1/*
2 * User-space Probes (UProbes) for x86
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 *	Srikar Dronamraju
21 *	Jim Keniston
22 */
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/uaccess.h>
28
29#include <linux/kdebug.h>
30#include <asm/processor.h>
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
35/* Adjust IP back to vicinity of actual insn */
36#define UPROBE_FIX_IP		0x01
37
38/* Adjust the return address of a call insn */
39#define UPROBE_FIX_CALL		0x02
40
41/* Instruction will modify TF, don't change it */
42#define UPROBE_FIX_SETF		0x04
43
44#define UPROBE_FIX_RIP_SI	0x08
45#define UPROBE_FIX_RIP_DI	0x10
46#define UPROBE_FIX_RIP_BX	0x20
47#define UPROBE_FIX_RIP_MASK	\
48	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
49
50#define	UPROBE_TRAP_NR		UINT_MAX
51
52/* Adaptations for mhiramat x86 decoder v14. */
53#define OPCODE1(insn)		((insn)->opcode.bytes[0])
54#define OPCODE2(insn)		((insn)->opcode.bytes[1])
55#define OPCODE3(insn)		((insn)->opcode.bytes[2])
56#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
57
58#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
59	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
60	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
61	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
62	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
63	 << (row % 32))
64
65/*
66 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
68 * some versions of gcc to think only *(unsigned long*) is used.
69 *
70 * Opcodes we'll probably never support:
71 * 6c-6f - ins,outs. SEGVs if used in userspace
72 * e4-e7 - in,out imm. SEGVs if used in userspace
73 * ec-ef - in,out acc. SEGVs if used in userspace
74 * cc - int3. SIGTRAP if used in userspace
75 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
76 *	(why we support bound (62) then? it's similar, and similarly unused...)
77 * f1 - int1. SIGTRAP if used in userspace
78 * f4 - hlt. SEGVs if used in userspace
79 * fa - cli. SEGVs if used in userspace
80 * fb - sti. SEGVs if used in userspace
81 *
82 * Opcodes which need some work to be supported:
83 * 07,17,1f - pop es/ss/ds
84 *	Normally not used in userspace, but would execute if used.
85 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
86 *	We hesitate to run them under single step since kernel's handling
87 *	of userspace single-stepping (TF flag) is fragile.
88 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
89 *	on the same grounds that they are never used.
90 * cd - int N.
91 *	Used by userspace for "int 80" syscall entry. (Other "int N"
92 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
93 *	Not supported since kernel's handling of userspace single-stepping
94 *	(TF flag) is fragile.
95 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
96 */
97#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
98static volatile u32 good_insns_32[256 / 32] = {
99	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
100	/*      ----------------------------------------------         */
101	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
102	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
103	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
104	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
105	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
106	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
107	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
108	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
109	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
110	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
111	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
112	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
113	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
114	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
115	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
116	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
117	/*      ----------------------------------------------         */
118	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
119};
120#else
121#define good_insns_32	NULL
122#endif
123
124/* Good-instruction tables for 64-bit apps.
125 *
126 * Genuinely invalid opcodes:
127 * 06,07 - formerly push/pop es
128 * 0e - formerly push cs
129 * 16,17 - formerly push/pop ss
130 * 1e,1f - formerly push/pop ds
131 * 27,2f,37,3f - formerly daa/das/aaa/aas
132 * 60,61 - formerly pusha/popa
133 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
134 * 82 - formerly redundant encoding of Group1
135 * 9a - formerly call seg:ofs
136 * ce - formerly into
137 * d4,d5 - formerly aam/aad
138 * d6 - formerly undocumented salc
139 * ea - formerly jmp seg:ofs
140 *
141 * Opcodes we'll probably never support:
142 * 6c-6f - ins,outs. SEGVs if used in userspace
143 * e4-e7 - in,out imm. SEGVs if used in userspace
144 * ec-ef - in,out acc. SEGVs if used in userspace
145 * cc - int3. SIGTRAP if used in userspace
146 * f1 - int1. SIGTRAP if used in userspace
147 * f4 - hlt. SEGVs if used in userspace
148 * fa - cli. SEGVs if used in userspace
149 * fb - sti. SEGVs if used in userspace
150 *
151 * Opcodes which need some work to be supported:
152 * cd - int N.
