb" - enter KGDB 153 */ 154static char uv_nmi_action[8] = "kdb"; 155module_param_string(action, uv_nmi_action, sizeof(uv_nmi_action), 0644); 156 157static inline bool uv_nmi_action_is(const char *action) 158{ 159 return (strncmp(uv_nmi_action, action, strlen(action)) == 0); 160} 161 162/* Setup which NMI support is present in system */ 163static void uv_nmi_setup_mmrs(void) 164{ 165 if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) { 166 uv_write_local_mmr(UVH_NMI_MMRX_REQ, 167 1UL << UVH_NMI_MMRX_REQ_SHIFT); 168 nmi_mmr = UVH_NMI_MMRX; 169 nmi_mmr_clear = UVH_NMI_MMRX_CLEAR; 170 nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT; 171 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE); 172 } else { 173 nmi_mmr = UVH_NMI_MMR; 174 nmi_mmr_clear = UVH_NMI_MMR_CLEAR; 175 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT; 176 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE); 177 } 178} 179 180/* Read NMI MMR and check if NMI flag was set by BMC. */ 181static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi) 182{ 183 hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr); 184 atomic_inc(&hub_nmi->read_mmr_count); 185 return !!(hub_nmi->nmi_value & nmi_mmr_pending); 186} 187 188static inline void uv_local_mmr_clear_nmi(void) 189{ 190 uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending); 191} 192 193/* 194 * If first cpu in on this hub, set hub_nmi "in_nmi" and "owner" values and 195 * return true. If first cpu in on the system, set global "in_nmi" flag. 196 */ 197static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi) 198{ 199 int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1); 200 201 if (first) { 202 atomic_set(&hub_nmi->cpu_owner, cpu); 203 if (atomic_add_unless(&uv_in_nmi, 1, 1)) 204 atomic_set(&uv_nmi_cpu, cpu); 205 206 atomic_inc(&hub_nmi->nmi_count); 207 } 208 return first; 209} 210 211/* Check if this is a system NMI event */ 212static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi) 213{ 214 int cpu = smp_processor_id(); 215 int nmi = 0; 216 217 local64_inc(&uv_nmi_count); 218 this_cpu_inc(uv_cpu_nmi.queries); 219 220 do { 221 nmi = atomic_read(&hub_nmi->in_nmi); 222 if (nmi) 223 break; 224 225 if (raw_spin_trylock(&hub_nmi->nmi_lock)) { 226 227 /* check hub MMR NMI flag */ 228 if (uv_nmi_test_mmr(hub_nmi)) { 229 uv_set_in_nmi(cpu, hub_nmi); 230 nmi = 1; 231 break; 232 } 233 234 /* MMR NMI flag is clear */ 235 raw_spin_unlock(&hub_nmi->nmi_lock); 236 237 } else { 238 /* wait a moment for the hub nmi locker to set flag */ 239 cpu_relax(); 240 udelay(uv_nmi_slave_delay); 241 242 /* re-check hub in_nmi flag */ 243 nmi = atomic_read(&hub_nmi->in_nmi); 244 if (nmi) 245 break; 246 } 247 248 /* check if this BMC missed setting the MMR NMI flag */ 249 if (!nmi) { 250 nmi = atomic_read(&uv_in_nmi); 251 if (nmi) 252 uv_set_in_nmi(cpu, hub_nmi); 253 } 254 255 } while (0); 256 257 if (!nmi) 258 local64_inc(&uv_nmi_misses); 259 260 return nmi; 261} 262 263/* Need to reset the NMI MMR register, but only once per hub. */ 264static inline void uv_clear_nmi(int cpu) 265{ 266 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi; 267 268 if (cpu == atomic_read(&hub_nmi->cpu_owner)) { 269 atomic_set(&hub_nmi->cpu_owner, -1); 270 atomic_set(&hub_nmi->in_nmi, 0); 271 uv_local_mmr_clear_nmi(); 272 raw_spin_unlock(&hub_nmi->nmi_lock); 273 } 274} 275 276/* Ping non-responding cpus attemping to force them into the NMI handler */ 277static void uv_nmi_nr_cpus_ping(void) 278{ 279 int cpu; 280 281 for_each_cpu(cpu, uv_nmi_cpu_mask) 282 uv_cpu_nmi_per(cpu).pinging = 1; 283 284 apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI); 285} 286 287/* Clean up flags for cpus that ignored both NMI and ping */ 288static void uv_nmi_cleanup_mask(void) 289{ 290 int cpu; 291 292 for_each_cpu(cpu, uv_nmi_cpu_mask) { 293 uv_cpu_nmi_per(cpu).pinging = 