1/* 2 * 8253/8254 interval timer emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * Copyright (c) 2006 Intel Corporation 6 * Copyright (c) 2007 Keir Fraser, XenSource Inc 7 * Copyright (c) 2008 Intel Corporation 8 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 * 28 * Authors: 29 * Sheng Yang <sheng.yang@intel.com> 30 * Based on QEMU and Xen. 31 */ 32 33#define pr_fmt(fmt) "pit: " fmt 34 35#include <linux/kvm_host.h> 36#include <linux/slab.h> 37 38#include "irq.h" 39#include "i8254.h" 40#include "x86.h" 41 42#ifndef CONFIG_X86_64 43#define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 44#else 45#define mod_64(x, y) ((x) % (y)) 46#endif 47 48#define RW_STATE_LSB 1 49#define RW_STATE_MSB 2 50#define RW_STATE_WORD0 3 51#define RW_STATE_WORD1 4 52 53/* Compute with 96 bit intermediate result: (a*b)/c */ 54static u64 muldiv64(u64 a, u32 b, u32 c) 55{ 56 union { 57 u64 ll; 58 struct { 59 u32 low, high; 60 } l; 61 } u, res; 62 u64 rl, rh; 63 64 u.ll = a; 65 rl = (u64)u.l.low * (u64)b; 66 rh = (u64)u.l.high * (u64)b; 67 rh += (rl >> 32); 68 res.l.high = div64_u64(rh, c); 69 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); 70 return res.ll; 71} 72 73static void pit_set_gate(struct kvm *kvm, int channel, u32 val) 74{ 75 struct kvm_kpit_channel_state *c = 76 &kvm->arch.vpit->pit_state.channels[channel]; 77 78 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 79 80 switch (c->mode) { 81 default: 82 case 0: 83 case 4: 84 /* XXX: just disable/enable counting */ 85 break; 86 case 1: 87 case 2: 88 case 3: 89 case 5: 90 /* Restart counting on rising edge. */ 91 if (c->gate < val) 92 c->count_load_time = ktime_get(); 93 break; 94 } 95 96 c->gate = val; 97} 98 99static int pit_get_gate(struct kvm *kvm, int channel) 100{ 101 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 102 103 return kvm->arch.vpit->pit_state.channels[channel].gate; 104} 105 106static s64 __kpit_elapsed(struct kvm *kvm) 107{ 108 s64 elapsed; 109 ktime_t remaining; 110 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; 111 112 if (!ps->period) 113 return 0; 114 115 /* 116 * The Counter does not stop when it reaches zero. In 117 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to 118 * the highest count, either FFFF hex for binary counting 119 * or 9999 for BCD counting, and continues counting. 120 * Modes 2 and 3 are periodic; the Counter reloads 121 * itself with the initial count and continues counting 122 * from there. 123 */ 124 remaining = hrtimer_get_remaining(&ps->timer); 125 elapsed = ps->period - ktime_to_ns(remaining); 126 127 return elapsed; 128} 129 130static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c, 131 int channel) 132{ 133 if (channel == 0) 134 return __kpit_elapsed(kvm); 135 136 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); 137} 138 139static int pit_get_count(struct kvm *kvm, int channel) 140{ 141 struct kvm_kpit_channel_state *c = 142 &kvm->arch.vpit->pit_state.channels[channel]; 143 s64 d, t; 144 int counter; 145 146 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 147 148 t = kpit_elapsed(kvm, c, channel); 149 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); 150 151 switch (c->mode) { 152 case 0: 153 case 1: 154 case 4: 155 case 5: 156 counter = (c->count - d) & 0xffff; 157 break; 158 case 3: 159 /* XXX: may be incorrect for odd counts */ 160 counter = c->count - (mod_64((2 * d), c->count)); 161 break; 162 default: 163 counter = c->count - mod_64(d, c->count); 164 break; 165 } 166 return counter; 167} 168 169static int pit_get_out(struct kvm *kvm, int channel) 170{ 171 struct kvm_kpit_channel_state *c = 172 &kvm->arch.vpit->pit_state.channels[channel]; 173 s64 d, t; 174 int out; 175 176 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 177 178 t = kpit_elapsed(kvm, c, channel); 179 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); 180 181 switch (c->mode) { 182 default: 183 case 0: 184 out = (d >= c->count); 185 break; 186 case 1: 187 out = (d < c->count); 188 break; 189 case 2: 190 out = ((mod_64(d, c->count) == 