153 *	Used by userspace for "int 80" syscall entry. (Other "int N"
154 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
155 *	Not supported since kernel's handling of userspace single-stepping
156 *	(TF flag) is fragile.
157 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
158 */
159#if defined(CONFIG_X86_64)
160static volatile u32 good_insns_64[256 / 32] = {
161	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
162	/*      ----------------------------------------------         */
163	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
164	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
165	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
166	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
167	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
168	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
169	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
170	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
171	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
172	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
173	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
174	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
175	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
176	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
177	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
178	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
179	/*      ----------------------------------------------         */
180	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
181};
182#else
183#define good_insns_64	NULL
184#endif
185
186/* Using this for both 64-bit and 32-bit apps.
187 * Opcodes we don't support:
188 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
189 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
190 *	Also encodes tons of other system insns if mod=11.
191 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
192 * 0f 05 - syscall
193 * 0f 06 - clts (CPL0 insn)
194 * 0f 07 - sysret
195 * 0f 08 - invd (CPL0 insn)
196 * 0f 09 - wbinvd (CPL0 insn)
197 * 0f 0b - ud2
198 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
199 * 0f 34 - sysenter
200 * 0f 35 - sysexit
201 * 0f 37 - getsec
202 * 0f 78 - vmread (Intel VMX. CPL0 insn)
203 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
204 *	Note: with prefixes, these two opcodes are
205 *	extrq/insertq/AVX512 convert vector ops.
206 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
207 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
208 *	Why? They are all user-executable.
209 */
210static volatile u32 good_2byte_insns[256 / 32] = {
211	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
212	/*      ----------------------------------------------         */
213	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
214	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
215	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
216	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
217	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
218	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
219	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
220	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
221	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
222	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
223	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
224	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
225	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
226	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
227	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
228	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
229	/*      ----------------------------------------------         */
230	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
231};
232#undef W
233
234/*
235 * opcodes we may need to refine support for:
236 *
237 *  0f - 2-byte instructions: For many of these instructions, the validity
238 *  depends on the prefix and/or the reg field.  On such instructions, we
239 *  just consider the opcode combination valid if it corresponds to any
240 *  valid instruction.
241 *
242 *  8f - Group 1 - only reg = 0 is OK
243 *  c6-c7 - Group 11 - only reg = 0 is OK
244 *  d9-df - fpu insns with some illegal encodings
245 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
246 *  certain floating-point instructions, such as addsd.
247 *
248 *  fe - Group 4 - only reg = 0 or 1 is OK
249 *  ff - Group 5 - only reg = 0-6 is OK
250 *
251 * others -- Do we need to support these?
252 *
253 *  0f - (floating-point?) prefetch instructions
254 *  07, 17, 1f - pop es, pop ss, pop ds
255 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
256 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
257 *  67 - addr16 prefix
258 *  ce - into
259 *  f0 - lock prefix
260 */
261
262/*
263 * TODO:
264 * - Where necessary, examine the modrm byte and allow only valid instructions
265 * in the different Groups and fpu instructions.
