1/*
2 *  Copyright (C) 1991, 1992  Linus Torvalds
3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 *  Pentium III FXSR, SSE support
6 *	Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/spinlock.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/kdebug.h>
22#include <linux/kgdb.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/string.h>
28#include <linux/delay.h>
29#include <linux/errno.h>
30#include <linux/kexec.h>
31#include <linux/sched.h>
32#include <linux/timer.h>
33#include <linux/init.h>
34#include <linux/bug.h>
35#include <linux/nmi.h>
36#include <linux/mm.h>
37#include <linux/smp.h>
38#include <linux/io.h>
39
40#ifdef CONFIG_EISA
41#include <linux/ioport.h>
42#include <linux/eisa.h>
43#endif
44
45#if defined(CONFIG_EDAC)
46#include <linux/edac.h>
47#endif
48
49#include <asm/kmemcheck.h>
50#include <asm/stacktrace.h>
51#include <asm/processor.h>
52#include <asm/debugreg.h>
53#include <linux/atomic.h>
54#include <asm/ftrace.h>
55#include <asm/traps.h>
56#include <asm/desc.h>
57#include <asm/i387.h>
58#include <asm/fpu-internal.h>
59#include <asm/mce.h>
60#include <asm/fixmap.h>
61#include <asm/mach_traps.h>
62#include <asm/alternative.h>
63#include <asm/mpx.h>
64
65#ifdef CONFIG_X86_64
66#include <asm/x86_init.h>
67#include <asm/pgalloc.h>
68#include <asm/proto.h>
69
70/* No need to be aligned, but done to keep all IDTs defined the same way. */
71gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
72#else
73#include <asm/processor-flags.h>
74#include <asm/setup.h>
75
76asmlinkage int system_call(void);
77#endif
78
79/* Must be page-aligned because the real IDT is used in a fixmap. */
80gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
81
82DECLARE_BITMAP(used_vectors, NR_VECTORS);
83EXPORT_SYMBOL_GPL(used_vectors);
84
85static inline void conditional_sti(struct pt_regs *regs)
86{
87	if (regs->flags & X86_EFLAGS_IF)
88		local_irq_enable();
89}
90
91static inline void preempt_conditional_sti(struct pt_regs *regs)
92{
93	preempt_count_inc();
94	if (regs->flags & X86_EFLAGS_IF)
95		local_irq_enable();
96}
97
98static inline void conditional_cli(struct pt_regs *regs)
99{
100	if (regs->flags & X86_EFLAGS_IF)
101		local_irq_disable();
102}
103
104static inline void preempt_conditional_cli(struct pt_regs *regs)
105{
106	if (regs->flags & X86_EFLAGS_IF)
107		local_irq_disable();
108	preempt_count_dec();
109}
110
111enum ctx_state ist_enter(struct pt_regs *regs)
112{
113	enum ctx_state prev_state;
114
115	if (user_mode(regs)) {
116		/* Other than that, we're just an exception. */
117		prev_state = exception_enter();
118	} else {
119		/*
120		 * We might have interrupted pretty much anything.  In
121		 * fact, if we're a machine check, we can even interrupt
122		 * NMI processing.  We don't want in_nmi() to return true,
123		 * but we need to notify RCU.
124		 */
125		rcu_nmi_enter();
126		prev_state = CONTEXT_KERNEL;  /* the value is irrelevant. */
127	}
128
129	/*
130	 * We are atomic because we're on the IST stack (or we're on x86_32,
131	 * in which case we still shouldn't schedule).
132	 *
133	 * This must be after exception_enter(), because exception_enter()
134	 * won't do anything if in_interrupt() returns true.
135	 */
136	preempt_count_add(HARDIRQ_OFFSET);
137
138	/* This code is a bit fragile.  Test it. */
139	rcu_lockdep_assert(rcu_is_watching(), "ist_enter didn't work");
140
141	return prev_state;
142}
143
144void ist_exit(struct pt_regs *regs, enum ctx_state prev_state)
145{
146	/* Must be before exception_exit. */
147	preempt_count_sub(HARDIRQ_OFFSET);
148
149	if (user_mode(regs))
150		return exception_exit(prev_state);
151	else
152		rcu_nmi_exit();
153}
154
155/**
156 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
157 * @regs:	regs passed to the IST exception handler
158 *
159 * IST exception handlers normally cannot schedule.  As a special
160 * exception, if the exception interrupted userspace code (i.e.