0) && (d != 0)); 191 break; 192 case 3: 193 out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); 194 break; 195 case 4: 196 case 5: 197 out = (d == c->count); 198 break; 199 } 200 201 return out; 202} 203 204static void pit_latch_count(struct kvm *kvm, int channel) 205{ 206 struct kvm_kpit_channel_state *c = 207 &kvm->arch.vpit->pit_state.channels[channel]; 208 209 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 210 211 if (!c->count_latched) { 212 c->latched_count = pit_get_count(kvm, channel); 213 c->count_latched = c->rw_mode; 214 } 215} 216 217static void pit_latch_status(struct kvm *kvm, int channel) 218{ 219 struct kvm_kpit_channel_state *c = 220 &kvm->arch.vpit->pit_state.channels[channel]; 221 222 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 223 224 if (!c->status_latched) { 225 /* TODO: Return NULL COUNT (bit 6). */ 226 c->status = ((pit_get_out(kvm, channel) << 7) | 227 (c->rw_mode << 4) | 228 (c->mode << 1) | 229 c->bcd); 230 c->status_latched = 1; 231 } 232} 233 234static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) 235{ 236 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, 237 irq_ack_notifier); 238 int value; 239 240 spin_lock(&ps->inject_lock); 241 value = atomic_dec_return(&ps->pending); 242 if (value < 0) 243 /* spurious acks can be generated if, for example, the 244 * PIC is being reset. Handle it gracefully here 245 */ 246 atomic_inc(&ps->pending); 247 else if (value > 0 && ps->reinject) 248 /* in this case, we had multiple outstanding pit interrupts 249 * that we needed to inject. Reinject 250 */ 251 queue_kthread_work(&ps->pit->worker, &ps->pit->expired); 252 ps->irq_ack = 1; 253 spin_unlock(&ps->inject_lock); 254} 255 256void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) 257{ 258 struct kvm_pit *pit = vcpu->kvm->arch.vpit; 259 struct hrtimer *timer; 260 261 if (!kvm_vcpu_is_bsp(vcpu) || !pit) 262 return; 263 264 timer = &pit->pit_state.timer; 265 mutex_lock(&pit->pit_state.lock); 266 if (hrtimer_cancel(timer)) 267 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 268 mutex_unlock(&pit->pit_state.lock); 269} 270 271static void destroy_pit_timer(struct kvm_pit *pit) 272{ 273 hrtimer_cancel(&pit->pit_state.timer); 274 flush_kthread_work(&pit->expired); 275} 276 277static void pit_do_work(struct kthread_work *work) 278{ 279 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); 280 struct kvm *kvm = pit->kvm; 281 struct kvm_vcpu *vcpu; 282 int i; 283 struct kvm_kpit_state *ps = &pit->pit_state; 284 int inject = 0; 285 286 /* Try to inject pending interrupts when 287 * last one has been acked. 288 */ 289 spin_lock(&ps->inject_lock); 290 if (!ps->reinject) 291 inject = 1; 292 else if (ps->irq_ack) { 293 ps->irq_ack = 0; 294 inject = 1; 295 } 296 spin_unlock(&ps->inject_lock); 297 if (inject) { 298 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false); 299 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false); 300 301 /* 302 * Provides NMI watchdog support via Virtual Wire mode. 303 * The route is: PIT -> PIC -> LVT0 in NMI mode. 304 * 305 * Note: Our Virtual Wire implementation is simplified, only 306 * propagating PIT interrupts to all VCPUs when they have set 307 * LVT0 to NMI delivery. Other PIC interrupts are just sent to 308 * VCPU0, and only if its LVT0 is in EXTINT mode. 309 */ 310 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0) 311 kvm_for_each_vcpu(i, vcpu, kvm) 312 kvm_apic_nmi_wd_deliver(vcpu); 313 } 314} 315 316static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) 317{ 318 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer); 319 struct kvm_pit *pt = ps->kvm->arch.vpit; 320 321 if (ps->reinject) 322 atomic_inc(&ps->pending); 323 324 queue_kthread_work(&pt->worker, &pt->expired); 325 326 if (ps->is_periodic) { 327 hrtimer_add_expires_ns(&ps->timer, ps->period); 328 return HRTIMER_RESTART; 329 } else 330 return HRTIMER_NORESTART; 331} 332 333static void create_pit_timer(struct kvm *kvm, u32 val, int is_period) 334{ 335 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; 