266 */
267
268static bool is_prefix_bad(struct insn *insn)
269{
270	int i;
271
272	for (i = 0; i < insn->prefixes.nbytes; i++) {
273		switch (insn->prefixes.bytes[i]) {
274		case 0x26:	/* INAT_PFX_ES   */
275		case 0x2E:	/* INAT_PFX_CS   */
276		case 0x36:	/* INAT_PFX_DS   */
277		case 0x3E:	/* INAT_PFX_SS   */
278		case 0xF0:	/* INAT_PFX_LOCK */
279			return true;
280		}
281	}
282	return false;
283}
284
285static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
286{
287	u32 volatile *good_insns;
288
289	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
290	/* has the side-effect of processing the entire instruction */
291	insn_get_length(insn);
292	if (WARN_ON_ONCE(!insn_complete(insn)))
293		return -ENOEXEC;
294
295	if (is_prefix_bad(insn))
296		return -ENOTSUPP;
297
298	if (x86_64)
299		good_insns = good_insns_64;
300	else
301		good_insns = good_insns_32;
302
303	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
304		return 0;
305
306	if (insn->opcode.nbytes == 2) {
307		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
308			return 0;
309	}
310
311	return -ENOTSUPP;
312}
313
314#ifdef CONFIG_X86_64
315static inline bool is_64bit_mm(struct mm_struct *mm)
316{
317	return	!config_enabled(CONFIG_IA32_EMULATION) ||
318		!(mm->context.ia32_compat == TIF_IA32);
319}
320/*
321 * If arch_uprobe->insn doesn't use rip-relative addressing, return
322 * immediately.  Otherwise, rewrite the instruction so that it accesses
323 * its memory operand indirectly through a scratch register.  Set
324 * defparam->fixups accordingly. (The contents of the scratch register
325 * will be saved before we single-step the modified instruction,
326 * and restored afterward).
327 *
328 * We do this because a rip-relative instruction can access only a
329 * relatively small area (+/- 2 GB from the instruction), and the XOL
330 * area typically lies beyond that area.  At least for instructions
331 * that store to memory, we can't execute the original instruction
332 * and "fix things up" later, because the misdirected store could be
333 * disastrous.
334 *
335 * Some useful facts about rip-relative instructions:
336 *
337 *  - There's always a modrm byte with bit layout "00 reg 101".
338 *  - There's never a SIB byte.
339 *  - The displacement is always 4 bytes.
340 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
341 *    has no effect on rip-relative mode. It doesn't make modrm byte
342 *    with r/m=101 refer to register 1101 = R13.
343 */
344static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
345{
346	u8 *cursor;
347	u8 reg;
348	u8 reg2;
349
350	if (!insn_rip_relative(insn))
351		return;
352
353	/*
354	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
355	 * Clear REX.b bit (extension of MODRM.rm field):
356	 * we want to encode low numbered reg, not r8+.
357	 */
358	if (insn->rex_prefix.nbytes) {
359		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
360		/* REX byte has 0100wrxb layout, clearing REX.b bit */
361		*cursor &= 0xfe;
362	}
363	/*
364	 * Similar treatment for VEX3 prefix.
365	 * TODO: add XOP/EVEX treatment when insn decoder supports them
366	 */
367	if (insn->vex_prefix.nbytes == 3) {
368		/*
369		 * vex2:     c5    rvvvvLpp   (has no b bit)
370		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
371		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
372		 *   (evex will need setting of both b and x since
373		 *   in non-sib encoding evex.x is 4th bit of MODRM.rm)
374		 * Setting VEX3.b (setting because it has inverted meaning):
375		 */
376		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
377		*cursor |= 0x20;
378	}
379
380	/*
381	 * Convert from rip-relative addressing to register-relative addressing
382	 * via a scratch register.
383	 *
384	 * This is tricky since there are insns with modrm byte
385	 * which also use registers not encoded in modrm byte:
386	 * [i]div/[i]mul: implicitly use dx:ax
387	 * shift ops: implicitly use cx
388	 * cmpxchg: implicitly uses ax
389	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
390	 *   Encoding: 0f c7/1 modrm
391	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
392	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
393	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
394	 *   Example where none of bx,cx,dx can be used as scratch reg:
395	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
396	 * [v]pcmpistri: implicitly uses cx, xmm0
397	 * [v]pcmpistrm: implicitly uses xmm0
398	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
399	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
400	 *   Evil SSE4.2 string comparison ops from hell.
401	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
402	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
403	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
404	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
405	 *   and that it can have only register operands, not mem
406	 *   (its modrm byte must have mode=11).
407	 *   If these restrictions will ever be lifted,
408	 *   we'll need code to prevent selection of di as scratch reg!
409	 *
410	 * Summary: I don't know any insns with modrm byte which
411	 * use SI register implicitly. DI register is used only
412	 * by one insn (maskmovq) and BX register is used
413	 * only by one too (cmpxchg8b).