161 * user_mode(regs) would return true) and the exception was not
162 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
163 * begins a non-atomic section within an ist_enter()/ist_exit() region.
164 * Callers are responsible for enabling interrupts themselves inside
165 * the non-atomic section, and callers must call is_end_non_atomic()
166 * before ist_exit().
167 */
168void ist_begin_non_atomic(struct pt_regs *regs)
169{
170	BUG_ON(!user_mode(regs));
171
172	/*
173	 * Sanity check: we need to be on the normal thread stack.  This
174	 * will catch asm bugs and any attempt to use ist_preempt_enable
175	 * from double_fault.
176	 */
177	BUG_ON((unsigned long)(current_top_of_stack() -
178			       current_stack_pointer()) >= THREAD_SIZE);
179
180	preempt_count_sub(HARDIRQ_OFFSET);
181}
182
183/**
184 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
185 *
186 * Ends a non-atomic section started with ist_begin_non_atomic().
187 */
188void ist_end_non_atomic(void)
189{
190	preempt_count_add(HARDIRQ_OFFSET);
191}
192
193static nokprobe_inline int
194do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
195		  struct pt_regs *regs,	long error_code)
196{
197	if (v8086_mode(regs)) {
198		/*
199		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
200		 * On nmi (interrupt 2), do_trap should not be called.
201		 */
202		if (trapnr < X86_TRAP_UD) {
203			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
204						error_code, trapnr))
205				return 0;
206		}
207		return -1;
208	}
209
210	if (!user_mode(regs)) {
211		if (!fixup_exception(regs)) {
212			tsk->thread.error_code = error_code;
213			tsk->thread.trap_nr = trapnr;
214			die(str, regs, error_code);
215		}
216		return 0;
217	}
218
219	return -1;
220}
221
222static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
223				siginfo_t *info)
224{
225	unsigned long siaddr;
226	int sicode;
227
228	switch (trapnr) {
229	default:
230		return SEND_SIG_PRIV;
231
232	case X86_TRAP_DE:
233		sicode = FPE_INTDIV;
234		siaddr = uprobe_get_trap_addr(regs);
235		break;
236	case X86_TRAP_UD:
237		sicode = ILL_ILLOPN;
238		siaddr = uprobe_get_trap_addr(regs);
239		break;
240	case X86_TRAP_AC:
241		sicode = BUS_ADRALN;
242		siaddr = 0;
243		break;
244	}
245
246	info->si_signo = signr;
247	info->si_errno = 0;
248	info->si_code = sicode;
249	info->si_addr = (void __user *)siaddr;
250	return info;
251}
252
253static void
254do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
255	long error_code, siginfo_t *info)
256{
257	struct task_struct *tsk = current;
258
259
260	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
261		return;
262	/*
263	 * We want error_code and trap_nr set for userspace faults and
264	 * kernelspace faults which result in die(), but not
265	 * kernelspace faults which are fixed up.  die() gives the
266	 * process no chance to handle the signal and notice the
267	 * kernel fault information, so that won't result in polluting
268	 * the information about previously queued, but not yet
269	 * delivered, faults.  See also do_general_protection below.
270	 */
271	tsk->thread.error_code = error_code;
272	tsk->thread.trap_nr = trapnr;
273
274#ifdef CONFIG_X86_64
275	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
276	    printk_ratelimit()) {
277		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
278			tsk->comm, tsk->pid, str,
279			regs->ip, regs->sp, error_code);
280		print_vma_addr(" in ", regs->ip);
281		pr_cont("\n");
282	}
283#endif
284
285	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
286}
287NOKPROBE_SYMBOL(do_trap);
288
289static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
290			  unsigned long trapnr, int signr)
291{
292	enum ctx_state prev_state = exception_enter();
293	siginfo_t info;
294
295	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
296			NOTIFY_STOP) {
297		conditional_sti(regs);
298		do_trap(trapnr, signr, str, regs, error_code,
299			fill_trap_info(regs, signr, trapnr, &info));
300	}
301
302	exception_exit(prev_state);
303}
304
305#define DO_ERROR(trapnr, signr, str, name)				\
306dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
307{									\
308	do_error_trap(regs, error_code, str, trapnr, signr);		\
309}
310
311DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
312DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
313DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
314DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
315DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
316DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
317DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
318DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
319
320#ifdef CONFIG_X86_64
321/* Runs on IST stack */
322dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
323{
324	static const char str[] = "double fault";
325	struct task_struct *tsk = current;
326
327#ifdef CONFIG_X86_ESPFIX64
328	extern unsigned char native_irq_return_iret[];
329
330	/*
331	 * If IRET takes a non-IST fault on the espfix64 stack, then we
332	 * end up promoting it to a doublefault.  In that case, modify
333	 * the stack to make it look like we just entered the #GP
334	 * handler from user space, similar to bad_iret.