0; 294 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT; 295 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask); 296 } 297} 298 299/* Loop waiting as cpus enter nmi handler */ 300static int uv_nmi_wait_cpus(int first) 301{ 302 int i, j, k, n = num_online_cpus(); 303 int last_k = 0, waiting = 0; 304 305 if (first) { 306 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask); 307 k = 0; 308 } else { 309 k = n - cpumask_weight(uv_nmi_cpu_mask); 310 } 311 312 udelay(uv_nmi_initial_delay); 313 for (i = 0; i < uv_nmi_retry_count; i++) { 314 int loop_delay = uv_nmi_loop_delay; 315 316 for_each_cpu(j, uv_nmi_cpu_mask) { 317 if (uv_cpu_nmi_per(j).state) { 318 cpumask_clear_cpu(j, uv_nmi_cpu_mask); 319 if (++k >= n) 320 break; 321 } 322 } 323 if (k >= n) { /* all in? */ 324 k = n; 325 break; 326 } 327 if (last_k != k) { /* abort if no new cpus coming in */ 328 last_k = k; 329 waiting = 0; 330 } else if (++waiting > uv_nmi_wait_count) 331 break; 332 333 /* extend delay if waiting only for cpu 0 */ 334 if (waiting && (n - k) == 1 && 335 cpumask_test_cpu(0, uv_nmi_cpu_mask)) 336 loop_delay *= 100; 337 338 udelay(loop_delay); 339 } 340 atomic_set(&uv_nmi_cpus_in_nmi, k); 341 return n - k; 342} 343 344/* Wait until all slave cpus have entered UV NMI handler */ 345static void uv_nmi_wait(int master) 346{ 347 /* indicate this cpu is in */ 348 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN); 349 350 /* if not the first cpu in (the master), then we are a slave cpu */ 351 if (!master) 352 return; 353 354 do { 355 /* wait for all other cpus to gather here */ 356 if (!uv_nmi_wait_cpus(1)) 357 break; 358 359 /* if not all made it in, send IPI NMI to them */ 360 pr_alert("UV: Sending NMI IPI to %d non-responding CPUs: %*pbl\n", 361 cpumask_weight(uv_nmi_cpu_mask), 362 cpumask_pr_args(uv_nmi_cpu_mask)); 363 364 uv_nmi_nr_cpus_ping(); 365 366 /* if all cpus are in, then done */ 367 if (!uv_nmi_wait_cpus(0)) 368 break; 369 370 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n", 371 cpumask_weight(uv_nmi_cpu_mask), 372 cpumask_pr_args(uv_nmi_cpu_mask)); 373 } while (0); 374 375 pr_alert("UV: %d of %d CPUs in NMI\n", 376 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus()); 377} 378 379static void uv_nmi_dump_cpu_ip_hdr(void) 380{ 381 printk(KERN_DEFAULT 382 "\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n", 383 "CPU", "PID", "COMMAND", "IP"); 384} 385 386static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs) 387{ 388 printk(KERN_DEFAULT "UV: %4d %6d %-32.32s ", 389 cpu, current->pid, current->comm); 390 391 printk_address(regs->ip); 392} 393 394/* Dump this cpu's state */ 395static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs) 396{ 397 const char *dots = " ................................. "; 398 399 if (uv_nmi_action_is("ips")) { 400 if (cpu == 0) 401 uv_nmi_dump_cpu_ip_hdr(); 402 403 if (current->pid != 0) 404 uv_nmi_dump_cpu_ip(cpu, regs); 405 406 } else if (uv_nmi_action_is("dump")) { 407 printk(KERN_DEFAULT 408 "UV:%sNMI process trace for CPU %d\n", dots, cpu); 409 show_regs(regs); 410 } 411 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE); 412} 413 414/* Trigger a slave cpu to dump it's state */ 415static void uv_nmi_trigger_dump(int cpu) 416{ 417 int retry = uv_nmi_trigger_delay; 418 419 if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN) 420 return; 421 422 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP; 423 do { 424 cpu_relax(); 425 udelay(10); 426 if (uv_cpu_nmi_per(cpu).state 427 != UV_NMI_STATE_DUMP) 428 return; 429 } while (--retry > 0); 430 431 pr_crit("UV: CPU %d stuck in process dump function\n", cpu); 432 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE; 433} 434 435/* Wait until all cpus ready to exit */ 436static void uv_nmi_sync_exit(int master) 437{ 438 atomic_dec(&uv_nmi_cpus_in_nmi); 439 if (master) { 