414	 * BP is stack-segment based (may be a problem?).
415	 * AX, DX, CX are off-limits (many implicit users).
416	 * SP is unusable (it's stack pointer - think about "pop mem";
417	 * also, rsp+disp32 needs sib encoding -> insn length change).
418	 */
419
420	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
421	reg2 = 0xff;		/* Fetch vex.vvvv */
422	if (insn->vex_prefix.nbytes == 2)
423		reg2 = insn->vex_prefix.bytes[1];
424	else if (insn->vex_prefix.nbytes == 3)
425		reg2 = insn->vex_prefix.bytes[2];
426	/*
427	 * TODO: add XOP, EXEV vvvv reading.
428	 *
429	 * vex.vvvv field is in bits 6-3, bits are inverted.
430	 * But in 32-bit mode, high-order bit may be ignored.
431	 * Therefore, let's consider only 3 low-order bits.
432	 */
433	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
434	/*
435	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
436	 *
437	 * Choose scratch reg. Order is important: must not select bx
438	 * if we can use si (cmpxchg8b case!)
439	 */
440	if (reg != 6 && reg2 != 6) {
441		reg2 = 6;
442		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
443	} else if (reg != 7 && reg2 != 7) {
444		reg2 = 7;
445		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
446		/* TODO (paranoia): force maskmovq to not use di */
447	} else {
448		reg2 = 3;
449		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
450	}
451	/*
452	 * Point cursor at the modrm byte.  The next 4 bytes are the
453	 * displacement.  Beyond the displacement, for some instructions,
454	 * is the immediate operand.
455	 */
456	cursor = auprobe->insn + insn_offset_modrm(insn);
457	/*
458	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
459	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
460	 * 89 86 disp32  mov %eax,disp32(%rsi)
461	 */
462	*cursor = 0x80 | (reg << 3) | reg2;
463}
464
465static inline unsigned long *
466scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
467{
468	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
469		return &regs->si;
470	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
471		return &regs->di;
472	return &regs->bx;
473}
474
475/*
476 * If we're emulating a rip-relative instruction, save the contents
477 * of the scratch register and store the target address in that register.
478 */
479static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
480{
481	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
482		struct uprobe_task *utask = current->utask;
483		unsigned long *sr = scratch_reg(auprobe, regs);
484
485		utask->autask.saved_scratch_register = *sr;
486		*sr = utask->vaddr + auprobe->defparam.ilen;
487	}
488}
489
490static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
491{
492	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
493		struct uprobe_task *utask = current->utask;
494		unsigned long *sr = scratch_reg(auprobe, regs);
495
496		*sr = utask->autask.saved_scratch_register;
497	}
498}
499#else /* 32-bit: */
500static inline bool is_64bit_mm(struct mm_struct *mm)
501{
502	return false;
503}
504/*
505 * No RIP-relative addressing on 32-bit
506 */
507static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
508{
509}
510static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
511{
512}
513static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
514{
515}
516#endif /* CONFIG_X86_64 */
517
518struct uprobe_xol_ops {
519	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
520	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
521	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
522	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
523};
524
525static inline int sizeof_long(void)
526{
527	return is_ia32_task() ? 4 : 8;
528}
529
530static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
531{
532	riprel_pre_xol(auprobe, regs);
533	return 0;
534}
535
536static int push_ret_address(struct pt_regs *regs, unsigned long ip)
537{
538	unsigned long new_sp = regs->sp - sizeof_long();
539
540	if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
541		return -EFAULT;
542
543	regs->sp = new_sp;
544	return 0;
545}
546
547/*
548 * We have to fix things up as follows:
549 *
550 * Typically, the new ip is relative to the copied instruction.  We need
551 * to make it relative to the original instruction (FIX_IP).  Exceptions
552 * are return instructions and absolute or indirect jump or call instructions.
553 *
554 * If the single-stepped instruction was a call, the return address that
555 * is atop the stack is the address following the copied instruction.  We
556 * need to make it the address following the original instruction (FIX_CALL).
557 *
558 * If the original instruction was a rip-relative instruction such as
559 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
560 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
561 * We need to restore the contents of the scratch register
562 * (FIX_RIP_reg).