335	 *
336	 * No need for ist_enter here because we don't use RCU.
337	 */
338	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
339		regs->cs == __KERNEL_CS &&
340		regs->ip == (unsigned long)native_irq_return_iret)
341	{
342		struct pt_regs *normal_regs = task_pt_regs(current);
343
344		/* Fake a #GP(0) from userspace. */
345		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
346		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
347		regs->ip = (unsigned long)general_protection;
348		regs->sp = (unsigned long)&normal_regs->orig_ax;
349
350		return;
351	}
352#endif
353
354	ist_enter(regs);  /* Discard prev_state because we won't return. */
355	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
356
357	tsk->thread.error_code = error_code;
358	tsk->thread.trap_nr = X86_TRAP_DF;
359
360#ifdef CONFIG_DOUBLEFAULT
361	df_debug(regs, error_code);
362#endif
363	/*
364	 * This is always a kernel trap and never fixable (and thus must
365	 * never return).
366	 */
367	for (;;)
368		die(str, regs, error_code);
369}
370#endif
371
372dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
373{
374	struct task_struct *tsk = current;
375	struct xsave_struct *xsave_buf;
376	enum ctx_state prev_state;
377	struct bndcsr *bndcsr;
378	siginfo_t *info;
379
380	prev_state = exception_enter();
381	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
382			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
383		goto exit;
384	conditional_sti(regs);
385
386	if (!user_mode(regs))
387		die("bounds", regs, error_code);
388
389	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
390		/* The exception is not from Intel MPX */
391		goto exit_trap;
392	}
393
394	/*
395	 * We need to look at BNDSTATUS to resolve this exception.
396	 * It is not directly accessible, though, so we need to
397	 * do an xsave and then pull it out of the xsave buffer.
398	 */
399	fpu_save_init(&tsk->thread.fpu);
400	xsave_buf = &(tsk->thread.fpu.state->xsave);
401	bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
402	if (!bndcsr)
403		goto exit_trap;
404
405	/*
406	 * The error code field of the BNDSTATUS register communicates status
407	 * information of a bound range exception #BR or operation involving
408	 * bound directory.
409	 */
410	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
411	case 2:	/* Bound directory has invalid entry. */
412		if (mpx_handle_bd_fault(xsave_buf))
413			goto exit_trap;
414		break; /* Success, it was handled */
415	case 1: /* Bound violation. */
416		info = mpx_generate_siginfo(regs, xsave_buf);
417		if (IS_ERR(info)) {
418			/*
419			 * We failed to decode the MPX instruction.  Act as if
420			 * the exception was not caused by MPX.
421			 */
422			goto exit_trap;
423		}
424		/*
425		 * Success, we decoded the instruction and retrieved
426		 * an 'info' containing the address being accessed
427		 * which caused the exception.  This information
428		 * allows and application to possibly handle the
429		 * #BR exception itself.
430		 */
431		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
432		kfree(info);
433		break;
434	case 0: /* No exception caused by Intel MPX operations. */
435		goto exit_trap;
436	default:
437		die("bounds", regs, error_code);
438	}
439
440exit:
441	exception_exit(prev_state);
442	return;
443exit_trap:
444	/*
445	 * This path out is for all the cases where we could not
446	 * handle the exception in some way (like allocating a
447	 * table or telling userspace about it.  We will also end
448	 * up here if the kernel has MPX turned off at compile
449	 * time..