336 s64 interval; 337 338 if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY) 339 return; 340 341 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); 342 343 pr_debug("create pit timer, interval is %llu nsec\n", interval); 344 345 /* TODO The new value only affected after the retriggered */ 346 hrtimer_cancel(&ps->timer); 347 flush_kthread_work(&ps->pit->expired); 348 ps->period = interval; 349 ps->is_periodic = is_period; 350 351 ps->timer.function = pit_timer_fn; 352 ps->kvm = ps->pit->kvm; 353 354 atomic_set(&ps->pending, 0); 355 ps->irq_ack = 1; 356 357 /* 358 * Do not allow the guest to program periodic timers with small 359 * interval, since the hrtimers are not throttled by the host 360 * scheduler. 361 */ 362 if (ps->is_periodic) { 363 s64 min_period = min_timer_period_us * 1000LL; 364 365 if (ps->period < min_period) { 366 pr_info_ratelimited( 367 "kvm: requested %lld ns " 368 "i8254 timer period limited to %lld ns\n", 369 ps->period, min_period); 370 ps->period = min_period; 371 } 372 } 373 374 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval), 375 HRTIMER_MODE_ABS); 376} 377 378static void pit_load_count(struct kvm *kvm, int channel, u32 val) 379{ 380 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; 381 382 WARN_ON(!mutex_is_locked(&ps->lock)); 383 384 pr_debug("load_count val is %d, channel is %d\n", val, channel); 385 386 /* 387 * The largest possible initial count is 0; this is equivalent 388 * to 216 for binary counting and 104 for BCD counting. 389 */ 390 if (val == 0) 391 val = 0x10000; 392 393 ps->channels[channel].count = val; 394 395 if (channel != 0) { 396 ps->channels[channel].count_load_time = ktime_get(); 397 return; 398 } 399 400 /* Two types of timer 401 * mode 1 is one shot, mode 2 is period, otherwise del timer */ 402 switch (ps->channels[0].mode) { 403 case 0: 404 case 1: 405 /* FIXME: enhance mode 4 precision */ 406 case 4: 407 create_pit_timer(kvm, val, 0); 408 break; 409 case 2: 410 case 3: 411 create_pit_timer(kvm, val, 1); 412 break; 413 default: 414 destroy_pit_timer(kvm->arch.vpit); 415 } 416} 417 418void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start) 419{ 420 u8 saved_mode; 421 if (hpet_legacy_start) { 422 /* save existing mode for later reenablement */ 423 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode; 424 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */ 425 pit_load_count(kvm, channel, val); 426 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode; 427 } else { 428 pit_load_count(kvm, channel, val); 429 } 430} 431 432static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) 433{ 434 return container_of(dev, struct kvm_pit, dev); 435} 436 437static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) 438{ 439 return container_of(dev, struct kvm_pit, speaker_dev); 440} 441 442static inline int pit_in_range(gpa_t addr) 443{ 444 return ((addr >= KVM_PIT_BASE_ADDRESS) && 445 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); 446} 447 448static int pit_ioport_write(struct kvm_vcpu *vcpu, 449 struct kvm_io_device *this, 450 gpa_t addr, int len, const void *data) 451{ 452 struct kvm_pit *pit = dev_to_pit(this); 453 struct kvm_kpit_state *pit_state = &pit->pit_state; 454 struct kvm *kvm = pit->kvm; 455 int channel, access; 456 struct kvm_kpit_channel_state *s; 457 u32 val = *(u32 *) data; 458 if (!pit_in_range(addr)) 459 return -EOPNOTSUPP; 460 461 val &= 0xff; 462 addr &= KVM_PIT_CHANNEL_MASK; 463 464 mutex_lock(&pit_state->lock); 465 466 if (val != 0) 467 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", 468 (unsigned int)addr, len, val); 469 470 if (addr == 3) { 471 channel = val >> 6; 472 if (channel == 3) { 473 /* Read-Back Command. */ 474 for (channel = 0; channel < 3; channel++) { 475 s = &pit_state->channels[channel]; 476 if (val & (2 << channel)) { 477 if (!(val & 0x20)) 478 pit_latch_count(kvm, channel); 479 if (!