563 */
564static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
565{
566	struct uprobe_task *utask = current->utask;
567
568	riprel_post_xol(auprobe, regs);
569	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
570		long correction = utask->vaddr - utask->xol_vaddr;
571		regs->ip += correction;
572	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
573		regs->sp += sizeof_long(); /* Pop incorrect return address */
574		if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
575			return -ERESTART;
576	}
577	/* popf; tell the caller to not touch TF */
578	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
579		utask->autask.saved_tf = true;
580
581	return 0;
582}
583
584static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
585{
586	riprel_post_xol(auprobe, regs);
587}
588
589static struct uprobe_xol_ops default_xol_ops = {
590	.pre_xol  = default_pre_xol_op,
591	.post_xol = default_post_xol_op,
592	.abort	  = default_abort_op,
593};
594
595static bool branch_is_call(struct arch_uprobe *auprobe)
596{
597	return auprobe->branch.opc1 == 0xe8;
598}
599
600#define CASE_COND					\
601	COND(70, 71, XF(OF))				\
602	COND(72, 73, XF(CF))				\
603	COND(74, 75, XF(ZF))				\
604	COND(78, 79, XF(SF))				\
605	COND(7a, 7b, XF(PF))				\
606	COND(76, 77, XF(CF) || XF(ZF))			\
607	COND(7c, 7d, XF(SF) != XF(OF))			\
608	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
609
610#define COND(op_y, op_n, expr)				\
611	case 0x ## op_y: DO((expr) != 0)		\
612	case 0x ## op_n: DO((expr) == 0)
613
614#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
615
616static bool is_cond_jmp_opcode(u8 opcode)
617{
618	switch (opcode) {
619	#define DO(expr)	\
620		return true;
621	CASE_COND
622	#undef	DO
623
624	default:
625		return false;
626	}
627}
628
629static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
630{
631	unsigned long flags = regs->flags;
632
633	switch (auprobe->branch.opc1) {
634	#define DO(expr)	\
635		return expr;
636	CASE_COND
637	#undef	DO
638
639	default:	/* not a conditional jmp */
640		return true;
641	}
642}
643
644#undef	XF
645#undef	COND
646#undef	CASE_COND
647
648static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
649{
650	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
651	unsigned long offs = (long)auprobe->branch.offs;
652
653	if (branch_is_call(auprobe)) {
654		/*
655		 * If it fails we execute this (mangled, see the comment in
656		 * branch_clear_offset) insn out-of-line. In the likely case
657		 * this should trigger the trap, and the probed application
658		 * should die or restart the same insn after it handles the
659		 * signal, arch_uprobe_post_xol() won't be even called.
660		 *
661		 * But there is corner case, see the comment in ->post_xol().
662		 */
663		if (push_ret_address(regs, new_ip))
664			return false;
665	} else if (!check_jmp_cond(auprobe, regs)) {
666		offs = 0;
667	}
668
669	regs->ip = new_ip + offs;
670	return true;
671}
672
673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
674{
675	BUG_ON(!branch_is_call(auprobe));
676	/*
677	 * We can only get here if branch_emulate_op() failed to push the ret
678	 * address _and_ another thread expanded our stack before the (mangled)
679	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
680	 * We could also restore ->ip and try to call branch_emulate_op() again.
681	 */
682	regs->sp += sizeof_long();
683	return -ERESTART;
684}
685
686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
687{
688	/*
689	 * Turn this insn into "call 1f; 1:", this is what we will execute
690	 * out-of-line if ->emulate() fails. We only need this to generate
691	 * a trap, so that the probed task receives the correct signal with
692	 * the properly filled siginfo.
693	 *
694	 * But see the comment in ->post_xol(), in the unlikely case it can
695	 * succeed. So we need to ensure that the new ->ip can not fall into
696	 * the non-canonical area and trigger #GP.
697	 *
698	 * We could turn it into (say) "pushf", but then we would need to
699	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
700	 * of ->insn[] for set_orig_insn().