450	 */
451	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
452	exception_exit(prev_state);
453}
454
455dotraplinkage void
456do_general_protection(struct pt_regs *regs, long error_code)
457{
458	struct task_struct *tsk;
459	enum ctx_state prev_state;
460
461	prev_state = exception_enter();
462	conditional_sti(regs);
463
464	if (v8086_mode(regs)) {
465		local_irq_enable();
466		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
467		goto exit;
468	}
469
470	tsk = current;
471	if (!user_mode(regs)) {
472		if (fixup_exception(regs))
473			goto exit;
474
475		tsk->thread.error_code = error_code;
476		tsk->thread.trap_nr = X86_TRAP_GP;
477		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
478			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
479			die("general protection fault", regs, error_code);
480		goto exit;
481	}
482
483	tsk->thread.error_code = error_code;
484	tsk->thread.trap_nr = X86_TRAP_GP;
485
486	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
487			printk_ratelimit()) {
488		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
489			tsk->comm, task_pid_nr(tsk),
490			regs->ip, regs->sp, error_code);
491		print_vma_addr(" in ", regs->ip);
492		pr_cont("\n");
493	}
494
495	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
496exit:
497	exception_exit(prev_state);
498}
499NOKPROBE_SYMBOL(do_general_protection);
500
501/* May run on IST stack. */
502dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
503{
504	enum ctx_state prev_state;
505
506#ifdef CONFIG_DYNAMIC_FTRACE
507	/*
508	 * ftrace must be first, everything else may cause a recursive crash.
509	 * See note by declaration of modifying_ftrace_code in ftrace.c
510	 */
511	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
512	    ftrace_int3_handler(regs))
513		return;
514#endif
515	if (poke_int3_handler(regs))
516		return;
517
518	prev_state = ist_enter(regs);
519#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
520	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
521				SIGTRAP) == NOTIFY_STOP)
522		goto exit;
523#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
524
525#ifdef CONFIG_KPROBES
526	if (kprobe_int3_handler(regs))
527		goto exit;
528#endif
529
530	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
531			SIGTRAP) == NOTIFY_STOP)
532		goto exit;
533
534	/*
535	 * Let others (NMI) know that the debug stack is in use
536	 * as we may switch to the interrupt stack.
537	 */
538	debug_stack_usage_inc();
539	preempt_conditional_sti(regs);
540	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
541	preempt_conditional_cli(regs);
542	debug_stack_usage_dec();
543exit:
544	ist_exit(regs, prev_state);
545}
546NOKPROBE_SYMBOL(do_int3);
547
548#ifdef CONFIG_X86_64
549/*
550 * Help handler running on IST stack to switch off the IST stack if the
551 * interrupted code was in user mode. The actual stack switch is done in
552 * entry_64.S
553 */
554asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
555{
556	struct pt_regs *regs = task_pt_regs(current);
557	*regs = *eregs;
558	return regs;
559}
560NOKPROBE_SYMBOL(sync_regs);
561
562struct bad_iret_stack {
563	void *error_entry_ret;
564	struct pt_regs regs;
565};
566
567asmlinkage __visible notrace
568struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
569{
570	/*
571	 * This is called from entry_64.S early in handling a fault
572	 * caused by a bad iret to user mode.  To handle the fault
573	 * correctly, we want move our stack frame to task_pt_regs
574	 * and we want to pretend that the exception came from the
575	 * iret target.
576	 */
577	struct bad_iret_stack *new_stack =
578		container_of(task_pt_regs(current),
579			     struct bad_iret_stack, regs);
580
581	/* Copy the IRET target to the new stack. */
582	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
583
584	/* Copy the remainder of the stack from the current stack. */
585	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
586
587	BUG_ON(!user_mode(&new_stack->regs));
588	return new_stack;
589}
590NOKPROBE_SYMBOL(fixup_bad_iret);
591#endif
592
593/*
594 * Our handling of the processor debug registers is non-trivial.
595 * We do not clear them on entry and exit from the kernel. Therefore
596 * it is possible to get a watchpoint trap here from inside the kernel.
597 * However, the code in ./ptrace.c has ensured that the user can
598 * only set watchpoints on userspace addresses. Therefore the in-kernel
599 * watchpoint trap can only occur in code which is reading/writing
600 * from user space. Such code must not hold kernel locks (since it
601 * can equally take a page fault), therefore it is safe to call
602 * force_sig_info even though that claims and releases locks.
603 *
604 * Code in ./signal.c ensures that the debug control register
605 * is restored before we deliver any signal, and therefore that
606 * user code runs with the correct debug control register even though
607 * we clear it here.