440 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0) 441 cpu_relax(); 442 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR); 443 } else { 444 while (atomic_read(&uv_nmi_slave_continue)) 445 cpu_relax(); 446 } 447} 448 449/* Walk through cpu list and dump state of each */ 450static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master) 451{ 452 if (master) { 453 int tcpu; 454 int ignored = 0; 455 int saved_console_loglevel = console_loglevel; 456 457 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n", 458 uv_nmi_action_is("ips") ? "IPs" : "processes", 459 atomic_read(&uv_nmi_cpus_in_nmi), cpu); 460 461 console_loglevel = uv_nmi_loglevel; 462 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); 463 for_each_online_cpu(tcpu) { 464 if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask)) 465 ignored++; 466 else if (tcpu == cpu) 467 uv_nmi_dump_state_cpu(tcpu, regs); 468 else 469 uv_nmi_trigger_dump(tcpu); 470 } 471 if (ignored) 472 printk(KERN_DEFAULT "UV: %d CPUs ignored NMI\n", 473 ignored); 474 475 console_loglevel = saved_console_loglevel; 476 pr_alert("UV: process trace complete\n"); 477 } else { 478 while (!atomic_read(&uv_nmi_slave_continue)) 479 cpu_relax(); 480 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP) 481 cpu_relax(); 482 uv_nmi_dump_state_cpu(cpu, regs); 483 } 484 uv_nmi_sync_exit(master); 485} 486 487static void uv_nmi_touch_watchdogs(void) 488{ 489 touch_softlockup_watchdog_sync(); 490 clocksource_touch_watchdog(); 491 rcu_cpu_stall_reset(); 492 touch_nmi_watchdog(); 493} 494 495#if defined(CONFIG_KEXEC) 496static atomic_t uv_nmi_kexec_failed; 497static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs) 498{ 499 /* Call crash to dump system state */ 500 if (master) { 501 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu); 502 crash_kexec(regs); 503 504 pr_emerg("UV: crash_kexec unexpectedly returned, "); 505 if (!kexec_crash_image) { 506 pr_cont("crash kernel not loaded\n"); 507 atomic_set(&uv_nmi_kexec_failed, 1); 508 uv_nmi_sync_exit(1); 509 return; 510 } 511 pr_cont("kexec busy, stalling cpus while waiting\n"); 512 } 513 514 /* If crash exec fails the slaves should return, otherwise stall */ 515 while (atomic_read(&uv_nmi_kexec_failed) == 0) 516 mdelay(10); 517 518 /* Crash kernel most likely not loaded, return in an orderly fashion */ 519 uv_nmi_sync_exit(0); 520} 521 522#else /* !CONFIG_KEXEC */ 523static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs) 524{ 525 if (master) 526 pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n"); 527} 528#endif /* !CONFIG_KEXEC */ 529 530#ifdef CONFIG_KGDB 531#ifdef CONFIG_KGDB_KDB 532static inline int uv_nmi_kdb_reason(void) 533{ 534 return KDB_REASON_SYSTEM_NMI; 535} 536#else /* !CONFIG_KGDB_KDB */ 537static inline int uv_nmi_kdb_reason(void) 538{ 539 /* Insure user is expecting to attach gdb remote */ 540 if (uv_nmi_action_is("kgdb")) 541 return 0; 542 543 pr_err("UV: NMI error: KDB is not enabled in this kernel\n"); 544 return -1; 545} 546#endif /* CONFIG_KGDB_KDB */ 547 548/* 549 * Call KGDB/KDB from NMI handler 550 * 551 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or 552 * 'kdb' has no affect on which is used. See the KGDB documention for further 553 * information. 554 */ 555static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master) 556{ 557 if (master) { 558 int reason = uv_nmi_kdb_reason(); 559 int ret; 560 561 if (reason < 0) 562 return; 563 564 /* call KGDB NMI handler as MASTER */ 565 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason, 566 &uv_nmi_slave_continue); 567 if (ret) { 568 pr_alert("KGDB returned error, is kgdboc set?