701	 */
702	memset(auprobe->insn + insn_offset_immediate(insn),
703		0, insn->immediate.nbytes);
704}
705
706static struct uprobe_xol_ops branch_xol_ops = {
707	.emulate  = branch_emulate_op,
708	.post_xol = branch_post_xol_op,
709};
710
711/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
712static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
713{
714	u8 opc1 = OPCODE1(insn);
715	int i;
716
717	switch (opc1) {
718	case 0xeb:	/* jmp 8 */
719	case 0xe9:	/* jmp 32 */
720	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
721		break;
722
723	case 0xe8:	/* call relative */
724		branch_clear_offset(auprobe, insn);
725		break;
726
727	case 0x0f:
728		if (insn->opcode.nbytes != 2)
729			return -ENOSYS;
730		/*
731		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
732		 * OPCODE1() of the "short" jmp which checks the same condition.
733		 */
734		opc1 = OPCODE2(insn) - 0x10;
735	default:
736		if (!is_cond_jmp_opcode(opc1))
737			return -ENOSYS;
738	}
739
740	/*
741	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
742	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
743	 * No one uses these insns, reject any branch insns with such prefix.
744	 */
745	for (i = 0; i < insn->prefixes.nbytes; i++) {
746		if (insn->prefixes.bytes[i] == 0x66)
747			return -ENOTSUPP;
748	}
749
750	auprobe->branch.opc1 = opc1;
751	auprobe->branch.ilen = insn->length;
752	auprobe->branch.offs = insn->immediate.value;
753
754	auprobe->ops = &branch_xol_ops;
755	return 0;
756}
757
758/**
759 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
760 * @mm: the probed address space.
761 * @arch_uprobe: the probepoint information.
762 * @addr: virtual address at which to install the probepoint
763 * Return 0 on success or a -ve number on error.
764 */
765int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
766{
767	struct insn insn;
768	u8 fix_ip_or_call = UPROBE_FIX_IP;
769	int ret;
770
771	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
772	if (ret)
773		return ret;
774
775	ret = branch_setup_xol_ops(auprobe, &insn);
776	if (ret != -ENOSYS)
777		return ret;
778
779	/*
780	 * Figure out which fixups default_post_xol_op() will need to perform,
781	 * and annotate defparam->fixups accordingly.
782	 */
783	switch (OPCODE1(&insn)) {
784	case 0x9d:		/* popf */
785		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
786		break;
787	case 0xc3:		/* ret or lret -- ip is correct */
788	case 0xcb:
789	case 0xc2:
790	case 0xca:
791	case 0xea:		/* jmp absolute -- ip is correct */
792		fix_ip_or_call = 0;
793		break;
794	case 0x9a:		/* call absolute - Fix return addr, not ip */
795		fix_ip_or_call = UPROBE_FIX_CALL;
796		break;
797	case 0xff:
798		switch (MODRM_REG(&insn)) {
799		case 2: case 3:			/* call or lcall, indirect */
800			fix_ip_or_call = UPROBE_FIX_CALL;
801			break;
802		case 4: case 5:			/* jmp or ljmp, indirect */
803			fix_ip_or_call = 0;
804			break;
805		}
806		/* fall through */
807	default:
808		riprel_analyze(auprobe, &insn);
809	}
810
811	auprobe->defparam.ilen = insn.length;
812	auprobe->defparam.fixups |= fix_ip_or_call;
813
814	auprobe->ops = &default_xol_ops;
815	return 0;
816}
817
818/*
819 * arch_uprobe_pre_xol - prepare to execute out of line.
820 * @auprobe: the probepoint information.
821 * @regs: reflects the saved user state of current task.
