1/*
2 * Low-level PCI config space access for OLPC systems who lack the VSA
3 * PCI virtualization software.
4 *
5 * Copyright © 2006  Advanced Micro Devices, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
13 * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
14 * that more or less behave like PCI devices, but the hardware doesn't
15 * directly implement the PCI configuration space headers.  AMD provides
16 * "VSA" (Virtual System Architecture) software that emulates PCI config
17 * space for these devices, by trapping I/O accesses to PCI config register
18 * (CF8/CFC) and running some code in System Management Mode interrupt state.
19 * On the OLPC platform, we don't want to use that VSA code because
20 * (a) it slows down suspend/resume, and (b) recompiling it requires special
21 * compilers that are hard to get.  So instead of letting the complex VSA
22 * code simulate the PCI config registers for the on-chip devices, we
23 * just simulate them the easy way, by inserting the code into the
24 * pci_write_config and pci_read_config path.  Most of the config registers
25 * are read-only anyway, so the bulk of the simulation is just table lookup.
26 */
27
28#include <linux/pci.h>
29#include <linux/init.h>
30#include <asm/olpc.h>
31#include <asm/geode.h>
32#include <asm/pci_x86.h>
33
34/*
35 * In the tables below, the first two line (8 longwords) are the
36 * size masks that are used when the higher level PCI code determines
37 * the size of the region by writing ~0 to a base address register
38 * and reading back the result.
39 *
40 * The following lines are the values that are read during normal
41 * PCI config access cycles, i.e. not after just having written
42 * ~0 to a base address register.
43 */
44
45static const uint32_t lxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
46	0x0,	0x0,	0x0,	0x0,
47	0x0,	0x0,	0x0,	0x0,
48
49	0x281022, 0x2200005, 0x6000021, 0x80f808,	/* AMD Vendor ID */
50	0x0,	0x0,	0x0,	0x0,   /* No virtual registers, hence no BAR */
51	0x0,	0x0,	0x0,	0x28100b,
52	0x0,	0x0,	0x0,	0x0,
53	0x0,	0x0,	0x0,	0x0,
54	0x0,	0x0,	0x0,	0x0,
55	0x0,	0x0,	0x0,	0x0,
56};
57
58static const uint32_t gxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
59	0xfffffffd, 0x0, 0x0,	0x0,
60	0x0,	0x0,	0x0,	0x0,
61
62	0x28100b, 0x2200005, 0x6000021, 0x80f808,	/* NSC Vendor ID */
63	0xac1d,	0x0,	0x0,	0x0,  /* I/O BAR - base of virtual registers */
64	0x0,	0x0,	0x0,	0x28100b,
65	0x0,	0x0,	0x0,	0x0,
66	0x0,	0x0,	0x0,	0x0,
67	0x0,	0x0,	0x0,	0x0,
68	0x0,	0x0,	0x0,	0x0,
69};
70
71static const uint32_t lxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
72	0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
73	0xffffc000,	0x0,	0x0,	0x0,
74
75	0x20811022, 0x2200003, 0x3000000, 0x0,		/* AMD Vendor ID */
76	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
77	0xfe00c000, 0x0, 0x0,	0x30100b,		/* VIP */
78	0x0,	0x0,	0x0,	0x10e,	   /* INTA, IRQ14 for graphics accel */
79	0x0,	0x0,	0x0,	0x0,
80	0x3d0,	0x3c0,	0xa0000, 0x0,	    /* VG IO, VG IO, EGA FB, MONO FB */
81	0x0,	0x0,	0x0,	0x0,
82};
83
84static const uint32_t gxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
85	0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
86	0x0,	0x0,	0x0,	0x0,
87
88	0x30100b, 0x2200003, 0x3000000, 0x0,		/* NSC Vendor ID */
89	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000,	/* FB, GP, VG, DF */
90	0x0,	0x0,	0x0,	0x30100b,
91	0x0,	0x0,	0x0,	0x0,
92	0x0,	0x0,	0x0,	0x0,