\n"); 569 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); 570 } 571 } else { 572 /* wait for KGDB signal that it's ready for slaves to enter */ 573 int sig; 574 575 do { 576 cpu_relax(); 577 sig = atomic_read(&uv_nmi_slave_continue); 578 } while (!sig); 579 580 /* call KGDB as slave */ 581 if (sig == SLAVE_CONTINUE) 582 kgdb_nmicallback(cpu, regs); 583 } 584 uv_nmi_sync_exit(master); 585} 586 587#else /* !CONFIG_KGDB */ 588static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master) 589{ 590 pr_err("UV: NMI error: KGDB is not enabled in this kernel\n"); 591} 592#endif /* !CONFIG_KGDB */ 593 594/* 595 * UV NMI handler 596 */ 597int uv_handle_nmi(unsigned int reason, struct pt_regs *regs) 598{ 599 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi; 600 int cpu = smp_processor_id(); 601 int master = 0; 602 unsigned long flags; 603 604 local_irq_save(flags); 605 606 /* If not a UV System NMI, ignore */ 607 if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) { 608 local_irq_restore(flags); 609 return NMI_DONE; 610 } 611 612 /* Indicate we are the first CPU into the NMI handler */ 613 master = (atomic_read(&uv_nmi_cpu) == cpu); 614 615 /* If NMI action is "kdump", then attempt to do it */ 616 if (uv_nmi_action_is("kdump")) 617 uv_nmi_kdump(cpu, master, regs); 618 619 /* Pause as all cpus enter the NMI handler */ 620 uv_nmi_wait(master); 621 622 /* Dump state of each cpu */ 623 if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) 624 uv_nmi_dump_state(cpu, regs, master); 625 626 /* Call KGDB/KDB if enabled */ 627 else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) 628 uv_call_kgdb_kdb(cpu, regs, master); 629 630 /* Clear per_cpu "in nmi" flag */ 631 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT); 632 633 /* Clear MMR NMI flag on each hub */ 634 uv_clear_nmi(cpu); 635 636 /* Clear global flags */ 637 if (master) { 638 if (cpumask_weight(uv_nmi_cpu_mask)) 639 uv_nmi_cleanup_mask(); 640 atomic_set(&uv_nmi_cpus_in_nmi, -1); 641 atomic_set(&uv_nmi_cpu, -1); 642 atomic_set(&uv_in_nmi, 0); 643 } 644 645 uv_nmi_touch_watchdogs(); 646 local_irq_restore(flags); 647 648 return NMI_HANDLED; 649} 650 651/* 652 * NMI handler for pulling in CPUs when perf events are grabbing our NMI 653 */ 654static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs) 655{ 656 int ret; 657 658 this_cpu_inc(uv_cpu_nmi.queries); 659 if (!this_cpu_read(uv_cpu_nmi.pinging)) { 660 local64_inc(&uv_nmi_ping_misses); 661 return NMI_DONE; 662 } 663 664 this_cpu_inc(uv_cpu_nmi.pings); 665 local64_inc(&uv_nmi_ping_count); 666 ret = uv_handle_nmi(reason, regs); 667 this_cpu_write(uv_cpu_nmi.pinging, 0); 668 return ret; 669} 670 671static void uv_register_nmi_notifier(void) 672{ 673 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv")) 674 pr_warn("UV: NMI handler failed to register\n"); 675 676 if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping")) 677 pr_warn("UV: PING NMI handler failed to register\n"); 678} 679 680void uv_nmi_init(void) 681{ 682 unsigned int value; 683 684 /* 685 * Unmask NMI on all cpus 686 */ 687 value = apic_read(APIC_LVT1) | APIC_DM_NMI; 688 value &= ~APIC_LVT_MASKED; 689 apic_write(APIC_LVT1, value); 690} 691 692void uv_nmi_setup(void) 693{ 694 int size = sizeof(void *) * (1 << NODES_SHIFT); 695 int cpu, nid; 696 697 /* Setup hub nmi info */ 698 uv_nmi_setup_mmrs(); 699 uv_hub_nmi_list = kzalloc(size, GFP_KERNEL); 700 pr_info("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size); 701 BUG_ON(!uv_hub_nmi_list); 702 size = sizeof(struct uv_hub_nmi_s); 703 for_each_present_cpu(cpu) { 704 nid = cpu_to_node(cpu); 705 if (uv_hub_nmi_list[nid] == NULL) { 706 uv_hub_nmi_list[nid] = kzalloc_node(size, 707 GFP_KERNEL, nid); 708 BUG_ON(!uv_hub_nmi_list[nid]); 709 raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock)); 710 atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1); 711 } 712 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid]; 713 } 714 BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL)); 715 uv_register_nmi_notifier(); 716} 717