822 */
823int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
824{
825	struct uprobe_task *utask = current->utask;
826
827	if (auprobe->ops->pre_xol) {
828		int err = auprobe->ops->pre_xol(auprobe, regs);
829		if (err)
830			return err;
831	}
832
833	regs->ip = utask->xol_vaddr;
834	utask->autask.saved_trap_nr = current->thread.trap_nr;
835	current->thread.trap_nr = UPROBE_TRAP_NR;
836
837	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
838	regs->flags |= X86_EFLAGS_TF;
839	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
840		set_task_blockstep(current, false);
841
842	return 0;
843}
844
845/*
846 * If xol insn itself traps and generates a signal(Say,
847 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
848 * instruction jumps back to its own address. It is assumed that anything
849 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
850 *
851 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
852 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
853 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
854 */
855bool arch_uprobe_xol_was_trapped(struct task_struct *t)
856{
857	if (t->thread.trap_nr != UPROBE_TRAP_NR)
858		return true;
859
860	return false;
861}
862
863/*
864 * Called after single-stepping. To avoid the SMP problems that can
865 * occur when we temporarily put back the original opcode to
866 * single-step, we single-stepped a copy of the instruction.
867 *
868 * This function prepares to resume execution after the single-step.
869 */
870int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
871{
872	struct uprobe_task *utask = current->utask;
873	bool send_sigtrap = utask->autask.saved_tf;
874	int err = 0;
875
876	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
877	current->thread.trap_nr = utask->autask.saved_trap_nr;
878
879	if (auprobe->ops->post_xol) {
880		err = auprobe->ops->post_xol(auprobe, regs);
881		if (err) {
882			/*
883			 * Restore ->ip for restart or post mortem analysis.
884			 * ->post_xol() must not return -ERESTART unless this
885			 * is really possible.
886			 */
887			regs->ip = utask->vaddr;
888			if (err == -ERESTART)
889				err = 0;
890			send_sigtrap = false;
891		}
892	}
893	/*
894	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
895	 * so we can get an extra SIGTRAP if we do not clear TF. We need
896	 * to examine the opcode to make it right.
897	 */
898	if (send_sigtrap)
899		send_sig(SIGTRAP, current, 0);
900
901	if (!utask->autask.saved_tf)
902		regs->flags &= ~X86_EFLAGS_TF;
903
904	return err;
905}
906
907/* callback routine for handling exceptions. */
908int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
909{
910	struct die_args *args = data;
911	struct pt_regs *regs = args->regs;
912	int ret = NOTIFY_DONE;
913
914	/* We are only interested in userspace traps */
915	if (regs && !user_mode(regs))
916		return NOTIFY_DONE;
917
918	switch (val) {
919	case DIE_INT3:
920		if (uprobe_pre_sstep_notifier(regs))
921			ret = NOTIFY_STOP;
922
923		break;
924
925	case DIE_DEBUG:
926		if (uprobe_post_sstep_notifier(regs))
927			ret = NOTIFY_STOP;
928
929	default:
930		break;
931	}
932
933	return ret;
934}
935
936/*
937 * This function gets called when XOL instruction either gets trapped or
938 * the thread has a fatal signal. Reset the instruction pointer to its
939 * probed address for the potential restart or for post mortem analysis.
940 */
941void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
942{
943	struct uprobe_task *utask = current->utask;
944
945	if (auprobe->ops->abort)
946		auprobe->ops->abort(auprobe, regs);
947
948	current->thread.trap_nr = utask->autask.saved_trap_nr;
949	regs->ip = utask->vaddr;
950	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
951	if (!utask->autask.saved_tf)
952		regs->flags &= ~X86_EFLAGS_TF;
953}
954
955static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
956{
957	if (auprobe->ops->emulate)
958		return auprobe->ops->emulate(auprobe, regs);
959	return false;
960}
961
962bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
963{
964	bool ret = __skip_sstep(auprobe, regs);
965	if (ret && (regs->flags & X86_EFLAGS_TF))
966		send_sig(SIGTRAP, current, 0);
967	return ret;
968}
969
970unsigned long
971arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
972{
973	int rasize = sizeof_long(), nleft;
974	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
975
976	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
977		return -1;
978
979	/* check whether address has been already hijacked */
980	if (orig_ret_vaddr == trampoline_vaddr)
981		return orig_ret_vaddr;
982
983	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
984	if (likely(!nleft))
985		return orig_ret_vaddr;
986
987	if (nleft != rasize) {
988		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
989			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
990
991		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
992	}
993
994	return -1;
995}
996