93	0x3d0,	0x3c0,	0xa0000, 0x0,  	    /* VG IO, VG IO, EGA FB, MONO FB */
94	0x0,	0x0,	0x0,	0x0,
95};
96
97static const uint32_t aes_hdr[] = {	/* dev 1 function 2 - devfn = 0xa */
98	0xffffc000, 0x0, 0x0,	0x0,
99	0x0,	0x0,	0x0,	0x0,
100
101	0x20821022, 0x2a00006, 0x10100000, 0x8,		/* NSC Vendor ID */
102	0xfe010000, 0x0, 0x0,	0x0,			/* AES registers */
103	0x0,	0x0,	0x0,	0x20821022,
104	0x0,	0x0,	0x0,	0x0,
105	0x0,	0x0,	0x0,	0x0,
106	0x0,	0x0,	0x0,	0x0,
107	0x0,	0x0,	0x0,	0x0,
108};
109
110
111static const uint32_t isa_hdr[] = {  /* dev f function 0 - devfn = 78 */
112	0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
113	0xffffff81, 0xffffffc1, 0x0, 0x0,
114
115	0x20901022, 0x2a00049, 0x6010003, 0x802000,
116	0x18b1,	0x1001,	0x1801,	0x1881,	/* SMB-8   GPIO-256 MFGPT-64  IRQ-32 */
117	0x1401,	0x1841,	0x0,	0x20901022,		/* PMS-128 ACPI-64 */
118	0x0,	0x0,	0x0,	0x0,
119	0x0,	0x0,	0x0,	0x0,
120	0x0,	0x0,	0x0,	0xaa5b,			/* IRQ steering */
121	0x0,	0x0,	0x0,	0x0,
122};
123
124static const uint32_t ac97_hdr[] = {  /* dev f function 3 - devfn = 7b */
125	0xffffff81, 0x0, 0x0,	0x0,
126	0x0,	0x0,	0x0,	0x0,
127
128	0x20931022, 0x2a00041, 0x4010001, 0x0,
129	0x1481,	0x0,	0x0,	0x0,			/* I/O BAR-128 */
130	0x0,	0x0,	0x0,	0x20931022,
131	0x0,	0x0,	0x0,	0x205,			/* IntB, IRQ5 */
132	0x0,	0x0,	0x0,	0x0,
133	0x0,	0x0,	0x0,	0x0,
134	0x0,	0x0,	0x0,	0x0,
135};
136
137static const uint32_t ohci_hdr[] = {  /* dev f function 4 - devfn = 7c */
138	0xfffff000, 0x0, 0x0,	0x0,
139	0x0,	0x0,	0x0,	0x0,
140
141	0x20941022, 0x2300006, 0xc031002, 0x0,
142	0xfe01a000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
143	0x0,	0x0,	0x0,	0x20941022,
144	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
145	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O,
146					   44 is mask 8103 (power control) */
147	0x0,	0x0,	0x0,	0x0,
148	0x0,	0x0,	0x0,	0x0,
149};
150
151static const uint32_t ehci_hdr[] = {  /* dev f function 4 - devfn = 7d */
152	0xfffff000, 0x0, 0x0,	0x0,
153	0x0,	0x0,	0x0,	0x0,
154
155	0x20951022, 0x2300006, 0xc032002, 0x0,
156	0xfe01b000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
157	0x0,	0x0,	0x0,	0x20951022,
158	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
159	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O, 44 is
160					   mask 8103 (power control) */
161#if 0
162	0x1,	0x40080000, 0x0, 0x0,	/* EECP - see EHCI spec section 2.1.7 */
163#endif
164	0x01000001, 0x0, 0x0,	0x0,	/* EECP - see EHCI spec section 2.1.7 */
165	0x2020,	0x0,	0x0,	0x0,	/* (EHCI page 8) 60 SBRN (R/O),
166					   61 FLADJ (R/W), PORTWAKECAP  */
167};
168
169static uint32_t ff_loc = ~0;
170static uint32_t zero_loc;
171static int bar_probing;		/* Set after a write of ~0 to a BAR */
172static int is_lx;
173
174#define NB_SLOT 0x1	/* Northbridge - GX chip - Device 1 */
175#define SB_SLOT 0xf	/* Southbridge - CS5536 chip - Device F */
176
177static int is_simulated(unsigned int bus, unsigned int devfn)
178{
179	return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
180			(PCI_SLOT(devfn) == SB_SLOT)));
181}
182
183static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
184{
185	uint32_t addr;
186
187	/*
188	 * This is a little bit tricky.  The header maps consist of
189	 * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
190	 * In the normal case, when not probing a BAR's size, we want
191	 * to access the header data, so we add 0x20 to the reg offset,
192	 * thus skipping the size mask area.