608 *
609 * Being careful here means that we don't have to be as careful in a
610 * lot of more complicated places (task switching can be a bit lazy
611 * about restoring all the debug state, and ptrace doesn't have to
612 * find every occurrence of the TF bit that could be saved away even
613 * by user code)
614 *
615 * May run on IST stack.
616 */
617dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
618{
619	struct task_struct *tsk = current;
620	enum ctx_state prev_state;
621	int user_icebp = 0;
622	unsigned long dr6;
623	int si_code;
624
625	prev_state = ist_enter(regs);
626
627	get_debugreg(dr6, 6);
628
629	/* Filter out all the reserved bits which are preset to 1 */
630	dr6 &= ~DR6_RESERVED;
631
632	/*
633	 * If dr6 has no reason to give us about the origin of this trap,
634	 * then it's very likely the result of an icebp/int01 trap.
635	 * User wants a sigtrap for that.
636	 */
637	if (!dr6 && user_mode(regs))
638		user_icebp = 1;
639
640	/* Catch kmemcheck conditions first of all! */
641	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
642		goto exit;
643
644	/* DR6 may or may not be cleared by the CPU */
645	set_debugreg(0, 6);
646
647	/*
648	 * The processor cleared BTF, so don't mark that we need it set.
649	 */
650	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
651
652	/* Store the virtualized DR6 value */
653	tsk->thread.debugreg6 = dr6;
654
655#ifdef CONFIG_KPROBES
656	if (kprobe_debug_handler(regs))
657		goto exit;
658#endif
659
660	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
661							SIGTRAP) == NOTIFY_STOP)
662		goto exit;
663
664	/*
665	 * Let others (NMI) know that the debug stack is in use
666	 * as we may switch to the interrupt stack.
667	 */
668	debug_stack_usage_inc();
669
670	/* It's safe to allow irq's after DR6 has been saved */
671	preempt_conditional_sti(regs);
672
673	if (v8086_mode(regs)) {
674		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
675					X86_TRAP_DB);
676		preempt_conditional_cli(regs);
677		debug_stack_usage_dec();
678		goto exit;
679	}
680
681	/*
682	 * Single-stepping through system calls: ignore any exceptions in
683	 * kernel space, but re-enable TF when returning to user mode.
684	 *
685	 * We already checked v86 mode above, so we can check for kernel mode
686	 * by just checking the CPL of CS.
687	 */
688	if ((dr6 & DR_STEP) && !user_mode(regs)) {
689		tsk->thread.debugreg6 &= ~DR_STEP;
690		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
691		regs->flags &= ~X86_EFLAGS_TF;
692	}
693	si_code = get_si_code(tsk->thread.debugreg6);
694	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
695		send_sigtrap(tsk, regs, error_code, si_code);
696	preempt_conditional_cli(regs);
697	debug_stack_usage_dec();
698
699exit:
700	ist_exit(regs, prev_state);
701}
702NOKPROBE_SYMBOL(do_debug);
703
704/*
705 * Note that we play around with the 'TS' bit in an attempt to get
706 * the correct behaviour even in the presence of the asynchronous
707 * IRQ13 behaviour
708 */
709static void math_error(struct pt_regs *regs, int error_code, int trapnr)
710{
711	struct task_struct *task = current;
712	siginfo_t info;
713	unsigned short err;
714	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
715						"simd exception";
716
717	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
718		return;
719	conditional_sti(regs);
720
721	if (!user_mode(regs))
722	{
723		if (!fixup_exception(regs)) {
724			task->thread.error_code = error_code;
725			task->thread.trap_nr = trapnr;
726			die(str, regs, error_code);
727		}
728		return;
729	}
730
731	/*
732	 * Save the info for the exception handler and clear the error.