(val & 0x10)) 480 pit_latch_status(kvm, channel); 481 } 482 } 483 } else { 484 /* Select Counter <channel>. */ 485 s = &pit_state->channels[channel]; 486 access = (val >> 4) & KVM_PIT_CHANNEL_MASK; 487 if (access == 0) { 488 pit_latch_count(kvm, channel); 489 } else { 490 s->rw_mode = access; 491 s->read_state = access; 492 s->write_state = access; 493 s->mode = (val >> 1) & 7; 494 if (s->mode > 5) 495 s->mode -= 4; 496 s->bcd = val & 1; 497 } 498 } 499 } else { 500 /* Write Count. */ 501 s = &pit_state->channels[addr]; 502 switch (s->write_state) { 503 default: 504 case RW_STATE_LSB: 505 pit_load_count(kvm, addr, val); 506 break; 507 case RW_STATE_MSB: 508 pit_load_count(kvm, addr, val << 8); 509 break; 510 case RW_STATE_WORD0: 511 s->write_latch = val; 512 s->write_state = RW_STATE_WORD1; 513 break; 514 case RW_STATE_WORD1: 515 pit_load_count(kvm, addr, s->write_latch | (val << 8)); 516 s->write_state = RW_STATE_WORD0; 517 break; 518 } 519 } 520 521 mutex_unlock(&pit_state->lock); 522 return 0; 523} 524 525static int pit_ioport_read(struct kvm_vcpu *vcpu, 526 struct kvm_io_device *this, 527 gpa_t addr, int len, void *data) 528{ 529 struct kvm_pit *pit = dev_to_pit(this); 530 struct kvm_kpit_state *pit_state = &pit->pit_state; 531 struct kvm *kvm = pit->kvm; 532 int ret, count; 533 struct kvm_kpit_channel_state *s; 534 if (!pit_in_range(addr)) 535 return -EOPNOTSUPP; 536 537 addr &= KVM_PIT_CHANNEL_MASK; 538 if (addr == 3) 539 return 0; 540 541 s = &pit_state->channels[addr]; 542 543 mutex_lock(&pit_state->lock); 544 545 if (s->status_latched) { 546 s->status_latched = 0; 547 ret = s->status; 548 } else if (s->count_latched) { 549 switch (s->count_latched) { 550 default: 551 case RW_STATE_LSB: 552 ret = s->latched_count & 0xff; 553 s->count_latched = 0; 554 break; 555 case RW_STATE_MSB: 556 ret = s->latched_count >> 8; 557 s->count_latched = 0; 558 break; 559 case RW_STATE_WORD0: 560 ret = s->latched_count & 0xff; 561 s->count_latched = RW_STATE_MSB; 562 break; 563 } 564 } else { 565 switch (s->read_state) { 566 default: 567 case RW_STATE_LSB: 568 count = pit_get_count(kvm, addr); 569 ret = count & 0xff; 570 break; 571 case RW_STATE_MSB: 572 count = pit_get_count(kvm, addr); 573 ret = (count >> 8) & 0xff; 574 break; 575 case RW_STATE_WORD0: 576 count = pit_get_count(kvm, addr); 577 ret = count & 0xff; 578 s->read_state = RW_STATE_WORD1; 579 break; 580 case RW_STATE_WORD1: 581 count = pit_get_count(kvm, addr); 582 ret = (count >> 8) & 0xff; 583 s->read_state = RW_STATE_WORD0; 584 break; 585 } 586 } 587 588 if (len > sizeof(ret)) 589 len = sizeof(ret); 590 memcpy(data, (char *)&ret, len); 591 592 mutex_unlock(&pit_state->lock); 593 return 0; 594} 595 596static int speaker_ioport_write(struct kvm_vcpu *vcpu, 597 struct kvm_io_device *this, 598 gpa_t addr, int len, const void *data) 599{ 600 struct kvm_pit *pit = speaker_to_pit(this); 601 struct kvm_kpit_state *pit_state = &pit->pit_state; 602 struct kvm *kvm = pit->kvm; 603 u32 val = *(u32 *) data; 604 if (addr != KVM_SPEAKER_BASE_ADDRESS) 605 return -EOPNOTSUPP; 606 607 mutex_lock(&pit_state->lock); 608 pit_state->speaker_data_on = (val >> 1) & 1; 609 pit_set_gate(kvm, 2, val & 1); 610 mutex_unlock(&pit_state->lock); 611 return 0; 612} 613 614static int speaker_ioport_read(struct kvm_vcpu *vcpu, 615 struct kvm_io_device *this, 616 gpa_t addr, int len, void *data) 617{ 618 struct kvm_pit *pit = speaker_to_pit(this); 619 struct kvm_kpit_state *pit_state = &pit->pit_state; 620 struct kvm *kvm = pit->kvm; 621 unsigned int refresh_clock; 622 int ret; 623 if (addr != KVM_SPEAKER_BASE_ADDRESS) 624 return -EOPNOTSUPP; 625 626 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ 627 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; 628 629 mutex_lock(&pit_state->lock); 630 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | 631 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); 632 if (len > sizeof(ret)) 633 len = sizeof(ret); 634 memcpy(data, (char *)&ret, len); 635 mutex_unlock(&pit_state->lock); 636 return 0; 637} 638 639void kvm_pit_reset(struct kvm_pit *pit) 640{ 641 int i; 642 struct kvm_kpit_channel_state *c; 643 644 