193	 * In the BAR probing case, we want to access the size mask for
194	 * the BAR, so we subtract 0x10 (the config header offset for
195	 * BAR0), and don't skip the size mask area.
196	 */
197
198	addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
199
200	bar_probing = 0;
201	return (uint32_t *)addr;
202}
203
204static int pci_olpc_read(unsigned int seg, unsigned int bus,
205		unsigned int devfn, int reg, int len, uint32_t *value)
206{
207	uint32_t *addr;
208
209	WARN_ON(seg);
210
211	/* Use the hardware mechanism for non-simulated devices */
212	if (!is_simulated(bus, devfn))
213		return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
214
215	/*
216	 * No device has config registers past 0x70, so we save table space
217	 * by not storing entries for the nonexistent registers
218	 */
219	if (reg >= 0x70)
220		addr = &zero_loc;
221	else {
222		switch (devfn) {
223		case  0x8:
224			addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
225			break;
226		case  0x9:
227			addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
228			break;
229		case  0xa:
230			addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
231			break;
232		case 0x78:
233			addr = hdr_addr(isa_hdr, reg);
234			break;
235		case 0x7b:
236			addr = hdr_addr(ac97_hdr, reg);
237			break;
238		case 0x7c:
239			addr = hdr_addr(ohci_hdr, reg);
240			break;
241		case 0x7d:
242			addr = hdr_addr(ehci_hdr, reg);
243			break;
244		default:
245			addr = &ff_loc;
246			break;
247		}
248	}
249	switch (len) {
250	case 1:
251		*value = *(uint8_t *)addr;
252		break;
253	case 2:
254		*value = *(uint16_t *)addr;
255		break;
256	case 4:
257		*value = *addr;
258		break;
259	default:
260		BUG();
261	}
262
263	return 0;
264}
265
266static int pci_olpc_write(unsigned int seg, unsigned int bus,
267		unsigned int devfn, int reg, int len, uint32_t value)
268{
269	WARN_ON(seg);
270
271	/* Use the hardware mechanism for non-simulated devices */
272	if (!is_simulated(bus, devfn))
273		return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
274
275	/* XXX we may want to extend this to simulate EHCI power management */
276
277	/*
278	 * Mostly we just discard writes, but if the write is a size probe
279	 * (i.e. writing ~0 to a BAR), we remember it and arrange to return
280	 * the appropriate size mask on the next read.  This is cheating
281	 * to some extent, because it depends on the fact that the next
282	 * access after such a write will always be a read to the same BAR.
283	 */
284
285	if ((reg >= 0x10) && (reg < 0x2c)) {
286		/* write is to a BAR */
287		if (value == ~0)
288			bar_probing = 1;
289	} else {
290		/*
291		 * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
292		 * CACHE_LINE_SIZE, or PM registers.
293		 */
294		if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
295				(reg != PCI_LATENCY_TIMER) &&
296				(reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
297			printk(KERN_WARNING "OLPC PCI: Config write to devfn"
298				" %x reg %x value %x\n", devfn, reg, value);
299	}
300
301	return 0;
302}
303
304static const struct pci_raw_ops pci_olpc_conf = {
305	.read =	pci_olpc_read,
306	.write = pci_olpc_write,
307};
308
309int __init pci_olpc_init(void)
310{
311	printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
312	raw_pci_ops = &pci_olpc_conf;
313	is_lx = is_geode_lx();
314	return 0;
315}
316