733	 */
734	unlazy_fpu(task);
735	task->thread.trap_nr = trapnr;
736	task->thread.error_code = error_code;
737	info.si_signo = SIGFPE;
738	info.si_errno = 0;
739	info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
740	if (trapnr == X86_TRAP_MF) {
741		unsigned short cwd, swd;
742		/*
743		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
744		 * status.  0x3f is the exception bits in these regs, 0x200 is the
745		 * C1 reg you need in case of a stack fault, 0x040 is the stack
746		 * fault bit.  We should only be taking one exception at a time,
747		 * so if this combination doesn't produce any single exception,
748		 * then we have a bad program that isn't synchronizing its FPU usage
749		 * and it will suffer the consequences since we won't be able to
750		 * fully reproduce the context of the exception
751		 */
752		cwd = get_fpu_cwd(task);
753		swd = get_fpu_swd(task);
754
755		err = swd & ~cwd;
756	} else {
757		/*
758		 * The SIMD FPU exceptions are handled a little differently, as there
759		 * is only a single status/control register.  Thus, to determine which
760		 * unmasked exception was caught we must mask the exception mask bits
761		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
762		 */
763		unsigned short mxcsr = get_fpu_mxcsr(task);
764		err = ~(mxcsr >> 7) & mxcsr;
765	}
766
767	if (err & 0x001) {	/* Invalid op */
768		/*
769		 * swd & 0x240 == 0x040: Stack Underflow
770		 * swd & 0x240 == 0x240: Stack Overflow
771		 * User must clear the SF bit (0x40) if set
772		 */
773		info.si_code = FPE_FLTINV;
774	} else if (err & 0x004) { /* Divide by Zero */
775		info.si_code = FPE_FLTDIV;
776	} else if (err & 0x008) { /* Overflow */
777		info.si_code = FPE_FLTOVF;
778	} else if (err & 0x012) { /* Denormal, Underflow */
779		info.si_code = FPE_FLTUND;
780	} else if (err & 0x020) { /* Precision */
781		info.si_code = FPE_FLTRES;
782	} else {
783		/*
784		 * If we're using IRQ 13, or supposedly even some trap
785		 * X86_TRAP_MF implementations, it's possible
786		 * we get a spurious trap, which is not an error.
787		 */
788		return;
789	}
790	force_sig_info(SIGFPE, &info, task);
791}
792
793dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
794{
795	enum ctx_state prev_state;
796
797	prev_state = exception_enter();
798	math_error(regs, error_code, X86_TRAP_MF);
799	exception_exit(prev_state);
800}
801
802dotraplinkage void
803do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
804{
805	enum ctx_state prev_state;
806
807	prev_state = exception_enter();
808	math_error(regs, error_code, X86_TRAP_XF);
809	exception_exit(prev_state);
810}
811
812dotraplinkage void
813do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
814{
815	conditional_sti(regs);
816#if 0
817	/* No need to warn about this any longer. */
818	pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
819#endif
820}
821
822asmlinkage __visible void __attribute__((weak)) smp_thermal_interrupt(void)
823{
824}
825
826asmlinkage __visible void __attribute__((weak)) smp_threshold_interrupt(void)
827{
828}
829
830/*
831 * 'math_state_restore()' saves the current math information in the
832 * old math state array, and gets the new ones from the current task
833 *
834 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
835 * Don't touch unless you *really* know how it works.
836 *
837 * Must be called with kernel preemption disabled (eg with local
838 * local interrupts as in the case of do_device_not_available).
839 */
840void math_state_restore(void)
841{
842	struct task_struct *tsk = current;
843
844	if (!tsk_used_math(tsk)) {
845		local_irq_enable();
846		/*
847		 * does a slab alloc which can sleep
848		 */
849		if (init_fpu(tsk)) {
850			/*
851			 * ran out of memory!
852			 */
853			do_group_exit(SIGKILL);
854			return;
855		}
856		local_irq_disable();
857	}
858
859	/* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
860	kernel_fpu_disable();
861	__thread_fpu_begin(tsk);
862	if (unlikely(restore_fpu_checking(tsk))) {
863		fpu_reset_state(tsk);
864		force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
865	} else {
866		tsk->thread.fpu_counter++;
867	}
868	kernel_fpu_enable();
869}
870EXPORT_SYMBOL_GPL(math_state_restore);
871
872dotraplinkage void
873do_device_not_available(struct pt_regs *regs, long error_code)
874{
875	enum ctx_state prev_state;
876
877	prev_state = exception_enter();
878	BUG_ON(use_eager_fpu());
879
880#ifdef CONFIG_MATH_EMULATION
881	if (read_cr0() & X86_CR0_EM) {
882		struct math_emu_info info = { };
883
884		conditional_sti(regs);
885
886		info.regs = regs;
887		math_emulate(&info);
888		exception_exit(prev_state);
889		return;
890	}
891#endif
892	math_state_restore(); /* interrupts still off */
893#ifdef CONFIG_X86_32
894	conditional_sti(regs);
895#endif
896	exception_exit(prev_state);
897}
898NOKPROBE_SYMBOL(do_device_not_available);
899
900#ifdef CONFIG_X86_32
901dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
902{
903	siginfo_t info;
904	enum ctx_state prev_state;
905
906	prev_state = exception_enter();
907	local_irq_enable();
908
909	info.si_signo = SIGILL;
910	info.si_errno = 0;
911	info.si_code = ILL_BADSTK;
912	info.si_addr = NULL;
913	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
914			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
915		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
916			&info);
917	}
918	exception_exit(prev_state);
919}
920#endif
921
922/* Set of traps needed for early debugging. */
923void __init early_trap_init(void)
924{
925	/*
926	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
927	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
928	 * CPU runs at ring 0 so it is impossible to hit an invalid
929	 * stack.  Using the original stack works well enough at this
930	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
931	 * trap_init().