mutex_lock(&pit->pit_state.lock); 645 pit->pit_state.flags = 0; 646 for (i = 0; i < 3; i++) { 647 c = &pit->pit_state.channels[i]; 648 c->mode = 0xff; 649 c->gate = (i != 2); 650 pit_load_count(pit->kvm, i, 0); 651 } 652 mutex_unlock(&pit->pit_state.lock); 653 654 atomic_set(&pit->pit_state.pending, 0); 655 pit->pit_state.irq_ack = 1; 656} 657 658static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) 659{ 660 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); 661 662 if (!mask) { 663 atomic_set(&pit->pit_state.pending, 0); 664 pit->pit_state.irq_ack = 1; 665 } 666} 667 668static const struct kvm_io_device_ops pit_dev_ops = { 669 .read = pit_ioport_read, 670 .write = pit_ioport_write, 671}; 672 673static const struct kvm_io_device_ops speaker_dev_ops = { 674 .read = speaker_ioport_read, 675 .write = speaker_ioport_write, 676}; 677 678/* Caller must hold slots_lock */ 679struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) 680{ 681 struct kvm_pit *pit; 682 struct kvm_kpit_state *pit_state; 683 struct pid *pid; 684 pid_t pid_nr; 685 int ret; 686 687 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); 688 if (!pit) 689 return NULL; 690 691 pit->irq_source_id = kvm_request_irq_source_id(kvm); 692 if (pit->irq_source_id < 0) { 693 kfree(pit); 694 return NULL; 695 } 696 697 mutex_init(&pit->pit_state.lock); 698 mutex_lock(&pit->pit_state.lock); 699 spin_lock_init(&pit->pit_state.inject_lock); 700 701 pid = get_pid(task_tgid(current)); 702 pid_nr = pid_vnr(pid); 703 put_pid(pid); 704 705 init_kthread_worker(&pit->worker); 706 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker, 707 "kvm-pit/%d", pid_nr); 708 if (IS_ERR(pit->worker_task)) { 709 mutex_unlock(&pit->pit_state.lock); 710 kvm_free_irq_source_id(kvm, pit->irq_source_id); 711 kfree(pit); 712 return NULL; 713 } 714 init_kthread_work(&pit->expired, pit_do_work); 715 716 kvm->arch.vpit = pit; 717 pit->kvm = kvm; 718 719 pit_state = &pit->pit_state; 720 pit_state->pit = pit; 721 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 722 pit_state->irq_ack_notifier.gsi = 0; 723 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; 724 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); 725 pit_state->reinject = true; 726 mutex_unlock(&pit->pit_state.lock); 727 728 kvm_pit_reset(pit); 729 730 pit->mask_notifier.func = pit_mask_notifer; 731 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); 732 733 kvm_iodevice_init(&pit->dev, &pit_dev_ops); 734 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS, 735 KVM_PIT_MEM_LENGTH, &pit->dev); 736 if (ret < 0) 737 goto fail; 738 739 if (flags & KVM_PIT_SPEAKER_DUMMY) { 740 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); 741 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 742 KVM_SPEAKER_BASE_ADDRESS, 4, 743 &pit->speaker_dev); 744 if (ret < 0) 745 goto fail_unregister; 746 } 747 748 return pit; 749 750fail_unregister: 751 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); 752 753fail: 754 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); 755 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); 756 kvm_free_irq_source_id(kvm, pit->irq_source_id); 757 kthread_stop(pit->worker_task); 758 kfree(pit); 759 return NULL; 760} 761 762void kvm_free_pit(struct kvm *kvm) 763{ 764 struct hrtimer *timer; 765 766 if (kvm->arch.vpit) { 767 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev); 768 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 769 &kvm->arch.vpit->speaker_dev); 770 kvm_unregister_irq_mask_notifier(kvm, 0, 771 &kvm->arch.vpit->mask_notifier); 772 kvm_unregister_irq_ack_notifier(kvm, 773 &kvm->arch.vpit->pit_state.irq_ack_notifier); 774 mutex_lock(&kvm->arch.vpit->pit_state.lock); 775 timer = &kvm->arch.vpit->pit_state.timer; 776 hrtimer_cancel(timer); 777 flush_kthread_work(&kvm->arch.vpit->expired); 778 kthread_stop(kvm->arch.vpit->worker_task); 779 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id); 780 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 781 kfree(kvm->arch.vpit); 782 } 783} 784