932	 *
933	 * We don't need to set trace_idt_table like set_intr_gate(),
934	 * since we don't have trace_debug and it will be reset to
935	 * 'debug' in trap_init() by set_intr_gate_ist().
936	 */
937	set_intr_gate_notrace(X86_TRAP_DB, debug);
938	/* int3 can be called from all */
939	set_system_intr_gate(X86_TRAP_BP, &int3);
940#ifdef CONFIG_X86_32
941	set_intr_gate(X86_TRAP_PF, page_fault);
942#endif
943	load_idt(&idt_descr);
944}
945
946void __init early_trap_pf_init(void)
947{
948#ifdef CONFIG_X86_64
949	set_intr_gate(X86_TRAP_PF, page_fault);
950#endif
951}
952
953void __init trap_init(void)
954{
955	int i;
956
957#ifdef CONFIG_EISA
958	void __iomem *p = early_ioremap(0x0FFFD9, 4);
959
960	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
961		EISA_bus = 1;
962	early_iounmap(p, 4);
963#endif
964
965	set_intr_gate(X86_TRAP_DE, divide_error);
966	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
967	/* int4 can be called from all */
968	set_system_intr_gate(X86_TRAP_OF, &overflow);
969	set_intr_gate(X86_TRAP_BR, bounds);
970	set_intr_gate(X86_TRAP_UD, invalid_op);
971	set_intr_gate(X86_TRAP_NM, device_not_available);
972#ifdef CONFIG_X86_32
973	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
974#else
975	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
976#endif
977	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
978	set_intr_gate(X86_TRAP_TS, invalid_TSS);
979	set_intr_gate(X86_TRAP_NP, segment_not_present);
980	set_intr_gate(X86_TRAP_SS, stack_segment);
981	set_intr_gate(X86_TRAP_GP, general_protection);
982	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
983	set_intr_gate(X86_TRAP_MF, coprocessor_error);
984	set_intr_gate(X86_TRAP_AC, alignment_check);
985#ifdef CONFIG_X86_MCE
986	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
987#endif
988	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
989
990	/* Reserve all the builtin and the syscall vector: */
991	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
992		set_bit(i, used_vectors);
993
994#ifdef CONFIG_IA32_EMULATION
995	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
996	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
997#endif
998
999#ifdef CONFIG_X86_32
1000	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
1001	set_bit(SYSCALL_VECTOR, used_vectors);
1002#endif
1003
1004	/*
1005	 * Set the IDT descriptor to a fixed read-only location, so that the
1006	 * "sidt" instruction will not leak the location of the kernel, and
1007	 * to defend the IDT against arbitrary memory write vulnerabilities.
1008	 * It will be reloaded in cpu_init() */
1009	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
1010	idt_descr.address = fix_to_virt(FIX_RO_IDT);
1011
1012	/*
1013	 * Should be a barrier for any external CPU state:
1014	 */
1015	cpu_init();
1016
1017	/*
1018	 * X86_TRAP_DB and X86_TRAP_BP have been set
1019	 * in early_trap_init(). However, ITS works only after
1020	 * cpu_init() loads TSS. See comments in early_trap_init().
1021	 */
1022	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1023	/* int3 can be called from all */
1024	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1025
1026	x86_init.irqs.trap_init();
1027
1028#ifdef CONFIG_X86_64
1029	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1030	set_nmi_gate(X86_TRAP_DB, &debug);
1031	set_nmi_gate(X86_TRAP_BP, &int3);
1032#endif
1033}
1034